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ABSTRACT 

Coiled coils are characteristic rope-like protein structures, constituted by one or more 

heptad repeats. Native coiled-coil structures play important roles in various biological 

processes, while the designed ones are widely employed in medicine and industry. To 

date, two major oligomeric states (i.e. dimeric and trimeric states) of a coiled-coil 

structure have been observed, plausibly exerting different biological functions. 

Therefore, exploration of the relationship between heptad repeat sequence and coiled 

coil structures is highly important. In this paper, we develop a new method named 

AAFreqCoil to classify parallel dimeric and trimeric coiled coils. Our method 

demonstrated its competitive performance when benchmarked based on 10-fold cross 

validation and jackknife cross validation. Meanwhile, the rules that can explicitly 

explain the prediction results of the test coiled coil can be extracted from the 

AAFreqCoil model for a better explanation of user predictions. A web server and 

stand-alone programs implementing the AAFreqCoil algorithm are freely available at 

http://genomics.fzu.edu.cn/AAFreqCoil/. 
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1 INTRODUCTION 

In the early 1950s, Crick and Pauling independently found that the structure of 

α-keratin is likely to be coiled coils
1, 2

. As a characteristic protein motif, coiled coils 

are frequently presented in text books. They have a specific sequence pattern, unique 

structure and diverse biological functions
3
. Coiled coil structures have been found in 

many kinds of native proteins and have been widely investigated by the community. 

The coiled coil is a kind of rope-like structure, which contains two or more 

alpha-helices winding around each other
4
 (Figure 1). The particular structure of the 

coiled coil result from its specific sequence pattern, “HXXHCXC” repeats, where H 

represents hydrophobic amino acid residues, C stands for charged residues and X 

denotes any residue locating in the position. This pattern is usually called heptad 

repeat and the seven positions in one repeat are consecutively labeled as abcdefg 

registers. In general, residues at a and d positions are buried inside the coiled coil 

structure to form the hydrophobic core, while residues at e and g positions are 

exposed outside
5
 in favor of the formation of salt bridge and electrostatic interactions. 

Therefore, these residues (i.e. residues at a, d, e, and g positions) are essential to 

maintain the stability and specificity of the coiled coil structural motif
6, 7

. 

Coiled coils are a versatile motif in organisms
8
. They mainly exist in transcription 

factors, structural proteins, membrane proteins, and enzymes, performing various 

cellular functions such as metabolism regulation, muscle contraction, transmembrane 

transport, and molecular chaperones and so on. The property of coiled coils to 

mediate solid interactions between two or more proteins has attracted protein 

designers. Meanwhile, the design of coiled coil structures has been widely applied in 

the fields of biology, industry and medicine
9, 10

. For example, through designing a 

polypeptide chain which forms a hexameric coiled coil structure with the membrane 

receptor in the target cell, the invasion of the human immunodeficiency virus (HIV) 

can be successfully prevented
11

.  

Due to the importance of coiled coils, a series of computational methods has been 

elegantly developed to study coiled coils. As examples, SOCKET
12

 and Twister
13

 are 

two structure-seeded methods for coiled coil prediction. SOCKET is designed to 
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identify coiled coil motifs from a protein three-dimensional structure. It also defines 

the heptad registers, orientation and oligomeric states of the coiled coil. Later, a coiled 

coil database CC+
14

  was constructed by employing this program. Similarly, Twister 

can also compute the structure parameters of coiled coils. Since structural data are not 

always available, there are several effective methods, including PCOILS
15

, 

MARCOIL
16

, PAIRCOIL
17

 and CCHMM-PROF
18

  to predict coiled coil region from 

a protein sequence. Finally, recent methods elaborate more on the prediction of an 

important property of the coiled coil, i.e. its oligomeric states. PrOCoil
19

, 

SCORER2.0
20

, and RFCoil
4
 focus on the discrimination between parallel dimeric and 

trimeric coiled coils. PrOCoil uses amino acid pair pattern as input to train a support 

vector machine based model. SCORER2.0 employs amino acid frequencies combined 

with a Bayes factor method. RFCoil is a random forest based predictor. In addition, 

the development of more comprehensive predictors has also been enabled. 

LOGICOIL
21

 is a predictor for both coiled-coils’ oligomeric states and their 

orientations, while  MultiCoil2
22

 can predict the coiled-coil region and its oligomeric 

state at once. CCBuilder probably is the latest interactive web server-based tool to 

build, design and assess coiled coil models
23

. Although several methods have been 

proposed, the performance of coiled coil prediction is not yet very satisfactory. 

Especially, as an avenue connecting protein sequence and coiled coil structure design, 

new algorithms for coiled coil oligomeric state prediction are still desirable. 

Previously, we developed RFCoil, in which the random forest method and amino acid 

index features were combined to predict coiled coil oligomeric states. But the 

dimension of its input features was too large (3,703 features) and the prediction 

results were not very stable when compared with other methods. 

In this paper, we address this issue by employing not only state-of-the-art random 

forest method but also elegant amino acid frequency-based encoding. Our novel 

predictor, AAFreqCoil, was strictly benchmarked and the results demonstrate that it is 

very competitive when compared with other methods. Furthermore, the hidden and 

complex oligomeric formation mechanism of the coiled coils was investigated by 

extracting explainable rules from the predictive model. These unambiguous rules 
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could tell us how amino acid propensities of certain positions in the heptad repeats 

jointly influence the final oligomeric state of coiled coils.   

 

2 MATERIALS AND METHODS 

2.1 Datasets 

To train and validate our method, a training dataset was compiled as follows. First, 

all the parallel dimeric and trimeric coiled coils, which contain eight or more residues, 

were downloaded from the CC+ database 

(http://coiledcoils.chm.bris.ac.uk/ccplus/search/, version of 26 April, 2013). Second, 

protein structures were downloaded from PDB database (released after 26 April, 

2013)
24

, and the SOCKET program was used to identify coiled coils from these 

protein structures. The sequences and registers of the identified parallel dimeric and 

trimeric coiled coils were extracted from the SOCKET outputs. Then, CD-HIT
25

 was 

used to cull the coiled coil sequences. We noted that in many research works
26-29

, a 

cutoff threshold of 25% or 30% was imposed to exclude sequences that have equal to 

or greater than 25% or 30% sequence identity with any other in the same dataset. 

However, in this study, such a stringent criterion was not used because the small 

amount of data does not allow us to do so. Otherwise, the number of culled sequences 

would be too few to evaluate statistical significance. Instead, like LogiCoil
21

, a 50% 

sequence identity threshold was used to cull the non-redundant coiled coil sequences 

in the dataset. As a result, our training dataset includes 496 dimers and 100 trimers 

(listed in supplementary material 1). 

 

2.2 Statistical significance of amino acid frequency difference 

In order to test whether there was a significant difference in amino acid frequencies 

between dimers and trimers, we computed the 20 amino acid frequencies at each 

heptad register (position) of the dimeric and trimeric coiled coils in the training 

dataset, respectively. Then, the Z statistic
30-32

 was used to estimate the statistical 

significance of the hypothesis
2 3

0
, , , ,r a r a

p p− ≠− ≠− ≠− ≠  (i.e. the frequencies of amino acid a at 
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register r differ between dimers and trimers): 

2 3
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                 (1) 

In the above formula, 
2 ,r
n  and 

3,r
n  represent the counts of amino acids at heptad 

register r in dimers and trimers respectively.
2, ,r a
p  and 

3, ,r a
p  are the frequencies of 

amino acid a at register r in the dimeric and trimeric coiled coils respectively. Under 

the null hypothesis that
2 3

0
, , , ,r a r a

p p− =− =− =− = , p-value {| | }P Z z= ≥= ≥= ≥= ≥  represents the 

significance level. The smaller p-value is, the more credible that the alternative 

hypothesis 
2 3

0
, , , ,r a r a

p p− ≠− ≠− ≠− ≠  is. 

 

2.3 Random forest 

The random forest
33

 algorithm is an ensemble learning
34-36

 method that integrates 

multiple classifiers to improve the prediction accuracy. It’s known that for a 

supervised classifier, the classification error is partly attributed to the divergence 

between the distributions of the training samples and those of unknown ones. The 

ensemble learning method doesn’t train a set of classifiers on the same training set. In 

contrast, it performs a series of perturbations to the training set, which can learn more 

general predictive model from the perturbed datasets and remove the single 

classifier’s bias
37, 38

. 

A random forest consists of many decision trees and the final classification is 

decided by the votes from all of the trees. Both theoretical and experimental 

researches have proved that random forest can effectively improve the generalization 

ability
39-41

. Usually, three steps are required to build a random forest classification 

model. First, prepare a dataset with N samples, and randomly select N samples with 

replacement to obtain a new dataset. Repeat this procedure n times to obtain n 

different sub-datasets. Second, construct one decision tree based on one sub-dataset, 

therefore n decision trees can be obtained in total. One decision tree is consisted of 

nodes and branches. At the root node and the intermediate nodes, m features are 

Page 6 of 22Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



randomly selected from all of the features, and the feature enabling best split of the 

sub-dataset is selected to deduce the decision criterion. Each leaf node of one decision 

tree is the classification outputs based on the criteria represented by a series of nodes 

from the root node to this leaf node. Lastly, after obtaining n decision trees, count the 

votes for classification outputs by these trees and the most approved one is chosen as 

the final prediction result. 

In practice, to build the random forest model, 4,000 trees were grown, which was 

found enough to ensure stable prediction results. In order to get the optimal 

performance, we tuned the value of parameter m from 1 to 50. In addition, 

considering the unbalance of dimers and trimers in the training dataset, the weight for 

dimer class and trimer class, which is denoted as w, was tuned from 1:1 to 1:10. The 

prediction performances with different combinations of the parameters on 10-fold 

cross validation are listed in the supplementary material file 2. When the value of m 

and w were set as 33 and 1:2 respectively, the prediction performance AUC (area 

under the ROC curve) will reach its maximum value of 0.875. 

In the process of building the random forest model, the importance of each feature 

for classification can be estimated. When a feature is split at one node of the decision 

tree, the descendent nodes should have less gini impurity
42

 than this parent node. The 

sum of the gini decreases for the feature over all the trees can be exploited to measure 

the importance of the feature. In this paper, we used the Randomforest package
43

 to 

build our predictive model. 

 

2.4 Encoding 

We used the 20 amino acid frequencies at 7 heptad registers to encode the coiled 

coil, which can be denoted by the following equation: 

( ,A)
( ,A)

( )

n r
r

n r
=  

In the above formula, n(r, A) represents the counts of heptad register r whose 

amino acid residue is A and n(r) is the number of heptad register r in a coiled coil 

sequence. Then, a coiled coil can be represented by a 140-dimensional vector. The 
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encoding is simple but robust. When combined with random forest, the relation 

between amino acids at different heptad registers can be readily captured by the 

decision trees of a random forest. We also noted that many protein prediction issues 

have extended single amino acid composition to dipeptide
44, 45

, tripeptide
46, 47

, or 

tetrapeptide
48, 49

 compositions. When using dipeptide frequencies as the input to 

random forest, the average AUC on the 10-fold cross validation was 0.809, which is 

not better than that could be achieved by using single amino acid frequencies. 

 

2.5 Rule-extracting 

For a decision tree, each path from the root node to the leaf node represents a rule. 

So the random forest model can be considered as a series of rule sets. In our previous 

work, we devised a novel and easy method to extract the minimum set of rules from 

the random forest model covering all the training data
4
. The rule-extracting method 

can be also applied to AAFreqCoil. Briefly, the following procedure was used to 

extract dimer rules. First, suppose the initial dimer rule set is empty. Extract all the 

rules from the model that correctly predict dimers but don’t wrongly predict a trimer 

to be a dimer. Second, find the rule that covers most dimeric coiled coils, put this rule 

to the rule set and delete dimers from the training set that conform to this rule. Third, 

repeat the second step until there is no dimer in the training dataset. Using a similar 

procedure, the trimer rules can also be extracted. 

For one testing coiled coil, the predictive model can tell the probabilities of being 

dimeric and trimeric. But for a protein designer, the reason why this coiled coil is 

predicted as dimeric or trimeric is more cared. Recall the fact that to build the 

AAFreqCoil model, 4,000 trees were grown, and each tree used one rule to decide its 

classification output. Taken together, there are 4,000 rules that give rise to one testing 

coiled coil’s classification. Since there are many rules available, we employed 

accuracy and coverage to measure a rule's contribution to the final classification. 

Coverage is the number of coiled coils whose classification can be deduced by this 

rule, while accuracy is the fraction of correct classification to all classification based 

on this rule. In our work, accuracy is considered prior to coverage. 
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2.6 Performance evaluation 

In statistical prediction, cross validation test is often used to examine a predictor for 

its effectiveness in practical application
50, 51

. In k-fold cross validation, the dataset was 

randomly partitioned into k equal size subsets. One subset was retained to test the 

predictive model trained by the remaining k-1 subsets, and this process was repeated k 

times. Here, we used popular 10-fold cross validation and more stable but 

time-consuming jackknife cross validation for performance evaluation. Jackknife 

cross validation is a special type of k-fold cross validation where k is equal to the 

number of samples in the dataset. That is to say, every sample will be retained once as 

the testing sample. The advantage of jackknife cross validation is that it can always 

yield a unique result for a given benchmark dataset, as elucidated in
52

 and 

demonstrated by the work of Chou and Shen
53

. Therefore, the jackknife cross 

validation has been increasingly and widely adopted by investigators to test the power 

of various predictors
54-59

. 

More specifically, 10-fold cross validation and jackknife cross validation were used 

to evaluate the performance of AAFreqCoil and other methods including SCORER2.0, 

PrOCoil and RFCoil. Because the source code of LOGICOIL only contains the 

trained model, we submitted the training coiled coil sequences and registers to the 

LOGICOIL server and got the prediction results. LOGICOIL can output the score of a 

coiled coil being antiparallel dimeric, parallel dimeric, trimeric and tetremeric, 

respectively. We took parallel dimeric score divided by the sum of parallel dimeric 

score and trimeric score as the final predictive score of LOGICOIL. 

Although MultiCoil2 can also distinguish coiled coil oligomeric states, it is 

different from the aforementioned five predictors. It predicts each residue of a 

sequence to be non-coiled-coil, dimeric or trimeric. We submitted the coiled coil 

sequences and registers of the training dataset to the online webserver of MultiCoil2, 

and the probability for each residue to be dimeric was recorded. The probability for a 

coiled coil to be dimeric is the average probability of its residues being in dimeric 

state. 
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2.7 Performance measure 

We used the ROC curve
60, 61

 to measure the performance of different predictors. 

The ROC curve is often used to measure the performance of binary classification 

methods. It plots the true positive rate (TPR) against the false positive rate (FPR) as 

the discrimination threshold varies. In this paper, dimeric coiled coils are defined as 

positive samples, and trimeric coiled coils are defined as negative samples. TPR is the 

ratio of correctly predicted positive samples to all the positive samples. FPR is the 

ratio of the negative samples falsely predicted to be positive samples to all the 

negative samples. The area under a ROC curve (AUC) quantifies the overall 

prediction ability of a classifier
62, 63

. So AUC is usually used as a measure to compare 

two models and the model whose ROC curve closer to the top left (i.e. with larger 

AUC) is considered to be better. In our paper, the ROCR
64

 package was used to plot 

the ROC curves. 

 

3 RESULTS AND DISCUSSIONS 

3.1 The difference of amino acid frequencies between dimeric and trimeric coiled 

coils 

For exploring whether there is a significant difference in amino acid occurrences 

between parallel dimers and trimers, we computed the frequencies of 20 amino acids 

at each heptad register and used Z-test for significance evaluation. Figure 2 illustrates 

the distribution of 20 amino acids at 7 heptad registers in trimers and dimers. From 

Figure 2, we can see that G (Gly) occurs very few at registers a, d, e, and g, perhaps 

due to the fact that G is too small to form stable hydrophobic interfaces or 

electrostatic interactions. P (Pro) rarely occurs at all 7 registers, as proline is of 

exceptional conformational rigidity compared to other amino acids and often acts as a 

structural disruptor in the middle of alpha helices. It can also be observed that at 

positions a and d, hydrophobic residues L (Leu), A (Ala), V (Val) and I (Ile) occur 

most frequently, which agree well with the fact that in the coiled coil structure, a and 

d positions are buried interior to form the hydrophobic core. In addition, these amino 

Page 10 of 22Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



acids have larger frequencies at a in trimers than in dimers, which demonstrates that 

higher-order oligomeric states need stronger hydrophobic force
65

. At positions e and g, 

polar residues E (Glu), K (Lys), Q (Gln), and R (Arg) occur most. These residues can 

mediate the electrostatic interactions between e and g. It can be seen that for most 

amino acids, there is a marginal difference in frequencies at each register between 

dimers and trimers. Indeed, we merely found K (Lys) at register a, P (Pro) at register a, 

b, c, and d, W (Trp) at register b, Y (Tyr) at register a are significantly different in 

occurrences by the Z-test with a p-value<0.05. But methods like SCORER2.0 and 

RFCoil, which use single amino acid information, could still achieve good 

performance. This demonstrates that the discrimination between parallel dimeric and 

trimeric coiled coils depend on the joint divergence of each amino acid in the 

coiled-coil and machine learning method should be suitable to summarize these 

marginal frequency differences and accurately predict the oligomeric state of coiled 

coils. . 

 

3.2 Prediction performance based on 10-fold cross validation 

We performed 10-fold cross validation on the training dataset. When m is 33, and 

the class weight is set 1:2 for the dimer and the trimer, AAFreqCoil gets the best 

performance. Here, the ROC curve is used to describe the performance of predictive 

methods. The values of AUC for different methods based on 10-fold cross validation 

are listed in Table 1. From the table, we can see that the average AUC for 

SCORER2.0, PrOCoil, RFCoil and AAFreqCoil are 0.838, 0.863, 0.841 and 0.875 

respectively, among which AAFreqCoil obtains the highest AUC value. We also 

computed the standard error of AUC across the 10-fold cross validation. For the above 

four predictors, the values of the standard error are 0.084, 0.066, 0.077 and 0.049, 

respectively, which demonstrates that AAFreqCoil is more stable than other methods. 

 

3.3 Prediction performance on jackknife cross validation 

In addition to 10-fold cross validation, jackknife cross validation was used to 

further examine the prediction performance of different methods. The ROC curves for 
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different methods are plotted in Figure 3 and the values of AUC for SCORER2.0, 

PrOCoil, RFCoil and AAFreqCoil are 0.851, 0.860, 0.836 and 0.882, where 

AAFreqCoil still achieves the best performance.  

We submitted the training coiled coil sequences and registers to the web servers of 

LOGICOIL and MultiCoil, and plotted the ROC curves based on their prediction 

results (see Materials and Methods for details). As a result, we found that the AUC of 

LOGICOIL can reach 0.849. MultiCoil2 predicted that only 112 coiled coils 

contained coiled coil residues. So we plotted its ROC curve based on these 112 coiled 

coils, and the corresponding value of AUC is 0.781. Taken together, our results 

demonstrated that AAFreqCoil can achieve competitive performance when 

benchmarked on 10-fold cross validation and jackknife cross validation. 

 

3.4 Rules extracted from AAFreqCoil model 

In order to investigate the mechanism of the coiled coil oligomeric state formation, 

we devised a method to extract informative rules from AAFreqCoil model that cover 

all the training data (see Materials and Methods for details). We finally obtained 17 

rules (supplementary material 3) to predict dimers and 13 rules to predict trimers 

(supplementary material 4).  

The rule that covers most dimers is: 

(g, R)<=1.5 & (c, T)<=0.5 & (a, V)<=2.5 & (e, C)<=0.5 & (c, D)<=0.5 & (c, E)<=1.5 

& (e, E)<=0.5 & (a, I)<=0.5. 

In the above rule, (r, A) denotes the number of amino acids A at register r. “&” 

denotes the logical conjunction. 211 dimers in the training dataset conform to this 

rule. 

The rule that covers most trimers is: 

(a, Y)<=0.5 & (d, Y)<=0.5 & (e, E)<=4.5 & (e, E)>0.5 & (g, E)<=2.5 & (d, A)<=0.5 

& (a, K)<=0.5 & (d, K)<=0.5 & (d, L)>0.5 & (e, M)<=0.5 & (g, M)<=1.5 & (a, 

N)<=0.5 & (b, P)<=0.5 & (a, Q)<=0.5 & (a, R)<=0.5. 

29 trimers conform to the above rule. 

The RFCoil model was built based on the training dataset. 12 dimeric rules and 
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10 trimeric rules were extracted from the RFCoil model (see supplementary material 5 

and 6). Rules from RFCoil model and AAFreqCoil model can both correctly 

distinguish dimeric and trimeric coiled coils in the training dataset. Compared with 

rules from RFCoil model, rules from AAFreqCoil model are more applicable, because 

the amino acid frequencies at each register are very easy to calculate and interpret. In 

contrast, RFCoil considers the average values of the 529 amino acid indices at each 

register, which is more complicated and not straightforward to understand. 

 

3.5 Gini importance of each feature 

A random forest can give gini importance of each input feature. Here, we summed 

the gini importance of 20 amino acids for each heptad register and listed them in 

Table 2. As shown in Table 2, the hydrophobic positions a and d are more important 

than other positions for classification, and position a is of the most importance. The 

importance of other 5 positions decreases in the order of e, g, c, f and b. 

Meanwhile, the 10 most important individual features are listed in Table 3. Among 

them, only K at a and Y at a have been approved by the aforementioned Z-test, 

showing significant frequency differences between dimers and trimmers (Figure 2). 

This suggests that the discrimination of parallel dimeric and trimeric coiled coils is 

not only dependent on the single amino acid frequency, but also dependent on other 

factors, such as the correlation between amino acids at different heptad registers and 

the accumulation of amino acid differences. 

 

3.6 Case study 

To provide a realistic example, we applied AAFreqCoil to a coiled coil protein 

Bicaudal-D (PDB entry 4BL6)
66

. For clarity, we focused on the prediction results of 

chain B in this structure.  

The amino acids and heptad registers of the coiled coil region of the protein 

4BL6_B is given in Figure 4. Its real oligomeric state is parallel dimeric. AAFreqCoil 

reports the probability for it to be dimeric is as high as 0.963, while the probability to 

be trimeric is 0.037. This means that among the 4,000 trees, 96.3% of them classify 
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the coiled coil as a dimer, while only 3.7% of them classify the coiled coil as a trimer. 

The three best rules for it to be dimeric and trimeric, respectively, can also be 

extracted to explain the prediction results. The rules and their coverage are listed in 

Table 4. The best rule for the coiled coil to be dimeric is that if there are at least 1 R at 

register b, less than 2 V at register a and less than 2 R at register g, and there are no S 

at register g, nor T at register b, the coiled coil is parallel dimeric. According to the 

fourth row in Table 4, the coiled coil is a trimer because there exist more than 1 L at 

position d, E at position g, K at position c, and L at position c,  and there are no E at 

position d, nor D at position d. Apparently, the coverage of dimer rules are much more 

higher than trimer rules, indicating that the coiled coil region of this protein fits well 

to the general dimer rules extracted from the AAFreqCoil model (and thus finally be 

predicted as an dimer), but show little similarity to known trimeric coiled coils in the 

training dataset. 

It should be noted that we took this case study to show that understandable 

prediction results can be drawn by applying AAFreqCoil. We did not aim at 

comparing different methods in this case. Indeed, except for LOGICOIL, other 

methods all gave a reliable prediction results on this particular case (Table 5).  

 

3.7 Web server 

To aid the research community, a user-friendly web server implementing our 

method is developed and is publicly available at 

http://genomics.fzu.edu.cn/AAFreqCoil/. Users can submit a protein sequence and its 

corresponding heptad registers of the coiled coil to the server to get the prediction 

results. Meanwhile, the predominant rules explaining the result are also shown in the 

result page. The server was designed using programming languages of R, PHP and 

HTML. The computational time for finishing a job depends on the length of the query 

sequence. It is estimated that a typical job will be finished within 3 minutes if the 

protein contains less than 150 amino acids. To facilitate batch predictions, the source 

code and stand-alone program of AAFreqCoil can also be downloaded from the web 

server. 
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4 Conclusions 

In this paper, we used a state-of-the-art machine learning method, random forest, to 

develop a new tool called AAFreqCoil for parallel dimeric and trimeric coiled coils 

discrimination. AAFreqCoil demonstrated its competitive performance in comparison 

to the existing methods. Meanwhile, we counted the frequencies of 20 amino acids at 

7 heptad registers and found that except a few amino acids at some registers, most of 

the amino acids at certain heptad registers show no great difference in frequencies 

between dimeric and trimeric coiled coils. So the efficient classification between 

parallel dimeric and trimeric coiled coils should depend not only on the single amino 

acid frequencies, but also on the combination of amino acids at different positions. 

Furthermore, we devised a method to extract explainable rules from AAFreqCoil 

model, which trained by all the trimers and dimers in the dataset. For each test coiled 

coil, the understandable rules can be extracted from AAFreqCoil model to explain the 

prediction results. Finally, a web server, all source codes and the stand-alone program 

of AAFreqCoil are publicly available at http://genomics.fzu.edu.cn/AAFreqCoil/ to 

serve the biological community. 
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TABLES 

Table 1. Comparison of AUC scores for different methods based on the 10-fold 

cross validation 

fold SCORER2.0 PrOCoil RFCoil AAFreqCoil 

1 0.737 0.829 0.718 0.827 

2 0.848 0.768 0.900 0.848 

3 0.840 0.920 0.804 0.875 

4 0.898 0.930 0.834 0.936 

5 0.896 0.812 0.837 0.896 

6 0.726 0.762 0.776 0.786 

7 0.952 0.940 0.966 0.910 

8 0.788 0.888 0.841 0.935 

9 0.943 0.898 0.947 0.896 

10 0.753 0.886 0.787 0.839 

average 0.838 0.863 0.841 0.875 

standard error 0.084 0.066 0.077 0.049 

 

 

 

 

 

Table 2. Gini importance of each heptad register 

heptad register a b c d e f g 

gini importance 67.8 22.3 31.1 44.0 40.9 26.3 31.8 

 

Table 3. The 10 most important features for classification 

(a, I) (e, E) (a, K) (d, L) (a, N) (d, K) (a, V) (a, Y) (c, D) (g, S) 

14.6 14.1 11.1 9.5 9.0 6.2 6.0 5.7 5.1 4.8 
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Table 4. The 3 best rules for the case study 

rules coverage 

dimer trimer 

(a,V)<=1.5&(g,S)<=0.5&(g,R)<=1.5&(b,R)>0.5&(b,T)<=0.5, then 

dimer 

78 0 

(a,K)>0.5, then dimer 63 0 

(a,V)<=2.5&(a,K)>0.5, then dimer 62 0 

(d,E)<=0.5&(d,L)>1.5&(g,E)>0.5&(c,K)>0.5&(c,L)>0.5&(d,D)<=

0.5, then trimer 

1 5 

(a,I)<=0.5&(d,L)>1.5&(b,K)>0.5&(e,V)>0.5, then trimer 1 4 

(d,K)<=0.5&(g,R)<=1.5&(g,K)<=1.5&(d,I)<=0.5&(f,D)<=0.5&(e,

N)>0.5&(b,Y)<=0.5&(a,A)>0.5, then trimer 

1 3 

“&” denotes the logical conjunction. (r,A) denotes the number of amino acids A at register r. 

 

 

Table 5. Comparison of AUC scores for different methods on the case study 

Method SCORER2.0 PrOCoil RFCoil AAFreqCoil LOGICOIL MultiCoil2 

AUC 9.200 -1.144 0.982 0.963 0.517 0.990 

RFCoil, AAFreqCoil and LOGICOIL use 0.5 as threshold and SCORER2.0 uses 0 as threshold to discriminate 

dimers and trimers. For them, greater score means greater possibility for a coiled coil to be dimeric. PrOCoil uses 

0 as cutoff. The smaller the predictive score from PrOCoil is, the more possible for a coiled coil to be dimeric. 
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Figures  

 

 

Figure 1. Structures of coiled coils. Cartoon presentation of a dimeric coiled coil and 

a trimeric coiled coil
4
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Figure 2. Amino acid frequencies at 7 heptad registers in dimers and trimers 
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Figure 3. ROC curves for different methods on jackknife cross validation 

 

 

 

 

 

Figure 4. The amino acids (upper cases) and heptad registers (lower cases) of the 

coiled coil region of protein 4BL6_B.  The covering positions of the coiled coil 

region in the 4BL6_B protein are also given. 
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