
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Molecular
 BioSystems

www.rsc.org/molecularbiosystems

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


S100A4 and its Role in Metastasis - Computational Integration of Data
on Biological Networks†

Antoine Buetti-Dinh,∗abc Igor V. Pivkin bd and Ran Friedman∗ac

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

Characterising signal transduction networks is fundamental to our understanding of biology. However, redundancy and different
types of feedback mechanisms make it difficult to understand how variations of the network components contribute to a biological
process. In silico modelling of signalling interactions therefore becomes increasingly useful for the development of successful
therapeutic approaches. Unfortunately, quantitative information cannot be obtained for all of the proteins or complexes that
comprise the network, which limits the usability of computational models. We developed a flexible computational framework
for the analysis of biological signalling networks. We demonstrate our approach by studying the mechanism of metastasis
promotion by the S100A4 protein, and suggest therapeutic strategies. The advantage of the proposed method is that only limited
information (interaction type between species) is required to set up a steady-state network model. This permits a straightforward
integration of experimental information where the lack of details are compensated by efficient sampling of the parameter space.
We investigated regulatory properties of the S100A4 network and the role of different key components. The results show that
S100A4 enhances the activity of matrix metalloproteinases (MMPs), causing higher cell dissociation. Moreover, it leads to an
increased stability of the pathological state. Thus, avoiding metastasis in S100A4-expressing tumours requires multiple target
inhibition. Moreover, the analysis could explain the previous failure of MMP inhibitors in clinical trials. Finally, our method is
applicable to a wide range of biological questions that can be represented as directional networks.

1 Introduction

1.1 Modelling Biological Networks

Being able to predict the behaviour of signalling networks
by simulation is fundamental for studying complex diseases
as it enables the prediction of the consequences of defective
gene functions1,2 as well as the effect of drugs in different
cell types3. While the mathematical formalism for integrating
kinetic data in quantitative models is well established (e.g.,
Michaelis-Menten formalism), the probabilistic nature of bio-
logical signalling can make models of highly intricate and re-
dundant networks inefficient. In fact, due to the large number
of microscopic parameters necessary to set up network mod-
els, assumptions and simplifications are necessary to make
models tractable.

The information required for setting up large-scale mod-
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els is available through current experimental technologies
(e.g., high-throughput sequencing). Various methods based on
Bayesian probability or information theory, such as Bayesian
network inference, can be used to infer on gene regulatory
networks by utilising data from diverse data sources4–7. Such
methods are used to integrate datasets from omic technolo-
gies into networks representing the main biological features
of a system8–11. Reconstructed networks can subsequently be
analysed for the development of therapeutic strategies12,13.

Numerous different approaches exist to simulate biologi-
cal signalling networks, from very specific models integrat-
ing high level of details (e.g., mass-action kinetics) to more
approximate ones (e.g., Boolean networks, Petri nets) based
on more general principles that allow broader applicability
to diverse biological systems14. In highly accurate models,
details on microscopic reaction rates have to be provided by
kinetic experiments. This is challenging to achieve when
working with biological components in vitro, and substan-
tially more difficult when trying to obtain the same informa-
tion in vivo. Partially missing information can however be
extrapolated computationally through optimization based on
the available parameters and using incomplete experimental
data12,13,15. Importantly, biomolecular interaction is strongly
determined by its in vivo context, whereas in vitro experiments
sometimes fail to determine quantitative information about
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regulatory processes16–19. In the absence of detailed descrip-
tion of the system, approximate models can provide qualitative
or semi-quantitative information. Such models rely on simple
and quite general principles, and thus require a smaller num-
ber of parameters. They also can be implemented into com-
puter programs that automatically build a simulation system
from the network configuration in a flexible manner according
to few control parameters20–22. These approaches are very
well suited to investigate the effect of network components at
the qualitative level, with the drawback of poorly describing
the system quantitatively.

The computational method we developed combines flexibil-
ity and broad applicability to diverse networks, together with
quantitative predictive power. The method quantifies the effect
of variable network parameters through an automated multi-
dimensional sensitivity analysis with respect to each network
component. Every network component (or network node) is
represented through a reduced set of parameters. Model pa-
rameters assume value ranges reflecting the information avail-
able for a given node or interaction and provide a correspond-
ing sensitivity map that takes into consideration the effects
associated to experimental uncertainties and heterogeneity in
cellular populations. Signalling in cellular populations is mod-
elled through a steady-state interaction network, where contin-
uous functions express activation and inhibition that involves
the network’s components. Interacting components are treated
phenomenologically through a system of ordinary differential
equations (ODEs) that are generated per system and condi-
tion, thereby setting the basis for flexibility and applicability
of the approach to various biological systems. At the same
time, our approach facilitates the processing, comparison and
modification of different simulated systems making it partic-
ularly suited to study partially described signalling networks.
We demonstrate its usability by studying a protein network
involving the metastasis promoter S100A4.

1.2 S100A4 and Its Role in Metastasis

S100A4 is involved in multiple signalling pathways bridging
metastasis and angiogenesis, two cooperating processes that
are crucially important for tumour malignancy23. The protein
is used as a prognostic marker in a number of human cancers
and correlates to metastatic tumours24–26. Animal and cellular
studies suggest that S100A4 is not only a marker but an active
mediator of cancer progression27 and that tumour growth is re-
duced when extracellular S100A4 is targeted with monoclonal
antibodies28. Metastasizing S100A4-expressing tumour cells
can induce cells of the invaded tissues to express S100A429.

Despite a wealth of experimental data, the molecular mech-
anisms underlying metastasis formation are largely unknown.
The involvement of S100A4 in different pathways of cancer-
related processes makes it an interesting target for therapeutic

strategies and underscores the importance of studying metas-
tasis from a system perspective. This is efficiently achieved
here by representing S100A4 in the context of its signalling
interactions using a network model to explore the role of
S100A4 in view of potential therapeutic strategies.

Current cancer therapies apply evolutionary pressure that
dynamically shapes the genomic landscapes of tumours30,31.
Tumour heterogeneity plays a crucial role in such pro-
cesses32–36 where resistant cells are selected for their capacity
to sustain tumour growth utilizing alternative pathways, that
eventually lead to treatment resistance. Our method provides
means to quantitatively investigate such effects by considering
parameters of the signalling interactions over defined ranges,
thereby accounting for the tumour’s heterogeneous character
that leads to resistance to therapy.

2 Methods

2.1 Network Representation

We prepared a signalling network model of S100A4 based on
the experimental evidence found in the literature (see Text ESI
1) and illustrated in Figure 1 using cytoscape37. Different bi-
ological systems can be simulated and investigated by control
analysis through a network representation, where the compo-
nents and type of interaction (activation or inhibition) consti-
tute the only required information. The general principles un-
derlying the presented method enable the application of our
modelling framework to diverse biological systems that can
be represented by an activation/inhibition network and at the
same time facilitate the integration of experimentally accessi-
ble information.

2.2 Computational Workflow

Here we present a quantitative phenomenological modelling
framework applied to the case of the S100A4 network. The
program performs efficient sensitivity analysis of biological
networks at the steady-state and at the same time permits the
integration of the available experimental data, to test hypothe-
ses on network regulation as well as to understand the influ-
ence of specific components on the dynamics of the system.
The program can therefore be used to derive from and inte-
grate in the model new information in an iterative way.

A network model is initially built from an input file and read
by the main program module. Input files contain node names
and the types of interactions between them. A simulation is
performed according to a program-defined set of parameters
corresponding to the processed network. Interactions between
nodes are assumed to occur through continuous, regulatory
functions. The dynamical properties of the system are deter-
mined by a set of parameters. In practice, this is achieved by
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Fig. 1 The interaction network of S100A4. S100A4 is coloured yellow and can be present in the interior and exterior cellular space. Blue
nodes represent cytoskeletal proteins. Purple nodes represent the direct players for regulation and degradation of extracellular matrix proteins.
Red nodes summarize converging effects from the different pathways according to biological knowledge for cellular dissociation from the
extracellular matrix (CellDiss) and capillary growth (CapGrowth). These are the endpoints involved in the pathological metastatic process.
Activation and inhibition between nodes is denoted with→ and a, respectively.

setting up a specific value or a range of values for each compo-
nent, that represents its biological activity. Parameters of inter-
est and their variation ranges are user-defined and determine
the subsequent simulation and analysis procedures. The first
part of the program workflow consists of generating steady-
state values corresponding to the node’s activity. Accordingly,
a set of ODEs describing the dynamics of the signalling net-
work is automatically built using Hill-type transfer functions
as interaction links between nodes38,39. The different condi-
tions corresponding to the user-defined parameter space are
simulated by numerically solving the system of ODEs. In
the second part, analysis of the simulated conditions is car-
ried out based on sensitivity and principal component analysis
(PCA). The numerical procedure that is coded in C++ relies
on the GNU Scientific Library (GSL, version 1.15)40 and is
optimized for fast execution. Moreover, the parameter space
is automatically split using MPI-based processing in order to
make use of parallel architectures thereby enabling the screen-
ing of a large number of conditions (see Figures ESI 3 and ESI
4 for details on the workflow, and Text ESI 2 for details on
computational performance and model scalability).

2.3 Model Details

The system is described as a network of interacting compo-
nents evolving in time according to the ODEs. Every com-
ponent in the network is represented by a node. The nodes
are connected by links, where each link is a regulatory func-
tion that represents either activation or inhibition. Every node
in the model is parametrized by the parameters β and δ and
every link by α , γ and η (see Table 1).

Table 1 Model parameters used to define model’s nodes and links
(see also Figure ESI 1).

Parameter Name Description
β Basal level of a node’s activity
δ Decay constant of a node
γ Interaction strength between two nodes

(affinity)
η Nonlinearity in signalling interaction

(Hill coefficient)
α Multiplicative scaling factor applied to the

regulatory function

2.3.1 Nodes. The parameters β and δ are associated to
each node to account for the basal activity and the decay
of biological species, respectively: a first order decay term
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is subtracted (decay constant δ ) and a basal activity con-
stant β added to each equation that describe the node’s time-
evolution. We refer to the activity of a protein in analogy to
the activity of a chemical solute, i.e., it is the effective con-
centration of a protein in its biologically active conformation.
The biological activity cannot be compared directly with the
experiment and is given in arbitrary units.

2.3.2 Links. Hill-type regulatory functions are used to
link the nodes to each other. Activation and inhibition are
defined according to equations (1) and (2) in Figure ESI 1,
respectively. The Hill-exponent η accounts for nonlinear sig-
nalling interaction (e.g., positive/negative binding cooperativ-
ity)41. This empirical parameter is widely used to quantify
nonlinearity in different contexts and is kept equal to one in
the present work. The parameter γ establishes a threshold of
activation along the abscissa and α is a multiplicative scal-
ing factor. Both of the latter parameters have been set to one
throughout the current work. When multiple links point to a
single node, activation functions are added to each other while
inhibition functions are multiplied by the current level of ac-
tivity (see references38,39). This gives a set of ODEs for nodes
{X ,Y, ...}:

dX/dt =−δX X +(βX +∑i Acti) ·Π jInh j

dY/dt =−δYY +(βY +∑i Acti) ·Π jInh j

· · ·
(1)

where X ,Y, ... denote the node’s activity, Act and Inh are
activating and inhibitory regulatory function, respectively (see
Figure ESI 1), and i and j are the indexes denoting activating
and inhibiting incoming links, respectively. The steady-state
of the ODEs system is calculated numerically using the GSL
function gsl odeiv2 step rk440 employing the explicit 4th or-
der Runge-Kutta algorithm. With this procedure the steady-
state values of each node is obtained for a given parameter set.

2.4 Control Analysis

Sensitivity analysis is used to identify parameter combinations
responsible for the relevant dynamical properties of the sys-
tem. Each parameter change in the combinatorial parameter
space is processed according to

ε
Y
φ =

∂ [ln(Y )]
∂ [ln(φ)]

=
φ

Y
· ∂Y

∂φ
(2)

≈ ∆[ln(Y )]
∆[ln(φ)]

=
ln(Yi/Yj)

ln(φi/φ j)
(3)

where φ is an input parameter or variable and Y an output
variable. Equation (2) expresses the relative change of activity
in the nodes as a function of a variation in the parameter set. In

the computational procedure, two conditions (i and j) are eval-
uated at each step of the sensitivity analysis according to equa-
tion (3). The conditions are defined by vectors of steady-state
values (Yi and Yj) corresponding to the nodes’ activities and
are determined by the parameter sets (φi and φ j). Parameter
sets processed by equation (3) differ in a single parameter by
a finite factor determined in the parameter interval sampling.
The infinitesimal interval in the denominator of equation (2)
is therefore approximated to a finite multiplicative factor and
the numerator computed by the logarithm of the ratio between
the corresponding simulated steady-state values.

Multivariate analysis is included as the final step of the pro-
cedure providing graphical and quantitative information on the
controllability of the system. The prcomp function of R is used
to carry out PCA. It is applied to both steady-state and sensi-
tivity datasets in order to reveal co-activity and co-regulatory
patterns between the nodes, respectively (see Figure ESI 4 for
details).

3 Results

3.1 Determination of Parameter Space Regions of Inter-
est

Sensitivity analysis can be used to quantify the contribution
of certain nodes (components) to the phenomenological out-
put of the system. Here we use two parameters, namely cell
dissociation and capillary growth, to characterize pathological
phenotypes. Moreover, the sensitivity calculated with respect
to specific nodes enables the assessment of their controllabil-
ity by other components of the network.

3.1.1 Sensitivity of Cell Dissociation with Respect to
MMPs and TIMPs Activity. S100A4 has been suggested to
influence unbalanced expression of MMPs and TIMPs in dif-
ferent cancers10,42–44. We therefore systematically modified
MMPs and TIMPs steady-state activities using the interaction
model depicted in Figure 1 as input for our simulation pro-
gram (see Table 2).

By simulating the model we obtained surfaces representing
the sensitivities of cell dissociation with respect to the biologi-
cal activities of MMPs (convex surfaces) and TIMPs (concave
surfaces), (see Figure 2). Interestingly, we could identify re-
gions with pronounced sensitivity values (positive for εCellDiss

MMPs
and negative for εCellDiss

T IMPs ). The overlap of these regions de-
fines a subspace of high controllability with respect to the
variables: for example, in the range of MMPs activities be-
tween 0.1-1 and of TIMPs activity >5, small variations in the
activities of MMPs and TIMPs are predicted to have a deci-
sive effect on cell dissociation. This suggests that a therapeu-
tic window exists where the system could be influenced but
also deteriorate, not unlike transition states in chemistry. In
addition to the combinatorial variation of MMPs and TIMPs,
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Table 2 General model parametrization used to calculate sensitivity
landscapes of cell dissociation and capillary growth with respect to
MMPs and TIMPs activity. Activity units are arbitrary. Activity of 1
can be roughly translated to a signalling protein that is very common
in the cell (i.e., in the order of 1µM)45. Values for end points (cell
dissociation and capillary growth) can only be appreciated by
comparison, and we assume that any treatment would aspire to keep
them as low as possible.

Parameter Name Range of Variation
(Fold-Variation Step)

β (MMPs) 10−4−10+3(1.2)
β (T IMPs) 10−4−10+3(1.2)
β (S100A4 int) 10−3−10+1(100)
β (S100A4 ext) 10−3

β (BCat) 10−2

β (ECadh) 10−2

β (Myo9) 10−2

β (EGFR) 10−3

β (NFKB) 10−3

β (OPN) 10−3

β (uPA uPAR) 10−3

β (E phrA1) 10−3

β (Plasmin) 10−3

β (CellDiss) 10−3

β (CapGrowth) 10−3

the effect of S100A4 was investigated by applying three dif-
ferent activity levels of S100A4. An increased concentration
of active S100A4 affects the system in two principal ways:
(i) The activities of MMPs and TIMPs shift to higher steady-
state values, the first of which is supposed to be a hallmark of
metastasis (see the bottom projections in Figure 2). (ii) The
system loses sensitivity of cell dissociation to MMPs/TIMPs
activity (see the 3D upper surfaces in Figure 2). Taken to-
gether, our simulations indicate that once the system is driven
to a metastatic regime (high steady-state values of cell disso-
ciation) characterized by high proteinase activity, the system
becomes less sensitive to MMPs and TIMPs, i.e., it loses the
potential of reverting to a normal physiological state.

3.1.2 Sensitivity of Capillary Growth with Respect to
MMPs and TIMPs Activity. Based on the same simulation
dataset, the analysis described above was applied to study the
sensitivity of capillary growth in response to variable MMPs
and TIMPs activities combined with three different levels of
S100A4 (see Figure 3). Similar pattern as for cell dissociation
was observed by increasing S100A4 activity: reduction of the
MMPs and TIMPs activity ranges, which became confined to
higher steady-state values, and a decrease in the sensitivity to
their activities. However, unlike the response in the case of
cell dissociation, sensitivity of capillary growth displays mul-
tiple regions separated by near-zero boundaries. An increase

Fig. 2 Sensitivity of cell dissociation. Upper, convex sensitivity
surfaces are calculated in response to variation of MMPs activity
levels (εCellDiss

MMPs =
∆[ln(CellDiss)]
∆[ln(MMPs)] ) and are shown in light colours.

Lower, concave surfaces are calculated in response to variation of
TIMPs activity levels (εCellDiss

T IMPs =
∆[ln(CellDiss)]
∆[ln(T IMPs)] ) and are shown in

dark colours. Projections in the lower planes represent the activity
ranges (steady-state values) of MMPs and TIMPs (higher
projections, colour code corresponding to the sensitivity surfaces in
response to varying MMPs). The lowest projection represents the
steady-state values of cell dissociation at low S100A4 activity.

of S100A4 causes a change in the relative magnitudes and ar-
rangement of these regions. The presence of separate regions
in space when examining the sensitivity of capillary growth
(Figure 3) indicates multistable equilibrium points. In order to
better understand the emergence of multistabilities, we investi-
gated the PCA of the steady states values. This analysis shows
that the variables S100A4, EGFR, NFKB and cytoskeletal pro-
teins are grouped together (Figure 4A-C), i.e., their activities
are linked. At intermediate activity of S100A4, this group
is also adjacent to capillary growth (Figure 4B), which indi-
cates a correlation between the activities of S100A4, EGFR,
NF-κB and cytoskeletal proteins (together) and the malig-
nant process. PCA of the sensitivity values shows two sub-
groups (S100A4, EGFR, NFKB and cytoskeletal proteins ver-
sus CellDiss, urokinase plasminogen activator (uPA) and uPA
receptor (uPA uPAR) whose distances decrease with increas-
ing biological activity of S100A4, until they merge into a sin-
gle cluster isolated from EphrA1 and ECadh (Figure 4D-F;
variables’ naming according to Figure 1). Figures ESI 6 and
ESI 7 summarize the main processes described in Figures 2
and 3 through heat map representations detailing sensitive ar-
eas and the corresponding MMPs and TIMPs activity ranges
(Figures ESI 6) and steady-state activities (Figures ESI 7).
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Fig. 4 PCA (loading plots) of simulation datasets of the S100A4 network with varying S100A4 activity. MMPs and TIMPs variation; PCA
calculations were carried for low (A and D), medium (B and E), high (C and F) activities of S100A4. The top scheme (A-C) is the PCA of
steady-state values whereas the scheme at the bottom (D-F) is the PCA of sensitivity values. The dataset used for PCA is generated according
to section ”Determination of Parameter Space Regions of Interest”. The full names of the variables are found in Figure 1.

3.2 Global Parameter Variation: Basal Activity (β )

We extended the procedure described above by including a
broader parameter variation. To this end, we evaluated the
robustness of the previous results by taking into account the
variable nature of basal activity due to cell heterogeneity. A
numerical range was therefore assigned to the basal activity
parameter (β ) for those network components previously set to
a single initial value. Ranges of 10-fold increase in basal activ-
ities (0.001-0.1) were combinatorially tested for all nodes ex-
cept for S100A4 which was varied as in the previous section;
MMPs and TIMPs, which were varied within same ranges as
in the previous section in 10-fold steps; and the nodes CellD-
iss and CapGrowth that were assumed to have low initial ac-
tivity (β = 0.001). The resulting combinatorial set of simu-
lation conditions was subsequently averaged and the resulting
mean sensitivity surfaces were consistent with previous out-
comes (see Figure 5 compared with Figure 2 and Figure 6
compared with Figure 3). This indicates that the effects of
S100A4 low, medium and high activity levels are not an arte-
fact of an arbitrary choice of basal activities for the nodes but
a genuine feature of the interaction network. As in the previ-
ous section, PCA was applied to this dataset. Only the sensi-
tivity data differed significantly compared to the PCA in sec-
tion ”Determination of Parameter Space Regions of Interest”.

Previously, a group of variables composed of S100A4, EGFR
and NFKB progressively merged together with CellDiss and
CapGrowth as S100A4 activity increased. Here instead, two
groups are distinguishable at low S100A4, one consisting of
S100A4, EGFR and NFKB and one including CellDiss and
CapGrowth that merge in a single compact cluster only at
intermediate S100A4 activity and remain grouped by subse-
quent increase of S100A4 activity. This indicates that with
a more variable basal expression of the network components,
the regulation of the variables CellDiss and CapGrowth is still
driven by S100A4 over a certain threshold of S100A4 activity
(compare Figure 4 to Figure ESI 2).

4 Discussion

Properties of the S100A4 Model under Variable Activi-
ties of MMPs and TIMPs. We first devised a network model
of S100A4 based on the available knowledge including infor-
mation on interacting biomolecules and principal processes
involved in angiogenesis and metastasis formation (Figure
1). On the basis of this model, simulations were initially
run under standard parametrization and regulatory features
of interest were subsequently validated in a more general,
computationally-intensive context accounting for global pa-
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Fig. 5 Sensitivity of cell dissociation (global β variation). (A) Sensitivity landscape plotted against variable β values. (B) Sensitivity
landscape plotted against steady-state values of MMPs and TIMPs (as a consequence of the variation of β (MMPs) and β (T IMPs),
respectively). Logarithmic binning is applied for specific β values (A) or for the corresponding ranges of steady-state values (B). Note that the
regions of high sensitivity and high variability (high standard deviation values) over the global parameter variation surfaces are comparable to
the regions of high sensitivity of Figure 2.

Fig. 6 Sensitivity of capillary growth (global β variation). (A) Sensitivity landscape plotted against variable β values. (B) Sensitivity
landscape plotted against steady-state values of MMPs and TIMPs (as a consequence of the variation of β (MMPs) and β (T IMPs),
respectively). Logarithmic binning is applied for specific β values (A) or for the corresponding ranges of steady-state values (B). Note that the
regions of high sensitivity and high variability (high standard deviation values) over the global parameter variation surfaces are comparable to
the regions of high sensitivity of Figure 3.
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Fig. 3 Sensitivity of capillary growth. Sensitivity surfaces
calculated in response to variation of MMPs activity
(εCapGrowth

MMPs =
∆[ln(CapGrowth)]

∆[ln(MMPs)] ) are shown in light colours and in
response to variation of TIMPs activity
(εCapGrowth

T IMPs =
∆[ln(CapGrowth)]

∆[ln(T IMPs)] ) in dark colours. Projections in the
lower planes represent the activity ranges (steady-state values) of
MMPs and TIMPs (higher projections are identical to Figure 2,
colour code corresponding to the sensitivity surfaces). The lowest
projection represents the steady-state values of capillary growth at
low S100A4 activity.

rameter variation. MMPs and their natural inhibitors TIMPs
are typically deregulated in metastatic tumours. Therefore,
we simulated the system over a broad activity range of MMPs
and TIMPs and analysed the sensitivity of cell dissociation
and capillary growth, i.e., whether these outcomes can be in-
fluenced under certain conditions. Indeed, we could identify
regions of high controllability in the space defined by the ac-
tivities of MMPs and TIMPs. Furthermore, under these con-
ditions, we could distinguish two features of relevance driven
by S100A4. On the one hand, by increasing the activity
of S100A4, MMPs and TIMPs steady-state values were pre-
dicted to shift to higher activities consistent with experimental
data (Figure 2 and Figure 3). On the other hand, sensitiv-
ity analysis outlines two different scenarios for cell dissoci-
ation and capillary growth. The sensitivity of cell dissocia-
tion presents a barrier separating the normal and metastatic
regimes (defined according to proteinases activity). Beyond
a certain threshold in MMPs activity, the system gains sta-
bility at the high metastatic regime: it looses any sensitivity
to external control of MMPs and TIMPs, hence reducing its
potential to return to a normal physiological state. This ex-
plains why tumours expressing S100A4 show poor prognosis.
S100A4’s activity has however a different effect on capillary
growth. In addition to an overall decrease of sensitivity, the

sensitivity landscape (Figure 3) is characterised by multiple
regions separated by near-zero, buffering sensitivity bound-
aries that rearrange dynamically with increasing activity of
S100A4 suggesting multistable equilibria. This implies differ-
ent phenotypic responses depending on the activity of S100A4
and could explain the formation of aggressive tumours with
limited sensitivity to therapy.

Despite the partial description of the network considered,
the simulations could reproduce recent experimental findings
by showing that the activity of S100A4 dramatically reduced
the sensitivity of cell dissociation to MMPs and their natu-
ral inhibitors TIMPs, thereby driving a metastatic phenotype.
It also suggests that, in order to prevent the emergence of a
metastatic phenotype, MMPs inhibitors may only be useful in
cells with low S100A4 activity, potentially explaining the fail-
ure of an MMP inhibitor (Marimastat) in clinical trials46–48.
Our results suggest that blockage of MMPs alone is not suf-
ficient to prevent cell dissociation. Rather, it appears that
combined inhibition of different targets is required to com-
bat metastasis when it is about to emerge, unless some of the
components are not expressed in the tumour.

5 Conclusions

In this article we discuss a steady-state simulation framework
that integrates partial information on biological networks and
through sensitivity analysis identifies control points of inter-
est for targeted therapeutic intervention. Similarly to mass-
action kinetics models, our approach assumes continuous reg-
ulation between nodes and can therefore provide quantitative
insights on the studied system. It however requires only mini-
mal information to set up simpler qualitative boolean models.
Steady-state relationships between the network’s components
enable the user to supplement pre-existing settings with ex-
perimentally retrieved information. In addition, lack of infor-
mation can be compensated by efficient sampling using par-
allel computing architectures. Such an approach is especially
useful in the case of S100A4: the high connectivity between
different regulatory processes needs to be considered simul-
taneously in order to understand phenomena underlying drug
resistance and be able to design appropriate therapeutic strate-
gies. Despite large amount of data, the precise biological role
of S100A4 as a metastasis promoter still remains unclear; our
approach allows efficient integration of the sparse information
which is available. The outcome of different simulated condi-
tions can be tested with different available in vivo and in vitro
models. Our results suggest that it would be instructive to
assess the efficacy of inhibitors that previously failed clinical
trials in cell lines with naturally low or no activity of S100A4.
Finally, the general design of the modelling enables a flexi-
ble application of the tool to diverse problems as long as the
scientific question can be described by an activation/inhibition
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