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stages with RNA-seq data
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Gastric cancer is the third leading cause of cancer-related death in the world. Over the past 

decades, with the development of high-throughput technologies and the application of various 

statistical tools, cancer research has witnessed remarkable advancements. However, no system 

level analysis has taken into account the cancer stages, which are known to be extremely 

important in prognosis and therapy. In this study, we aimed to carry out a system level analysis 

over dynamics of the network structure across the normal phenotype and the four tumor stage 

phenotypes. We analyzed 276 samples of primary tumor tissues including normal and four 

tumor stage phenotypes to reveal the dynamics of the five phenotype-specific co-expression 

networks. Our analysis reveals that the structure of the normal network is dramatically 

different from that of a tumor network. The analysis of connectivity dynamics exhibits that hub 

genes present in the normal network but not in the tumor networks play important roles in 

tumorigenesis and hub genes unique to a tumor network are enriched in specific biological 

terms. Moreover, we found three interesting clusters of genes which possess specific dynamic 

features across the five phenotypes and are enriched in stage-specific biological terms. 

Integrating the results from the expression analysis and the connectivity analysis elucidates 

that the stages of tumor should be taken into consideration and a system level analysis serves 

as a complement to and a refinement of the traditional expression analysis. 

 

Introduction 

Gastric (stomach) cancer is the third leading cause of cancer-

related death in both genders worldwide. According to 

GLOBOCAN 2012, almost one million new cases of gastric 

cancer (952,000 cases, 6.8% of the total cancer burden) were 

estimated to have occurred in 20121. Of these cases, more than 

70\% occurred in developing countries and half in Eastern Asia 

(mainly in China). Although the developments of techniques in 

diagnosis and treatment have improved the survival rate of 

gastric cancer, there are still many challenges2. 

Over the past decades, cancer research has experienced 

remarkable advancements with the development of high-

throughput technologies and the application of various 

statistical tools3-5. In the analysis of the genetic pattern between 

tissues in different phenotypes, the most commonly used 

method is the differential expression analysis, such as DESeq2, 

baySeq, edgeR and DEpln6-9. These methods detect potential 

cancer associated genes based on the assumption that 

prognostic genes may express significantly differentially. 

Unfortunately, these methods treat genes as individuals and 

lose sight of the associations among them. Moreover, 

carcinogenesis is a complex process involving gradual 

accumulation and interaction of genetic mutations10,11. 

Biological networks, such as the protein-protein interaction 

network, the metabolic network, the gene regulatory network 

and the gene co-expression network, are very useful vehicles to 

a deep understanding of the cancer on the system level. Gene 

co-expression networks serve as a means to explore the 

functionality of genes on the systems level12. Compared with 

other types of biological networks, the gene co-expression 

network has several advantages, including its ability to build 

cancer-type-specific networks, nearly complete coverage of 

human genes and little bias due to the knowledge obtained from 

the published literature13,14. The weighted gene co-expression 

network analysis (WGCNA)14-16 is a sophisticated method 

designed for constructing co-expression networks from gene 

expression data, and has been found to be one of the methods 

that performed best for constructing global co-expression 

networks17. Yang et al. utilized the WGCNA to statistically 

analyze the properties of the prognostic genes from the system 

perspective for glioblastoma multiforme, ovarian serous 

cystadenocarcinoma, breast invasive carcinoma and kidney 

renal clear cell carcinoma13. Anglani et al. combined the 

differential expression analysis with the gene co-expression 

network analysis to improve the classical enrichment pathway 

analysis11. 

However, on the system level, no analysis method has taken the 

cancer stages into consideration. Genes exhibit different 

behaviors (e.g., expression levels) in different stages of the 
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development and confounding of the tumor stages can 

introduce errors or biases in the analysis of cancer data18,19. In 

addition, cancer stages are also extremely important to 

prognosis and the confirmation of the cancer stage is a key 

factor in deciding the best way to treat the cancer. 

In this paper, we report on a comprehensive analysis of the 

genetic patterns of gastric tissues in the normal and different 

cancer stages. The differential expression analysis and the co-

expression network analysis were applied to investigate the 

expression and the system level dynamic properties. DESeq2 

methods was applied to identify the differentially expressed 

(DE) genes in the tissues in different tumor stages in 

comparison with the normal tissues and the relationship among 

the DE gene lists of the corresponding tumor stages were 

studied. Gene ontology (GO) terms were used to investigate the 

enrichment of the biological process (BP) and the KEGG 

pathway in these DE genes. The system level properties were 

studied by means of the gene co-expression network. We found 

that the structure of the normal network is more compact than 

those of the tumor networks in different cancer stages and the 

loss of connectivity in the tumor networks with respect to the 

normal network is a common trait among the different cancer 

stages. Genes with extremely large connectivity are more 

important than other genes in organizing the global network 

structure. We found that about 75% hub genes in the normal 

network are depleted in the tumor networks. These genes have 

previously been reported to play important roles in 

tumorigenesis. Integrating the results of the differential 

expression analysis and the connectivity analysis, we identified 

six genes, THBS2, COL4A1, COL12A1, NOTCH1, STK3 and 

PXDN, all of which have been reported to be closely associated 

with gastric cancer or other types of cancer. The results indicate 

that the stages of tumor should be taken into consideration and 

a system level analysis serves as a complement to and a 

refinement of the traditional methods. 

Results 

We analyzed expression levels of 276 human gastric cancer 

mRNAomes, including normal and tumor tissues. Both the raw 

count data and fragments per kilobase of exon per million 

fragments mapped (FPKM) count data are used. The raw count 

data was used in the differential expression analysis for the 

suggestion of DESeq2 method and the FPKM count data was 

used to construct the co-expression network for the unbiased 

measure of gene expression. 

Differential expression analysis of gastric cancer samples with 

distinct stages 

We compared the expression of genes in the normal samples 

with the genes in the samples from the four tumor stages, 

respectively. The approach to identifying the differentially 

expressed (DE) genes will be discussed later in the section of 

Materials and Methods. The genes satisfy the following three 

conditions are considered DE genes: 1) not background noise 

(see Material and Methods); 2) the adjusted p-value less than 

0.001; 3) the fold change level larger than 2. Finally, we 

detected 1,364, 1,242, 1,338 and 748 DE genes in Stages I to 

IV, respectively. To investigate the overlaps among these sets 

of DE genes, we used the Venn diagram to show the results 

(see Fig. 1(a)). In the figure we can see that there are 364 

common genes that differentially expressed in the four tumor 

stages. To further show the difference, we selected the top 100, 

500, 1,000, 1,500 and 2,000 genes as the DE genes according to 

the adjusted p-value. The unique DE genes for each tumor stage 

were shown in Fig. 1(b). We can see that there actually exist 

considerable differences across the tumor stages, which should 

also be considered in related works, such as biological markers 

identification and cancer prognosis.  

         
(a)                                                                                 (b) 

Fig. 1 The difference of DE genes identified in each tumor phenotypes compared to the normal phenotype. (a) Venn diagram of 

DE genes of different tumor stages. “Stage I”, “Stage II”, “Stage III” and “Stage IV” represented the corresponding DE genes. (b) 

The plot of unique DE genes versus different top number selected in each tumor phenotype.  

 

To further investigate the difference of these DE genes, we 

applied the Gene Ontology (GO) enrichment analysis to search 

for the enriched biological function items. The GO enrichment 

analysis was performed with R package GOstats20. 

Hypergeometric test included in the GOstats package was used 

to test the enrichment of a GO term in each gene list. The p-

values obtained were adjusted using the Benjamini and 

Hochberg procedure (BH-adjusted p-value) for multiple 
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comparisons. GO terms with a BH-adjusted p-value less than 

0.001 were regarded as significantly enriched. We divided the 

DE genes of each stage into two parts, the up-regulated and the 

down-regulated genes. Then eight DE gene lists were obtained 

for further GO term enrichment analysis.  

We first tested the enrichment of the biological process (BP) for 

each gene list, and obtained 168, 238, 215 and 136 enriched 

BPs in the up-regulated genes of Stages I to IV, respectively 

(see Table S1, ESI†). The Venn diagram to illustrate the 

overlap of the enriched BPs was shown in Fig. 2(a). There were 

72 BPs commonly enriched in the up-regulated genes across the 

four tumor stages, including mitotic cell cycle, nuclear division, 

cell cycle and DNA replication. These commonly enriched BPs 

are mainly involved in the cell growth and development. We 

also identified the enriched BPs in the down-regulated genes 

across the four tumor stages (see Table S2, ESI†) and the Venn 

diagram was also shown in Fig. 2(b). The only commonly 

enriched BP was the oxidation-reduction process. It was 

reported that moderate oxidation can help with the immune 

system, while too much oxidation can damage the DNA to 

cause malignant cell or inhibit the mechanism that can clear 

cancer cell21-23. Reduction/oxidation (redox) imbalance may 

cause the cancer progression24, and the down-regulation of 

genes involved in oxidation-reduction process may play an 

important role in tumorigenesis. 

We also identified enriched KEGG pathways in the DE genes 

across tumor stages. The KEGG pathways with a BH-adjusted 

p-value less than 0.05 were regarded as significantly enriched. 

In the up-regulated genes, we finally identified 26, 23, 27 and 

19 enriched KEGG pathways for each tumor stages (see Table 

S3, ESI†). We found that 11 KEGG pathways are commonly 

enriched across the four tumor stages, including DNA 

replication, TGF-beta signalling pathway, focal adhesion and 

ECM-receptor interaction. It has previously been reported that 

the aberrated expression of genes involved in DNA replication 

and TGF-beta signalling pathway contribute to the 

carcinogenesis and cancer progression25,26. ECM-receptor 

interaction and the focal adhesion pathway have been reported 

as associated with the progression of gastric cancer27. Moreover, 

the up-regulated genes in early gastric cancer tissues were 

intrinsically associated with ECM-receptor interactions and 

focal adhesion28. In the down-regulated genes, we identified 20, 

27, 33 and 27 KEGG pathways enriched for each tumor stages 

(see Table S4, ESI†). Only 4 KEGG pathways were commonly 

enriched across all stages, including oxidative phosphorylation 

and gastric acid secretion which were usually associated with 

the gastric cancer21,23,29-31. 

  
(a)                                                                                            (b) 

Fig. 2 Venn diagrams show the overlapped relation across the enriched BPs in DE genes. (a) Venn diagram of enriched BP lists in 

up-regulated genes of four tumor stages. (b) Venn diagram of enriched BP lists in down-regulated genes of four tumor stages. 

 

Modules identification in the phenotype-specific networks 

For all the five phenotypes, which include the normal 

phenotype and four tumor phenotypes, we constructed gene co-

expression networks based on the RNA-seq data using 

WGCNA. The gene expression level was used to filter the 

background noise and the Pearson's correlation coefficient was 

introduced to measure the association between gene pairs (see 

Material and Methods). Finally, we obtained five phenotype-

specific co-expression networks, each containing the same set 

of 11,077 genes. The weight of the edge connecting two genes 

denotes the strength of their interaction. 

Module is an important property in a co-expression network. It 

is a highly connected subgraph in the gene co-expression 

network. The genes in a common module have similar 

functions or are involved in a common biological process 

which causes many interactions among them32. We defined the 

modules in each phenotype-specific network with the R 

package WGCNA and 177, 81, 71, 69 and 67 modules were 

detected in the normal and Stages I-IV networks, respectively 

(see Fig. 3(a)). In the figure, modules are designated by various 

colors and gray regions denote genes outside of the modules. 

The corresponding proportions of the genes belonging to a 

module in these phenotype-specific networks are respectively 

69.11%, 33.13%, 27.44%, 28.39% and 22.02%. We can see that 

more than two-thirds of genes are assigned to a module in the 

normal networks while only less than one-third of genes are 

assigned to a module in the corresponding four tumor networks. 

This implies that the structure of the normal network is more 

compact than those of the tumor networks. There are 491 genes 

that are always in the modules of the normal and the four tumor 

networks (see Fig. 3(b)). Through the GO term enrichment 
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analysis, we found that these genes are enriched in the KEGG 

pathways that are involved in tumorigenesis. For example, the 

three top enriched KEGG pathways are Focal adhesion, ECM-

receptor interaction and cell adhesion molecules. 

 

 
(a) 

      
(b)                                                                                       (c) 

Fig. 3 Key properties in the weighted co-expression networks. (a) Modules defined with WCGNA. Color bands represent modules 

in the network and grey regions denote genes outside of modules. (b) The Venn diagram of module genes across the phenotype-

specific networks. (c) The Venn diagram of hub-genes in the corresponding networks. 

 

Connectivity dynamic analysis across the phenotype-specific 

networks 

Gene connectivity is another key property to study gene co-

expression networks. The gene connectivity reflects how 

frequently a gene connects with other genes and the rank of the 

connectivity, in some way, can indicate the importance of the 

gene. To facilitate the comparison of the connectivity measures 

among the networks, we normalized each gene connectivity 

value by dividing it with the maximum network connectivity, 

and obtained a connectivity profile for each gene. We first 

studied the general change of the gene connectivity across the 

five phenotype-specific networks and found that the gene 

connectivity decreases in the tumor networks (see Fig. 4(a)). A 

similar observation was also made in11. To measure the 

switching of the gene connectivity rank between any two 

networks, we computed the Spearman's correlation coefficient 

for each pair of networks and the results show that the gene 

connectivity rank in the normal network and in the tumor 

networks are largely uncorrelated, which indicates that the 

structure of the normal network and those of the tumor 

networks are very different (see Fig. 4(b)). 

The dynamic feature of the gene connectivity across the five 

phenotype-specific networks was also analyzed. We utilized the K-

means method to classify the genes into nine clusters according to 

their connectivity profiles (see Fig. 5(a)). A trial and error process 

indicates that the choice of 𝐾 = 9 achieves a good tradeoff between 

the ratio of the between-cluster sum of squares and the total within-

cluster sum of squares and the gene number in each cluster. We 

found that most genes (73.1%) maintain a low connectivity across 

the five phenotype-specific networks. Among the nine clusters, three 

clusters, Clusters 3, 4 and 9, display some interesting features (see 

Fig. 5(b)) and the corresponding genes in these three clusters are 

listed (see Table S5, ESI†). The connectivity values of genes in 

these three clusters are respectively higher in Stage IV, the normal 

and Stage I networks. To explore the biological terms of the genes in 

these clusters, R package GOstats was introduced to identify the 

significantly enriched KEGG pathways. The results revealed that the 

significantly enriched KEGG pathways are highly specific to clusters 

and the overlaps are small (see Fig. 5(c)). For example, the ECM-
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receptor interaction pathway and the Wnt signaling pathway both are 

enriched in genes belonging to Cluster 4, in which the gene 

connectivity decreases in the tumor networks. The Wnt signaling 

pathway tightly regulates several important processes during the 

development, such as cell adhesion and growth. Deregulation of 

Wnt/beta-catenin signaling is frequently found in various human 

cancers33. ECM-receptor interaction is a significantly enriched 

pathway in gastric cancer and the deregulation of ECM-receptor 

interaction pathway emerge in most malignant cancer34. Furthermore, 

some enriched KEGG pathways in the Cluster 3 genes, whose 

connectivity is relatively high in the Stage IV networks, are involved 

in tumour cell invasion and metastasis, such as mRNA surveillance 

pathway. The mRNA surveillance pathway down-regulates aberrant 

E-cadherin transcript which is an adhesion molecule and acts as a 

tumor suppressor protein by inhibiting tumor cell invasion and 

metastasis, which are typical characters in stage IV tumor35. 

           
(a)                                                                                            (b) 

Fig. 4 The connectivity difference between the normal and tumor networks. (a) The connectivity distributions of normal and four stage tumor 

networks. (b) The Spearman's correlation coefficient between each pair of connectivity of the five networks. 

 

According to the connectivity, the genes can be classified into hub 

genes and non-hub genes. The hub genes possess extremely larger 

connectivity and are more important than other genes in organizing 

the global network structure and exchanging information. We mixed 

the gene connectivity values in all phenotype-specific networks and 

selected the top 5% largest value as the threshold that distinguishes 

the hub-genes from the non-hub genes. We obtained 1,326, 574, 229, 

261 and 380 hub-genes in the normal and Stages I-IV networks, 

respectively (see Fig. 3(c)). We can see that about 75% of the hub 

genes in the normal network are depleted in the tumor networks. 

These genes may contribute to the tumorigenesis. For example, 

ZMYND11 is a candidate tumor suppressor and is critical for the 

repression of a transcriptional program that is essential for tumor cell 

growth36. The expression of ZMYND11 does not show a significant 

difference between the tumor phenotypes and the normal phenotype, 

and we can screen it out with a connectivity rank difference. We also 

observed that there are more hub genes unique to the Stage I and 

Stage IV networks than those unique to the other two tumor 

networks. Through a GO term enrichment analysis, we found that 

the hub-genes that uniquely exist in the Stage I network are mainly 

enriched in the processes of cell activation and immune system, 

while the hub-genes that uniquely exist in the Stage IV network are 

mainly enriched in the metabolic processes, such as RNA metabolic 

process and macromolecule metabolic process. Moreover, some of 

the hub genes that are unique to the Stage IV network, such as TBK1, 

play important roles in cell migration and invasion, which are typical 

characters in stage IV tumors. The loss of TBK1 induces the 

epithelial-mesenchymal transition (EMT), which gives cells the 

ability to migrate and invade37. 

Integrating the results of the differential expression analysis and the 

gene connectivity analysis, we selected the genes that are commonly 

significantly differentially expressed in the four tumor phenotypes 

compared to the normal phenotype and the hub-genes that are 

uniquely to the normal network for an one-by-one analysis. Finally, 

we identified six genes, THBS2, COL4A1, COL12A1, NOTCH1, 

STK3 and PXDN. THBS2, as a THBS family member, has been 

reported to regulate angiogenesis and its expression is aberrantly in 

gastric cancer, which indicates its critical role in cancer 

progression38. COL4A1 and COL12A1, members of the collagen 

family, were reported to significantly up-regulate in gastric cancer39. 

Notch homolog 1 (NOTCH1) encodes a member of the Notch family 

and plays a role in a variety of developmental processes by 

controlling cell fate decision. The activated NOTCH1 receptor 

promotes the progression of gastric cancer through regulating the 

expression levels of STAT3 and Twist40. STK3 encodes a 

serine/threonine protein kinase activated by proapoptotic molecules, 

indicating that the encoded protein functions as a growth suppressor. 

STK3 is involved in the Hippo signaling pathway, which plays a 

pivotal role in organ size control and tumor supression by restricting 

proliferation and promoting apoptosis. Heme Oxygenase-1 (HO-1), 

expressed in many cancers, promotes growth and is implicated in 

tumor cell invasion and metastasis. The adhesion-promoting effects 

of HO-1 are dependent on PXDN expression and the loss of PXDN 

leads to reduced cell attachment to Laminin and Fibronectin coated 

wells. 

Conclusion 

Gastric cancer is the third leading cause of cancer-related death in 

the world. From the public data of TCGA, we selected 276 gastric 

samples from primary tumor tissue and carried out a comprehensive 

analysis of gastric cancer across the normal and the tumor stages 

with RNA-seq data. The 276 samples were first classified into five 

phenotypes, the normal, and tumor Stages I-IV, according to the 
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clinical data. Our comprehensive analysis includes the differential 

expression analysis and the network structure analysis. 

Gene differential expression analysis is a traditional approach to 

analyzing genes across different phenotypes. We compared the gene 

expression between the four tumor phenotypes and the normal 

phenotype, respectively, with the DESeq2 method. The results show 

that the gene expressions vary greatly from one tumor stage to 

another. To investigate the GO terms similarity, we carried out the 

GO enrichment analysis on the four DE gene lists and found that 

there are 72 commonly enriched BPs in the up-regulated genes and 

only one commonly enriched BPs in the down-regulated genes. The 

commonly enriched BPs in the up-regulated genes are mainly 

involved in cell growth and development, which are closely related 

with tumor cell proliferation, such as mitotic cell cycle, nuclear 

division, cell cycle and DNA replication. The only commonly 

enriched BP in the down-regulated genes is oxidation-reduction 

process. Moderate oxidation can help with the immune system, 

while excessive oxidation may inhibit the mechanism that can clear 

cancer cell. The KEGG pathway enrichment analysis identified 15 

commonly enriched KEGG pathways, including DNA replication, 

TGF-beta signaling pathway, focal adhesion and ECM-receptor 

interaction. 

 

 
Fig. 5 K-means analysis based on gene connectivity across phenotypes. (a) Heatmap of K-means result. (b) The dynamic feature of 

connectivity mean of all genes belonging to three remarkable clusters across phenotypes. (c) The overlap relationships of significantly 

enriched KEGG pathways in the three clusters. 

 

The WCGNA algorithm was applied to construct the gene co-

expression networks and five phenotype-specific networks were 

obtained. We have analyzed two key properties of these networks in 

this study, modules and connectivity. Modules are highly connected 

subgraphs in gene co-expression networks. We found that about 70% 

genes are affiliated with modules in the normal network while only 

about 30% are affiliated with modules in the tumor networks. This 

indicates that the structure of the normal network is more compact 

than the structures of the tumor networks. Through connectivity 

analysis, we found that the loss of connectivity in the tumor 

networks with respect to the normal network is a common trait 

among different tumor stages and the connectivity ranks of genes are 

largely uncorrelated between the tumor networks and the normal 

networks. We profiled the connectivity dynamic features across the 

five phenotype-specific networks and divided them into 9 clusters 

based on K-means algorithm. We selected three interesting clusters 

for the GO enrichment analysis and found them all closely related to 

the pathways involved in tumorigenesis. The hub-genes which 

possess extremely high connectivity play more important roles than 

other genes in maintaining the global structure of the network. We 

selected the hub-genes in the five phenotype-specific networks, 

respectively. We found that about 75% hub genes in the normal 

network are depleted in the tumor networks and these genes may 

contribute to tumorigenesis. We also carried out the GO enrichment 

analysis of hub-genes that uniquely exist in the Stage I and Stage IV 

networks and found that the hub-genes unique to the Stage I network 

are mainly enriched in the processes of cell activation and immune 

system, while the hub-genes unique to the Stage IV network are 

mainly enriched in the metabolic processes, such as the RNA 

metabolic process and the macromolecule metabolic process. 

Integrating the results of the differential expression analysis and the 

connectivity analysis, we identified six genes, THBS2, COL4A1, 

COL12A1, NOTCH1, STK3 and PXDN, all of which have been 

reported to be closely associated with the gastric cancer or other 

types of cancer. The results demonstrated that the stage separation 

and the combination of the expression analysis and the system level 
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analysis are necessary for a deep understanding of gastric cancer. 

This network analysis can also be used as a necessary method or a 

refinement to the traditional method in the works such as biomarker 

identification. 

Materials and Methods 

Data collection and differential expression analysis 

We obtained the gene expression from the TCGA project webpage41. 

The details of the filter settings are shown in Table 1 and the 

corresponding clinical data was also downloaded. As described in42, 

the gastric adenocarcinoma primary tumor tissues from patients not 

treated with prior chemotherapy or radiotherapy are selected. Finally, 

we obtained 276 samples, including 29 normal samples and 247 

tumor samples. According to the clinical data, all these 276 samples 

were divided into 5 phenotypes, which are the normal phenotype and 

Stages I-IV phenotypes. The DESeq2 method, along with the raw 

count data, was used to implement the differential expression 

analysis. Trimmed mean of M-values (TMM) method 43 was 

employed for the normalization to reduce the bias across the samples. 

Differential expression analysis was applied to each tumor stage and 

the normal pair. The BH-adjusted p-value and the fold change level 

were used to screen the significantly differentially expressed genes. 

Moreover, genes with more than half of samples expressed less than 

0.1 FPKM or a mean expression less than 2 FPKM were regarded as 

background noise. Genes with BH-adjusted p-value less than 0.001, 

fold change level larger than 2 and not background noise were 

regarded as significantly differentially expressed. 

 

Table 1 TCGA filter settings 

Select a disease STAD – Stomach adenocarcinoma 

Data Type RNASeq 

Data level Level 3 

Availability Available 

Other default 

 

Co-expression networks analysis 

Given the RNA-seq data for the five phenotypes, including the 

normal phenotype and the four tumor stages, the WGCNA approach 

was utilized to construct a weighted gene co-expression network. To 

reduce the negative impact of background noise, we first filtered the 

background noise genes, which were defined above. Among the 

remaining genes, 11,484 are in the normal phenotype, 12,520 in 

Stage I, 12,680 in Stage II, 12,834 in Stage III and 12,649 in Stage 

IV. The common genes that remained in the five phenotypes were 

used to construct the phenotype-specific co-expression networks. 

The Pearson's correlation coefficient was used to measure the 

association of each gene pair. The key parameter β, which was used 

to maintain both the scale-free topology and a sufficiently high node 

connectivity, was optimized as recommended in the original 

manual15, which is the lowest value for which the scale-free 

topology fit index reaches 0.9. The connection strength of any two 

genes was measured by the topology overlap matrix (TOM) 

provided in WGCNA. TOM takes both the co-expression pattern 

between two genes and the overlap of neighbouring genes into 

account. Moreover, TOM can be regarded as a filter that reduces the 

effect of weak connection to result in a more robust network. 

Given a co-expression network, two key network properties were 

obtained, modules and connectivity. The modules of a network were 

identified by the dynamic hybrid tree cut algorithm provided in the 

WGCNA package and the parameters were set as the default values. 

The gene connectivity reflects how frequently a gene connects with 

other genes. The top 5% quintiles of the mixed gene connectivity 

values were set as the threshold to distinguish the hub-genes in each 

network. We used the Spearman's correlation coefficient of gene 

connectivity to measure the structure change of two networks. 
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