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Abstract  

MicroRNA precursor identification is an important task in bioinformatics. 

Support Vector Machine (SVM) is one of the most effective machine learning 

methods used in this field. The performance of SVM-based methods depends on 

the vector representations of RNAs. However, the discriminative power of the 

existing feature vectors is limited, and many methods lack an interpretable 

model for analysis of characteristic sequence features. Prior studies have 

demonstrated that sequence or structure order effects were relevant for 

discrimination, but little work has explored how to use this kind of information 

for human pre-microRNA identification. In this study, in order to incorporate the 

structure-order information into the prediction, a method called “miRNA-dis” 

was proposed, in which the feature vector was constructed by the occurrence 

frequency of “distance structure status pair” or just “distance-pair”. Rigorous 

cross-validations on a much larger and more stringent newly constructed 

benchmark dataset showed that the miRNA-dis outperformed some 

state-of-the-art predictors in this area. Remarkable, miRNA-dis trained with 

human data can correctly predict 87.02% of the 4022 pre-miRNAs from 11 

different species ranging from animals, plants and virus. miRNA-dis would be a 

useful high throughput tool for large-scale analysis of microRNA precursors. In 

addition, the learnt model can be easily analyzed in terms of discriminative 

features, and some interesting patterns were discovered, which could reflect the 

characteristics of microRNAs. A user-friendly web-server of miRNA-dis was 

constructed, which is freely accessible to the public at the web-site on 

http://bioinformatics.hitsz.edu.cn/miRNA-dis/. 

 

 

 

 

 

Index Terms:  microRNA precursor identification, structure status, 

distance-pair, Support Vector Machine 
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1. Introduction 
MicroRNAs (abbreviated miRNA) are small single-strand, non-coding RNA 

molecules (about 22-nucleotides-long) found in plants, animals, and some 

viruses, which function in transcriptional and post-transcriptional regulation of 

gene expression (1). Aberrant expression of miRNAs has been implicated in 

numerous disease states, and miRNA-based therapies are under investigation 

(2-4). Therefore, it is fundamentally important to classify real vs. false 

pre-miRNAs. 

 

Sequencing techniques such as RNA-seq can accurately identify expressed 

miRNA genes, and inexpensive direct sequencing of small RNA molecules (5) is 

used by some biologists to discover new microRNAs. However, there are still 

plenty of rooms for computational methods to be involved in. Most of the 

computational methods treated this problem as a binary classification task to 

discriminate the real pre-miRNAs from false pre-miRNAs and built their 

predictors by adopting the machine learning techniques. These methods are 

different in feature extraction and machine learning algorithms. The machine 

learning algorithms widely used in this field include Support Vector Machine 

(SVM)(6-11), Random Forest (RF) (12), Hidden Markov Model (HMM) (13), 

Naive Bayes (NB) (14), Linear Genetic Programming (LGP) (15), etc. 

 

Because most of the pre-miRNAs have the characteristics of stem-loop 

hairpin structures, which play an important role during the biogenesis procedure 

of a mature miRNA (6), the secondary structure is thereby an important feature 

used in the computational methods (16). For example Triplet-SVM (6) employed 

a SVM classifier trained with 32 local triplet sequence-structure features. Later, 

MiPred (12) improved Triplet-SVM by adopting the Random Forest classifier 

trained with the local triplet sequence-structure features, minimum of free 

energy (MFE), and P-values. MiRFinder (8) is a high-throughput pre-miRNA 

prediction method consisting of two steps: a search for hairpin candidates and an 

exclusion of the non-robust structures based on the analysis of 18 parameters by 

the SVM. Recently, Zou et al (17) found that the negative samples had 

significantly impact on the computational predictors, and constructed a new 

benchmark dataset with high quality negative samples. Various experiments 

showed that this benchmark dataset could improve the performance of different 

methods.  

 

All these computational methods could yield quite encouraging results, but 

most of them only considered the local structure-order information of RNAs, and 

therefore, all the global or long range structure-order information was ignored. 

As shown in the literature, the sequence or structure order information showed 

strong discriminative power for many tasks in bioinformatics, for example, in the 

field of proteomics, the Pseudo Amino Acid Composition (PseAAC) (18)was 

proposed to incorporate the long-range or global sequence order information of 

protein sequences; Physicochemical Distance Transformation (PDT) (19)was 

able to incorporate the global physicochemical properties of amino acids. In the 

field of genomics, the concept of PseAAC was applied to the DNA recombination 

spot identification (20-22) and the nucleosome position prediction (23), which 

considers the global sequence-order information of DNA sequences. These 
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computational methods outperformed those methods only using local sequence 

or structure order information. However, in the field of microRNA precursor 

prediction, it is difficult to incorporate the global or long range structure-order 

effects into a predictor, because the different length of RNA sequences and the 

high number of different structure statuses and their combinations. If all these 

structure statuses and their combinations were considered, the dimension of the 

feature vector is high, which would result in the “curse of dimensionality” and 

high computational cost. 

 

In this study, we proposed a new predictor “miRNA-dis” with an intuitively 

interpretable feature space to represent RNA sequences called “distance 

structure status pair” or just “distance-pair” for pre-miRNA identification. In this 

method, the long range structure-order information was approximately 

represented by the occurrences of distance-pairs. 

 

2. Materials and Method 

2.1. Benchmark Dataset 

The pre-miRNAs or positive samples were acquired from the miRBase 

(release 20: June 2013) (24,25), which contains 1,872 experiment-confirmed 

sapiens pre-miRNA entries. The false pre-miRNAs or negative samples were 

obtained from the data constructed by Xue et al. (6), which contains 8,489 false 

pre-miRNA samples. These false pre-miRNAs are similar to the real pre-miRNAs 

according to some widely accepted characteristics (6): (i) the RNA length ranges 

from 51 nt to 137 nt; (ii) a minimum of 18 base pairings on the stem of the 

hairpin structure; (iii) a maximum of -15 kal/mol free energy of the secondary 

structure. 

 

In order to get rid of the redundancy and avoid homology bias, in the current 

study, the CD-HIT software(26) with the cutoff threshold set as 80% (note that 

the most stringent cutoff threshold for DNA sequences by CD-HIT is 75%) was 

employed to kick out those samples having 80%≥  sequence similarity to any 

others in a same subset. 

 

We constructed the negative dataset by randomly picking 1,612 samples 

from the 8,489 false pre-miRNAs so as to avoid the imbalance problem caused by 

different size of positive and negative sample sets. None of the samples included 

had 80%≥  sequence similarity to any other in a same subset. 

 

As mentioned in a comprehensive review (27), it is unnecessary to separate a 

benchmark dataset into a training dataset and a testing dataset for validating a 

prediction method if it is tested by the jackknife or subsampling (K-fold) 

cross-validation because the outcome thus obtained is actually from a 

combination of many different independent dataset tests. Therefore, the 

benchmark dataset S  can be formulated as 

  
+ −= US S S  (1) 

Page 4 of 27Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



where the subset 
+S contains 1,612 human pre-miRNAs, the subset 

−S  

contains1,612 false pre-miRNAs, and the symbol U  represents the “union” in 

the set theory. The detailed sequences are given in the Supplementary 

Information S1, which is the largest and most stringent benchmark dataset in 

this area. 

2.2. Cross species test set 

11 species, including animals, plants and virus, were selected from miRBase 

(release 21: June 2014) (24,25) to investigate if the miRNA-dis trained with 

human pre-miRNAs can be used to predict pre-miRNAs of other species. There 

are 4607 samples from 11 species, including Caenorhabditis elegans, 

Caenorhabditis briggsae, Drosophila melanogaster, Drosophila pseudoobscura, 

Dnio rerio, Gallus gallus, Mus musculusi, Rattus norvegicus, Arabidopsis thaliana, 

Oryza sativa and Epstein Barr Virus. The pre-miRNAs having higher than 80% 

sequence similarities with the human pre-miRNAs were removed so as to avoid 

biased evaluation of the model trained with human data. The similarity is 

calculated by using CD-HIT with c = 0.8, n = 5. Finally, 4022 non-redundant 

pre-miRNAs were obtained.  

2.3. Distance Structure Status Pairs 

Suppose an RNA sequence R with L nucleobases (nitrogenous bases or 

nucleic acid residues) i.e. 

  = LR 1 2 3 4 5 6 7B B B B B B B B
L

 (2) 

where B1 denotes the nucleobase at sequence position 1, B2 denotes the base 

at position 2, and so forth. They can be any of the four nucleobases; i.e., 

  
{ }∈

=

B adenine(A),cytosine(C),guanine(G),uracil(U)

1,2, ,

i

i L...
 (3) 

If the RNA sequence R is formulated according to its secondary structure 

derived from the Vienna RNA software package (released 2.1.6) (28), we have 

  1 2 3 4 5... L= Ψ Ψ Ψ Ψ Ψ ΨR  (4) 

where Ѱ1 denotes the structure status of B1, Ѱ2 the structure status of B2, and 

so forth. They can be any of the 10 structure statuses; i.e., 

  
{ }

                                   , 

i

i L

Ψ ∈

L

A, C, G, U, A - U, U - A, G - C, C - G, 

= 1, 2

G - U

,

, U - G
 (5) 

where A, C, G, U represent the structure statuses of the four kinds of unpaired 

nucleobases, while A-U, U-A, G-C, C-G, G-U, U-G represent the structure statuses 

of the six kinds of paired bases. Note that A-U means the base A located near the 

5’-end paired with its complementary base U near the 3’-end. Therefore, A-U and 

U-A represent two different structure statuses. The same applies to G-C, C-G, G-U, 

U-G. 

 

In order to capture the structure-order information of the RNA sequence R in 

Eq.2, we proposed a new concept called “the distance structure status pair” or 

just “distance-pair” ( ), |i jD dΨ Ψ , as formulated by 
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( )
( )
( )

( )

, | 0 if  0 then 

, |1 if  1

, | 2 if  2

, | 1 if  1

i j

i j

i j

i j

D d i j

D d

D d

D L d L

 Ψ Ψ = =

 Ψ Ψ =

 Ψ Ψ =




Ψ Ψ − = −

M M

 (6) 

where 0 -1d L≤ ≤ , Ѱi and Ѱj can be any of the 10 structure statuses of an 

RNA chain R (cf. Eq.4), and d represents the value counted by the distance 

between structure statuses Ѱi and Ѱj along the RNA chain R. Suppose Ѱi is A-U, 

Ѱj is U-G, and d=3, then D(A-U,U-G|3) means the structure status pair (A-U, U-G) 

with its two counterparts separated by 2 nucleotides along the RNA chain R. 

 

As we can see from Fig. 1, the structure status order effects of an RNA chain R 

can be, to some extent, reflected through the distance-pairs as defined by Eq.6. 

The feature vector can be uniquely defined as an Ω -dimensional ( Ω = 10 +100d ) 

vector as: 

  
0 0 0

1 2 3

k d

u
f f f f fΩ  

T

L L  (7) 

where 

  

0

1

2

if  1 10

if  11 110

=     if  111 210

if  11+100( -1) 10 +100

u

u

k

u u

d

u

f u

f u

f f u

f d u d

 ≤ ≤


≤ ≤
≤ ≤



 ≤ ≤

M M
 (8) 

where 

  ( )( )0
= , | 0 ,    (1 10)u i jf f D uΨ Ψ ≤ ≤  (9) 

meaning the occurrence frequencies of the 10 distance-pairs D(Ѱi,Ѱj|0) in R 

(Fig. 1(a)); 

  ( )( ) 1
= , |1 ,    (11 110) u i jf f D uΨ Ψ ≤ ≤  (10) 

meaning the occurrence frequencies of the distance-pairs D(Ѱi,Ѱj|1) of the 

nearest structure status pairs in R (Fig. 1(b)); 

  ( )( ) 2
= , | 2 ,    (111 210) u i jf f D uΨ Ψ ≤ ≤  (11) 

meaning the occurrence frequencies of the distance-pairs D(Ѱi,Ѱj|2) of the 

second nearest structure status pairs in R (Fig. 1(c)), and so forth. 

 

The process of generating the feature vector based on “distance-pairs” 

described above with the structure statuses sequence of the RNA sequence R is 

shown in the Fig. 1. 
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2.4. Support vector machine (SVM) 

Support Vector Machines (SVMs) (29) are supervised learning models with 

associated learning algorithms that analyse data and recognize patterns, used for 

classification and regression analysis. Given a set of training samples, each 

marked as belonging to one of two categories, an SVM training algorithm builds a 

model that assigns new samples into one category or the other, making it a 

non-probabilistic binary linear classifier. A SVM model is a representation of the 

samples as points in space, where the samples of the separate categories are 

divided by a clear gap as wide as possible. New samples are then mapped into 

that same space and predicted to belong to a category based on which side of the 

gap they fall on. 

 

In addition to perform linear classification, SVMs can efficiently perform a 

non-linear classification by using the so called kernel trick, implicitly mapping 

the inputs into high-dimensional feature spaces. 

 

In the current study, the LIBSVM algorithm (30) was employed, which is 

software for SVM classification and regression. The kernel function was set as 

Radial Basis Function (RBF), which is defined as 

  ( ) ( )2

, expi j i jK X X X X= −γ −  (12) 

The two parameters C  and γwere optimized on the benchmark dataset by 

adopting the grid tool provided by LIBSVM (30), and their actual values in this 

study will be given later. 

2.5. Jackknife test approach 

Among the three often used cross-validation methods, i.e., independent 

dataset test, sub-sampling (or K-fold cross-validation) test, and jackknife test, the 

jackknife test is deemed the least arbitrary and most objective as elucidated in 

(20), and hence has been widely recognized and increasingly adopted by 

investigators to examine the quality of various predictors. Therefore, the 

jackknife test was used to evaluate the performance of the model proposed in the 

current study. In the jackknife test, each sequence in the benchmark dataset is in 

turn singled out as an independent test sample and all the rule-parameters are 

calculated without including the one being identified. 

 

2.6. Criteria for performance evaluation 

We adopted sensitivity (Sn), specificity (Sp), accuracy (Acc), and Mathew’s 

Correlation Coefficient (Mcc) to measure the performance of different methods. 

The calculating formulae are listed below,  
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TP
Sn

TP+FN

TN
Sp

TN+FP

TP+TN
Acc

TP+TN+FP+FN

(TP TN) (FP FN)
Mcc

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

 =

 =


 =

 × − ×

=


 (13) 

where TP represents the true positive, FP represents the false positive, TN 

represents the true negative and FN represents the false negative. 

3. Results and Discussion 

3.1 Influence of d on the predictive performance of miRNA-dis 

There is a parameter d ( 0 ≤ <d L , where L is the length of the longest RNA 

sequence in the dataset) in the proposed method miRNA-dis (see method section 

for details), which would affect the method’s predictive performance. We 

optimized this parameter by using the 5-fold cross validation so as to reduce the 

computational cost. The Acc values with different d values were shown in Fig.2, 

from which we can see that miRNA-dis achieved the best performance when d = 

7 (Acc = 88.68%), the dimension of the corresponding feature vector is 

10+100×7=710. Hence, the parameter d was set as 7 in the current study. 

 

3.2. Comparison with other existing related predictor 

In the current study, we adopted the benchmark dataset S  (cf. Eq.1) to 

evaluate the predictive performance of various methods, which contains 1,612 

human pre-miRNAs, 1,612 false pre-miRNAs, and none of the samples had 

80%≥  sequence similarity to any others. The predictive results of miRNA-dis 

and two other state-of-the-art methods, Triplet-SVM (6) and MiPred (12), were 

tested by using jackknife validation and the results were shown in the Table.1. 

 

To provide an intuitional display of the performance of the three predictors, 

the corresponding ROC (receiver operating characteristic) curves were drawn in 

Fig. 3, where the horizontal coordinate X is for the false positive rate or 1-Sp, and 

the vertical coordinate Y is for the true positive rate or Sn. The best possible 

predictor should yield a point with the coordinate (0, 1) meaning 0 false positive 

rate (or 100% specificity), and 100% true positive rate or sensitivity Sn. 

Therefore, the (0, 1) point is also called a perfect classification. A completely 

random guess would give a point along a diagonal from the point (0, 0) to (1, 1). 

The area under the ROC curve is called AUC, which is often used to indicate the 

performance quality of a binary classification predictor: the larger the area, the 

better the prediction quality is. 
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From Table.1 and Fig. 3 we observed that the predictor miRNA-dis achieved 

the best performance, outperforming two methods: Triplet-SVM (6) and MiPred 

(12). Triplet-SVM (6) was a predictor whose features were also derived from the 

predicted secondary structure. miRNA-dis obviously outperformed Triplet-SVM. 

The main reason is that Triplet-SVM only considered the local structure status 

information, while miRNA-dis incorporated the long range or global 

structure-order effects into the prediction. The good results of miRNA-dis 

indicate that this is a suitable approach for microRNA precursor identification. 

miRNA-dis also outperformed MiPred, and it is more efficient than MiPred (see 

computational efficiency section). 

 

3.3. Computational efficiency 

In order to identify microRNA precursors for a large-scale database, methods 

with low computational cost are required. As discussed above, miRNA-dis 

outperformed the Triplet-SVM and MiPred. Next, let us investigate the 

computational efficiency of these methods. In this regard, the computational cost 

of the vectorization step of these methods, converting the RNA sequences into 

fixed length vectors, is the bottleneck preventing their widespread application to 

large databases, for example, the MiPred requires a time consuming P-value 

feature calculation step. For each query RNA sequence, in order to calculate the 

P-value feature, the secondary structures of its 1,000 shuffled sequences need to 

be predicted via running Vienna RNA software (12). By contrast, our method 

(miRNA-dis) doesn’t require any computational expensive step for generating 

the feature vectors, and therefore, lower computational cost is required. 

 

In order to further illustrate the efficiency of the miRNA-dis approach, its 

time complexity of vectorization step is analysed. In this approach, each feature 

vector element k

uf  of a query sequence can be calculated by Eq.8 with a time 

complexity of O( )L , where L is the length of the sequence. The total number of 
k

uf  is ( )10 100 d N+ × × , where N is the total number of samples in the 

benchmark dataset S , here the number is 3,224 (see method section). The 

optimal value of d is 7 as illustrated above. Therefore, the time complexity of 

vectorization step for miRNA-dis is O( )NdL . All the 3,224 RNA sequences in the 

benchmark dataset S  can be converted into fixed length vectors via miRNA-dis 

in 28 seconds, while for the same task, 35 seconds and 48,712 seconds were 

required for Triplet-SVM and MiPred, respectively. These experiments were 

performed on a Linux server with CPU of 2.2 GHz and memory of 94 GB. We 

conclude that the proposed miRNA-dis approach is able to achieve higher 

predictive performance with lower computational cost than Triplet-SVM and 

MiPred. 

 

3.4. Discriminant features’ visualization and interpretation 

In order to further investigate the discriminant power of the features and 

reveal the biological meaning of the feature space in miRNA-dis, we followed the 
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study (31) to calculate the discriminant weight vector in the feature space. The 

sequence-specific weight obtained from the SVM training process can be used to 

calculate the discriminant weight of each feature. Given the weight vector 

α = [��, ��, ��, … , �
] of the training set with N samples obtained from the 

kernel-based training, the discriminant weight vector W in the feature space can 

be calculated by the following equation: 

  

1 11 12 1

2 21 22 2

1 2N N N N

m m m

m m m

m m m

α

α
α

α

Ω

Ω

Ω

   
   
   = ⋅ =
   
   
   

T

T
W M

L

L

M M M M M

L

 (14) 

where M is the matrix of sequence representatives. The element in W 

represents the discriminative power of the corresponding feature. The 

discriminant weight vector W can be written as: 

          
0 0 0

1 2 3[          ...     ...   ]Τk d

uw w w w wΩ  (15) 

where 

( )( )

( )( )
( )( )
( )( )

( )( )

, | 0 if   1 10

, |1 if   11 110

= , | , | 2 if   111 210

, | if   10 +100( -1) 10 100

i j

i j

k

u i j
i j

i j

w D u

w D u

w w D k w D u

w D d d u d

 Ψ Ψ ≤ ≤

 Ψ Ψ ≤ ≤



Ψ Ψ =  Ψ Ψ ≤ ≤




Ψ Ψ ≤ ≤ +

M M

   (16) 

where 0≤k≤d. 

 

In order to reveal the biological meaning of the proposed feature space, the 

sum score of the discriminant weights for each distance-pair D(Ѱi,Ѱj|k) was 

calculated by the following equation: 

 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
0

0

, , |   if , | 0

, , |   if , | 0

d

i j i j i j

k

d

i j i j i j

k

S w D k w D k

S w D k w D k

+

=

−

=


Ψ Ψ = Ψ Ψ Ψ Ψ ≥


 Ψ Ψ = Ψ Ψ Ψ Ψ <


∑

∑
 (17) 

Fig. 4 (a) and (b) showed the positive discriminative power ( ),i jS
+ Ψ Ψ  

and negative discriminative power ( ),i jS
− Ψ Ψ  of all the 100 possible structure 

status pairs (Ѱi,Ѱj) in miRNA-dis approach, respectively. According to the 

darkest spots in the two figures, structure status pairs (A-U, A-U) and (U-A, U-A) 

showed the highest positive discriminative power, while structure status pairs 

(A, A) and (C, C) showed the highest negative discriminative power, indicating 

these four structure status pairs are very important for identifying human 
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microRNA precursors. Fig. 5 showed the specific discriminant weights of the 

distance-pairs with different k values for each of the above four structure status 

pairs. As can be seen from this figure, the distance-pairs D(Ѱi,Ѱj|0) showed the 

highest discriminant weights for each structure status pair, and the other 

distance-pairs showed lower values, indicating the distance-pairs D(Ѱi,Ѱj|0) are 

the most important features. 

 

In order to investigate the reason why these four structure status pairs 

showed strong discriminative power, we calculated their average occurrence 

frequencies in the subset 
+S  and the subset −S  in benchmark dataset S  (cf. 

Eq.1), respectively, and the results were shown in Fig. 6. Comparing the different 

frequency distribution of the same distance-pair in the two subsets, we found 

that for the two distance-pairs D(A-U,A-U|k) and D(U-A,U-A|k) with the highest 

positive discriminative power as shown in Fig. 4(a), their occurrence 

frequencies on 
+S  are much higher than those on −S  ( Fig. 6 (a) and (b)), 

which could explain the reason why these two distance-pairs showed positive 

discriminative power, and indicate they might contain important characteristics 

of human pre-miRNAs. Similar patterns were also observed for the two distance- 

pairs D(A,A|k), D(C,C|k) with highest negative discriminative power (Fig. 4(b)), 

they tend to occur in the false pre-miRNAs as shown in Fig. 6(c) and (d), which 

is the reason why they show negative discriminative power. 

 

Two RNA sequences were selected from the benchmark dataset as two 

examples (Fig. 7) so as to show the distribution of the four kinds of important 

distance-pairs (D(A-U,A-U|k), D(U-A,U-A|k), D(A,A|k), D(C,C|k), k=0, 1, 2, 3, 4, 5, 6, 

7) in these two RNA sequences. One selected sample is a real human microRNA 

precursor (positive sample, ID: has-mir-3713_ss), another one is a false 

microRNA precursor (negative sample, ID: random_seq_from_cds_NO_6886_ss). 

We clearly observed the following. (i) Most of the distance-pairs D(A,A|k) and 

D(C,C|k) occur at the loop of the hairpin structure, while almost all the 

distance-pairs D(A-U,A-U|k) and D(U-A,U-A|k) occur at the stem of the hairpin; (ii) 

The distance-pairs D(A,A|k) and D(C,C|k) are abundant in this negative sample, 

while the distance-pairs D(A-U,A-U|k) and D(U-A,U-A|k) tend to occur in this 

positive sample, which is fully consistent with the experimental results shown in 

Fig. 4 and Fig. 6 that the D(A-U,A-U|k) and D(U-A,U-A|k) have positive 

discriminative power, and the D(A,A|k) and D(C,C|k) have negative 

discriminative power.  

Independent test 

The benchmark dataset was constructed based on miRBase release 20 (June 

2013). At the time this paper was being written, 16 new human pre-miRNAs 

were reported by the latest miRBase release 21 (June 2014). These 16 

pre-miRNAs were treated as an independent test set to further evaluate the 

performance of the proposed miRNA-dis. miRNA-dis trained with the benchmark 

date set can correctly predict 15 testing samples in the independent data set as 

true human pre-miRNAs. Its overall accuracy is 93.75%, which demonstrates the 

stable predictive performance of miRNA-dis for predicting human pre-miRNAs.  
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Cross species experiments. 

After years of studies, we have known almost all the human pre-miRNAs. 

Therefore, if one computational predictor can only predict human pre-miRNAs, 

its value is limited. It is interesting to investigate if the miRNA-dis trained with 

the human pre-miRNAs can be used to predict the pre-miRNAs of other species. 

We applied the miRNA-dis trained only with human data to predict the 4022 

pre-miRNAs from 11 other species ranging from animals, plants, and virus. These 

11 species were also used to evaluate the performance of Triplet-SVM for cross 

species prediction (6). The predictive results of miRNA-dis on the 11 species 

were shown in Table.2. The miRNA-dis achieved an overall accuracy of 87.02%, 

which is highly comparable with the accuracy reported by Triplet-SVM (6) 

(90.0%). However, Triplet-SVM was only tested with 581 samples, while 

miRNA-dis was extensively evaluated with 4022 samples extracted from the 

latest miRBase (release 21: June 2014). The high performance of miRNA-dis 

across the wide range of different species is not surprising. Previous studies (6) 

showed that the structure-sequence features were conserved in pre-miRNAs of 

different species. The miRNA-dis can efficiently extract these structure-sequence 

characteristics, which would be the main reason for its stable performance for 

predicting pre-miRNAs from various species.    

3.5. Web-Server Guide 

As mentioned in (31) and implemented in a series of recent publications (see, 

e.g., (32-34)), user-friendly and publicly accessible web-servers are 

indispensable for developing practically more useful predictors, a web-server for 

the current predictor miRNA-dis has also been established. Furthermore, for the 

convenience of the vast majority of experimental scientists, a step-by-step guide 

on how to use the web-server to get their desired results without the need to 

follow the complicated mathematic equations is given below. 

 

Step 1. Visit the web-server by clicking the link at 

http://bioinformatics.hitsz.edu.cn/miRNA-dis/ and you will see its top page as 

shown in Fig.8. Click on the Read Me button to see a brief introduction about the 

server. 

 

Step 2. You can either type or copy and paste the query RNA sequence into 

the input box at the center of Fig. 8, or directly upload your input data by the 

Browse button. The input sequence should be in the FASTA format. A sequence 

in FASTA format consists of a single initial line beginning with the symbol, > , in 

the first column, followed by lines of sequence data in which nucleotides or 

amino acids are represented using single-letter codes. Except for the mandatory 

symbol >, all the other characters in the single initial line are optional and only 

used for the purpose of identification and description. The sequence ends if 

another line starting with the symbol >appears; this indicates the start of 

another sequence. Example sequences in FASTA format can be seen by clicking 

on the Example button right above the input box. 
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Step 3. Click on the Submit button to see the predicted result. For example, if 

you use the four query RNA sequences in the Example window as the input and 

then click the Submit button, you will see on your screen that the predicted 

results for the 1st and 2nd query RNA sequences are “Real Pre-miRNA”, and that 

for the 3rd and 4th ones are “False Pre-miRNA”. All these predicted results are 

fully consistent with the experimental observations. 

4. Conclusion 

In this study, we proposed a computational method “miRNA-dis” for human 

microRNA precursor identification, in which the feature vector was constructed 

based on the occurrences of “distance structure status pairs” D(Ѱi,Ѱj|k), 

≤ ≤k d0 .By this way, long range or global structure-order information was 

approximately incorporated into the predictor. It was observed via the rigorous 

cross-validation on a larger and more stringent newly constructed benchmark 

dataset that the new predictor outperformed two state-of-art predictors 

Triplet-SVM (6) and MiPred (12) and it was more efficient than MiPred, because 

in MiPred, for each query RNA sequence, the secondary structures of its 1000 

shuffled sequences need to be predicted via running Vienna RNA software in 

order to calculate the P-value feature. Another important advantage of our 

approach arises from the explicit feature space representation: the possibility to 

calculate the discriminant weight vector in feature space, which allows the users 

to analyse the learnt model for identification of the most discriminative features. 

These features, which correspond to distance-pairs, may in turn reveal 

biologically relevant properties of human microRNA precursors. Cross species 

experiments showed that the current predictor can be easily used to identify the 

pre-microRNAs of other species, indicating that miRNA-dis would be a useful 

high throughput tool for large-scale analysis of microRNA precursors of various 

species. 
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Table 1. Results on benchmark dataset (Appendix A) for different methods 

through jackknife validation 

Method Acc(%) Mcc Sn(%) Sp(%) AUC 

Triplet-SVMa 81.85 0.64 78.47 85.20 0.894 

MiPredb 87.30 0.75 84.00 90.60 0.941 

miRNA-disc 88.92 0.78 89.39 88.47 0.953 
aResults computed by in-house implementation of Triplet-SVM (6) on the 

benchmark dataset, the parameters used: 11 32 ,  and 2C γ −= = . 
bResults computed by in-house implementation of MiPred (12) on the 

benchmark dataset. 
cThe parameters used: d = 7, 112,  and 2C γ −= =  
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Table 2. Results on cross species test set for miRNA-dis trained with human data 

Species Number of samples Acc(%) 

Mus musculus 
 

962 85.55 

Rattus norvegicus 
 

277 87.00 

Gallus gallus 
 

659 74.66 

Danio rerio 
 

291 93.47 

Caenorhabditis briggsae 
 

175 91.43 

Caenorhabditis elegans 
 

250 85.60 

Drosophila pseudoobscura 
 

210 87.14 

Drosophila melanogaster 
 

256 85.94 

Oryza sativa 
 

592 94.09 

Arabidopsis thaliana 
 

325 96.62 

Epstein Barr Virus 
 

25 96.00 

Total 4022 87.02 
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Figures Legends 

Figure 1. The process of generating the feature vector based on 

distance-pairs. Given an RNA sequence R with L nucleobases, the structure 

status sequence of R can be derived by Vienna RNA software package. Suppose d 

= 2, the f(D(Ѱi,Ѱj|0)),f(D(Ѱi,Ѱj|1)),f(D(Ѱi,Ѱj|2)) are calculated based on the 

structure status sequence of R, and then the feature vector is generated 

according to the Eq. 7-11. 

 

Figure 2. The overall Acc values achieved by miRNA-dis with different d 

values based on the benchmark dataset through five-fold cross validation. 

 

Figure 3. A graphical illustration to show the performance of different 

methods on the benchmark dataset using the jackknife tests by means of 

the receiver operating characteristic (ROC) curves. The areas under the ROC 

curves or AUC are 0.953, 0.894, and 0.941 for miRNA-dis, Triplet-SVM, and 

MiPred, respectively. 

 

Figure 4. An illustration for the discriminant visualization. The structure 

statuses labelled by y-axis and x-axis indicate the first structure status and the 

second structure status in the distance-pairs, respectively. The adjacent colour 

bar shows the mapping of sum score values. (a) The positive discriminative 

power ( ),i jS
+ Ψ Ψ  of all the 100 possible structure status pairs ( , )i jΨ Ψ  in 

miRNA-dis. (b) The negative discriminative power ( )-
,i jS Ψ Ψ  of all the 100 

possible structure status pairs ( , )i jΨ Ψ  in miRNA-dis. 

 

Figure 5. The discriminant weights of D(A-U,A-U|k), D(U-A,U-A|k), D(A,A|k), 

D(C,C|k) with 0 7k≤ ≤ . 

 

Figure 6. The average occurrence frequencies of the distance-pairs for the 

four structure status pairs (A-U, A-U), (U-A, U-A), (A, A) and (C, C) in the two 

classes (real pre-miRNAs vs. false pre-miRNAs). 

 

Figure 7. Examples of the distribution of D(A-U,A-U|k), D(U-A,U-A|k), 

D(A,A|k), D(C,C|k) in RNA sequences. The distance-pairs (D(A-U,A-U|k), 

D(U-A,U-A|k)) with positive discriminative power were labeled in pink 

rectangles, and the distance-pairs (D(A,A|k), D(C,C|k)) with negative 

discriminative power were labeled in grey blue rectangles. The distribution of 

these distance-pairs in a real microRNA precursor (ID: has-mir-3713_ss) and a 

false microRNA precursor (ID: random_seq_from_cds_NO_6886_ss) were given in 

subfigure (a) and (b), respectively. For each subfigure, the first figure shows the 

predicted secondary structure of the target RNA, and the second figure shows its 

structure status sequence (cf. Eq.4). 

 

Figure 8. A semi-screenshot to show the top page of the web-server miRNA-dis, 

which is available at http://bioinformatics.hitsz.edu.cn/miRNA-dis/ 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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