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The General Defocusing Particle Tracking (GDPT) is a 3D particle tracking method that relies 
on a simple empirical procedure based on a calibration image stack and the normalized cross-
correlation function. The method is intuitive and easy to use and can be applied on defocused 
particle images of arbitrary shapes. 
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A General Defocusing Particle Tracking (GDPT) method is proposed for tracking the three-dimensional motion of particles
in Lab-on-a-chip systems based on a set of calibration images and the normalized cross-correlation function. In comparison
with other single-camera defocusing particle-tracking techniques, GDPT possesses a series of key advantages: it is applicable
to particle images of arbitrary shapes, it is intuitive and easy to use, it can be used without advanced knowledge of optics
and velocimetry theory, it is robust against outliers and overlapping particle images, and it requires only equipment which is
standard in microfluidic laboratories. We demonstrate the method by tracking the three-dimensional motion of 2-µm spherical
particles in a microfluidic channel using three different optical arrangements. The position of the particles was measured with
an estimated uncertainty of 0.1 µm in the in-plane direction and 2 µm in the depth direction for a measurement volume of
1510×1270×160 µm3. A ready-to-use GUI implementation of the method can be acquired on http://www.3D-GDPT.com.

1 Introduction

Tracking the motion of small particles suspended in a fluid is
an important task in microfluidic and lab-on-a-chip technol-
ogy. For example, suspended particles can be used as passive
tracers to measure specific quantities such as the flow veloc-
ity,1,2 the topology of the interface between fluid streams,3

and the local fluid temperature.4 In other cases, particle track-
ing can be used to determine the forces acting directly on the
suspended particles e.g. in systems utilizing acoustic radia-
tion forces,5 dielectric forces,6 magnetic forces,7 and iner-
tial forces.8 An ideal particle tracking method for microflu-
idic applications should be able to resolve the particle posi-
tions in all the three spatial dimensions using a single-camera
view, which is the standard in most conventional microscopes.
Several techniques fulfilling these requirements are already
available e.g. using 3-pinhole mask,9,10 diffraction ring pat-
terns,11 astigmatic aberration,12 and conical-shaped lenses.13

All methods rely on defocusing of particle images, since the
change of particle image shape is related to the depth coordi-
nate, see the sketch in Fig. 1. Here, the depth coordinate is
defined along the optical axis of the objective lens. A recent
review on this topic can be found in Ref. 14.

In this work, we show that all 3D particle tracking ap-
proaches based on defocusing can in principle be evaluated by
a single purely empirical method which we refer to as Gen-
eral Defocusing Particle Tracking (GDPT). GDPT requires
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Fig. 1 Sketch of a single-camera setup for determining the 3D parti-
cle positions via defocused particle images, where the particle images
change as function of the depth coordinate.

two primary conditions:

1. The optical arrangement must provide defocused particle
images with a shape that varies uniquely with the depth
coordinate. To fulfill this condition, the tracer particles
must have a spherical shape or must be small enough to
approximate point sources.

2. It must be possible to obtain a proper calibration image
stack, i.e. a set of images reproducing the shape of one
defocused particle image for sufficient depth coordinates
within the measurement volume.

In comparison with other methods, GDPT possesses a se-
ries of key advantages: (i) it is applicable to defocused par-
ticle images of arbitrary shapes, (ii) it requires only equip-
ment which is standard in microfluidic laboratories: micro-
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Fig. 2 GDPT working principle: A target particle image It is com-
pared to a set of calibration images Ic by use of the normalized cross-
correlation (F). The out-of-plane coordinate zt for the target particle
is found where the maximum correlation Cm is highest as a function
of the out-of-plane coordinate z.

scope, light source, and camera, (iii) it can be used without
advanced knowledge of optics or velocimetry theory, (iv) it is
robust against outliers and overlapping particles, and (v) the
quality of the evaluation is controlled by a single parameter,
namely the quality of a cross-correlation between two images.

2 Method

The GDPT working principle is sketched in Fig. 2. The
method relies on a calibration image stack composed byN im-
ages, here denoted Ic(X,Y )k, with k = 1, 2, ..., N and where
(X,Y ) are the in-plane coordinates in image space. Each im-
age in the stack reproduces the defocused image of one parti-
cle corresponding to a specific depth coordinate zk. The zk-
coordinates are equally spaced through a depth H = zN − z1.
H defines the depth of the measurement volume: particles lo-
cated outside this region will have defocused particle image
shapes that are not present in the calibration image stack and
therefore they cannot be identified. A straightforward empir-
ical procedure to obtain the calibration image stack is to take
pictures of stationary particles (such as sedimented or stuck
particles) at different depth positions. This can be done either
by moving the particles with a traversing system while keep-
ing the optical settings fixed or by translating the optics (for
instance by moving the focus stage of a microscope) while
the particles keep their physical positions constant. The two
approaches are equivalent and both give the z-coordinates in
terms of relative values since the absolute position of the par-
ticles is unknown. Specific care must be taken to correctly
determine the sign of the z-axis and to account for additional
scaling factors (such as the effect of different refractive in-

dices).
At the beginning of each GDPT evaluation, a target image

of is searched to identify target particle images at different x
and y coordinates using for instance an image segmentation
algorithm. Each target particle image, It(X,Y ), is then com-
pared to the calibration image stack Ic(X,Y )k to find the best
match with one of the k calibration images. To quantitatively
rate the similarity between It and a calibration image Ic we
use the normalized cross-correlation function c(u, v). Follow-
ing Lewis,15 it takes the form:

c(u, v) =∑
X,Y

[
Ic(X,Y ) − Īc

][
It(X − u, Y − v) − Īt

]{∑
X,Y

[
Ic(X,Y ) − Īc

]2∑
X,Y

[
It(X − u, Y − v) − Īt

]2}1/2
,

(1)

where (u, v) are the in-plane coordinates in the correlation
space, and Īt and Īc are the mean intensities of It and Ic, re-
spectively. The correlation function c(u, v) will show a max-
imum peak in the position of best match between Ic and It,
and the amplitude of this peak, here denoted as Cm, indicates
how good the match between the two images is. In particular,
Cm takes values between 0 and 1, with Cm = 1 indicating
a perfect match. Note that the normalized cross-correlation
function is not sensitive to fluctuations of the image inten-
sity, for instance due to inhomogeneous light distribution, and
takes into account only the similarity in terms of relative inten-
sity. The calibration image stack is then searched until the Ic
providing the maximum Cm is identified and the correspond-
ing coordinate zk will indicate the particle depth position (see
Fig. 2). If the maximum Cm is below a certain threshold the
particle image is rejected. In this way outliers, for instance
caused by overlapping or strongly-distorted particle images,
can be reliably filtered out from the analysis. If the particle is
accepted, a three-point parabolic fit estimator is applied to re-
fine the z-position with sub-z-scan accuracy. The in-plane po-
sition of the particle is simply obtained from the location of the
correlation peak in analogy with conventional PIV/PTV anal-
ysis.16 In this case, the c(u, v) calculated with the matched Ic
is used and the in-plane position is refined with sub-pixel accu-
racy using a three-point Gaussian fit estimator. More estima-
tors can be used, however this aspect will not be investigated
in this work. At this point the three-dimensional coordinate of
the particle is identified and the procedure can be repeated for
the following target particle images. Finally, when the parti-
cle positions are obtained for target images at different times,
the particle trajectories can be connected by means of parti-
cle tracking schemes. In this work, a simple nearest-neighbor
tracking approach has been used.17

The GDPT working principle is completely general and is
not restricted to any particular characteristic of the particle
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Fig. 3 Selection of experimental particle images as a function of the
depth coordinate z from 0 µm to 160 µm for three cases (high pixel
intensities in bright colors and low pixel intensities in dark colors).
Case 1 (�): Defocused particle images, Case 2 (�): Astigmatically-
aberrated particle images, and Case 3 (�): Astigmatically-aberrated
particle images using an odd-shaped aperture mask attached to the
back of the objective lens.

images. The resolution and uncertainty varies case by case
and depends on several parameters. Some of them are fixed
by the experimental conditions and include the optical prop-
erties of the liquid, the particle quality (particle-size distribu-
tion, homogenous optical and material properties), and the im-
age quality (signal-to-noise ratio, particle image density, and
reproducibility of the defocusing patterns). In this sense, mi-
crofluidic applications are ideal as the combination of micro-
scope optics and micrometer-sized particles of low concentra-
tion provides in general excellent particle images with clear
defocusing patterns. Other parameters can be selected by the
user and include the number of calibration images N and type
of pre-processing applied to the images (median filter, Gaus-
sian filter, image interpolation, etc.).

3 Application

To access the uncertanty of the method, we measured the
Hagen–Poiseuille flow inside a microchannel. The Hagen–
Poiseuille flow is commonly used as a benchmark for eval-
uation of 3D velocimetry methods as it has a well-known
flow solution and can be easily realized. The measurements
were performed in an isotropically-etched microchannel with
a cross-section of width w = (380 ± 12) µm and height h =
(100 ± 10) µm (Micronit Microfluidics, The Netherlands).
The tracer particles were 2.24-µm fluorescent polystyrene
spheres (Microparticle GmbH, Germany) suspended in deion-
ized water. In order to examine the sensitivity of the method
to different particle image shapes, we used three different op-
tical arrangements referred to as Case 1, Case 2, and Case
3 (Fig. 3). In all cases we looked at defocused particle im-
ages taken with a sCMOS camera (16-bit, 2560 × 2160, PCO
GmbH, Germany) mounted on an inverted epi-fluorescent
microscope (Axio Observer Z.1, Carl Zeiss AG, Germany)

Fig. 4 (a-b) Measured depth coordinates zmeas (•) and correlation
coefficients Cm (•) as a function of real depth coordinates z for Case
1 using a 7 × 7 median filter and number of calibration images (a)
N = 100 and (b) N = 10. (c) Average z-error εz as a function of
number of calibration imagesN for Case 1 (�), Case 2 (�), and Case
3 (�). The inset shows εz for Case 1 as a function of N compared
with the use of re-sampling of the calibration images to a fixed num-
ber of 100 (empty symbols). (d) Average z-error εz for Case 1 using
N = 100 as a function of applied median filter size.

equipped with a double-pulse laser (Litron Lasers, USA) and
a 10×/0.3 magnification lens. For the Case 2 and 3 an astig-
matic aberration was introduced using a cylindrical lens with
focal length fcyl = 300 mm in front of the camera sensor.
Furthermore, in Case 3 the particle images were distorted
by using an odd-shaped aperture mask attached to the back
of the objective lens. The entire measurement volume was
1510 × 1270 × 160 µm3. The signal-to-noise ratio varies sig-
nificantly along the out-of-plane direction with values from 4
to 147 for Case 1, 5 to 42 for Case 2, and 5 to 62 for Case 3.

Uncertainty analysis. For each case, a set of images at 600
different known depth positions equally spaced across a depth
of H = 160 µm was taken. These images were used to con-
struct different calibration image stacks using various combi-
nations of N and median filter sizes. Each stack was used to
estimate the z-coordinate of all the particles in the 600 images
and the results were compared with the real z-coordinate val-
ues. In particular, each calibration image stack was created
as follows: a subset of N experimental images was extracted
from the image set, the selected median filter was applied to
them, and for each position a defocused particle image was
obtained as an average from 4-5 particles in the image center.
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Fig. 5 GDPT measurements of the flow velocity in a microchannel
of width w = 380 µm and height h = 100 µm. (a) Experimen-
tal velocity profile vx(y, z) in the channel cross-section for Case 1
(•) together with the theoretical velocity profile (—) obtained us-
ing COMSOL Multiphysics. (b) Colormap of the velocity error εvx
normalized to the maximum velocity. (c) Slice of the experimental
velocity profile for −15 µm < y < 15 µm (•) and corresponding
numerical profile (—). (d) Error εvx as a function of out-of-plane
position z for Case 1 (�), Case 2 (�), and Case 3 (�).

In Fig. 4(a) and (b) we show the measured depth coordi-
nates zmeas (•) and the corresponding correlation values Cm

(•) as a function of the real depth coordinate z for Case 1 when
applying a 7 × 7 median filter. Panel (a) shows the results ob-
tained using N = 100 resulting in a successful measurement
of z with an average error of εz = 0.01 and correlation val-
ues Cm larger than 0.95. The error is calculated as the sample
standard deviation of zmeas − z and normalized to the total
depth H = 160 µm. Panel (b) shows results obtained using
N = 10. In this case the number of calibration images in
the stack was insufficient to properly determine the depth po-
sitions z resulting in strongly biased measurements with low
values of Cm and an average error of εz = 0.21. In Fig. 4(c)
we plot the average error εz as a function of the number of cal-
ibration images N for the three test cases, Case 1 (�), Case
2 (�), and Case 3 (�) and when applying a 7 × 7 median fil-
ter. For a number of experimental images N > 60 the average
error εz converges to its minimum for all three cases with val-
ues of εz = 0.012 (1.9 µm) for Case 1, εz = 0.025 (4.0 µm)
for Case 2, and εz = 0.019 (3.0 µm) for Case 3. The mini-
mum N required to achieve the minimal error can be further

reduced down to N ≈ 20 if image re-sampling is used as
shown in the inset for Case 1 (empty symbols). In this case
a smoothing spline interpolation was used to re-sample the
images to a fixed number of 100 calibration images. Further-
more, in Fig. 4(d) the average error εz is plotted as a function
of the size of the applied median filter for the three cases and
N = 100. The median filter decreases the error εz for small
filter sizes as it removes salt-and-pepper noise, but as the filter
size increases the error increases too due to loss of important
features in the particle images resulting in less distinct cross-
correlation values. For all three test cases, the median filter
size of 7× 7 performs the best. The optimal median filter size
might of course change for different experimental conditions.

The error εxy in the in-plane position was estimated from
the fluctuation of the transverse velocity component in a
Hagen-Poiseuille flow (see next section) which is 0 in every
position and corresponded to 0.04 µm for Case 1, 0.06 µm for
Case 2, and 0.08 µm for Case 3. These values correspond to a
displacement uncertainty of approximately 0.1 pixels which is
comparable to conventional in-plane PIV or PTV evaluations
under real experimental conditions.14,16

Flow measurements. The flow in the microchannel was
driven by a pressure-controlled system, while 2000 double im-
ages were acquired for each test case. The GDPT analysis was
performed using N = 100, and a median filter of 7 × 7. All
detected particles with Cm < 0.985 were rejected resulting
in approximately 36,000 valid particles out of 45,000 detected
particles for each case. The average evaluation time was 0.1
s/particle using a workstation with an Intel Core 2 Duo Pro-
cessor E8400 and 8 GB of RAM.

The results are reported in Fig. 5. The experimental veloc-
ity profile vx(y, z) obtained for Case 1 (•) is reported in panel
(a) showing a good qualitative agreement with the correspond-
ing numerical solution (—) calculated using COMSOL Mul-
tiphysics. This is also evident in panel (c) where a slice of
the experimental velocity profile for −15 µm < y < 15 µm
(•) is plotted showing no outliers and an excellent match with
the numerical profile (—). Panel (b) shows the deviation εvx
of the experimental data from the numerical model calculated
in terms of sample standard deviation and normalized to the
maximum velocity. The hatched areas indicate regions where
the measurement was not reliable due to distortions introduced
by the curvature of the side walls. The error varies between 1
to 6 % and is larger at the top and bottom. Note that εvx de-
pends also on εz (which is one order of magnitude larger than
εxy) therefore εvx will be larger in the regions with larger ve-
locity gradients. Finally, in panel (d) we show the average εvx

for −100 µm < y < 100 µm as function of z for Case 1 (�),
Case 2 (�), and Case 3 (�). The results are comparable for
the three cases proving that the GDPT method is not sensitive
to the particle image shape.
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4 Conclusions

We have presented the General Defocusing Particle Tracking
(GDPT) method, a single-camera, particle tracking method
which is capable of measuring the three-dimensional posi-
tions and velocities of particles moving along any trajectory
in a transparent fluid. The method relies on a database ap-
proach based on a set of calibration images and a normalized
cross-correlation analysis to find the correspondence between
particle images and calibration images. The method is not
restricted to a specific image shape and it can be used to mea-
sure any type of particle with an approximate spherical shape,
including cells or biological particles, as long as they show
a unique defocusing pattern for any depth coordinate. Non-
spherical object or deformable cells will result in more com-
plicated defocusing patterns that will increase the uncertainty
of the measurement. The method provides an immediate esti-
mation of the depth measurement error as well as easy outlier
rejection such as in case of overlapping particle images. To
access the uncertainty of the method, we measured a Hagen–
Poiseuille flow in a microchannel using three different optical
arrangements, obtaining an average error on the depth coor-
dinate in the order of 1-2 % of the measurement volume, and
an in-plane error less than 0.1 pixels. The method is simple,
reliable, and robust, and is well suited for many Lab-on-a-
Chip experiments. A ready-to-use GUI implementation of the
method can be acquired on http://www.3D-GDPT.com.
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