JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry

Chao-Feng Li^a* Xuan-Ce Wang^{b, c} Jing-Hui Guo^a

Zhu-Yin Chu^a Lian-Jun Feng^a

^a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

^b The institute for Geoscience Research (TIGeR), Department of Applied Geology,

Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

^c The school of Earth Science and Resources, Chang'an University, Xi'an 710054,

China

Tel: +86-10-82998583

^{*}Corresponding author: Chao-Feng Li

E-mail address: cfli@mail.iggcas.ac.cn

Abstract:

A straightforward tandem column separation procedure is presented for separation of Sr, Nd, Pb, and Hf from silicate materials. It allows rapid purification, without any intervening evaporation, of these four elements of great interest in Earth science and cosmochemistry. After sample loading, the upper Sr Spec column adsorbs Sr and Pb, while the lower TODGA Spec column adsorbs Hf and Nd. Strontium-lead and hafnium-neodymium elements are then back-extracted from the Sr Spec and TODGA Spec columns, respectively. The whole separation procedure, including column setup, cleaning, and pre-conditioning, takes approximately eight hours for separating a batch of 25 samples. The proposed procedure offers significant improvement in separation efficiency of these often-used four elements, compared with conventional four columns methods. Fractions of Sr, Nd and Pb are then measured by TIMS and the Hf fraction is determined by MC-ICP-MS. The stability of this procedure was demonstrated by replicate measurements of ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd, ¹⁷⁶Hf/¹⁷⁷Hf, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb isotope ratios of eight international silicate rock reference materials, spanning a wide range of bulk compositions. The analytical results obtained in this study agree well with published data. The external reproducibility (2 RSD, n = 8) of standard BCR-2 was ± 0.0026 % for ${}^{87}\text{Sr}/{}^{86}\text{Sr}$, ± 0.0020 % for ${}^{143}\text{Nd}/{}^{144}\text{Nd}$, ± 0.0049 % for ${}^{176}\text{Hf}/{}^{177}\text{Hf}$, and ± 0.026 % ~ 0.034 % for ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb isotope ratios.

Keywords: Sr-Nd-Pb-Hf isotope; Tandem column separation; Geological samples; TIMS; MC-ICP-MS

1. Introduction

The combination of Sr, Nd, Pb, and Hf isotope systems provide a powerful tool to investigate differentiation and evolution of the silicate Earth and other terrestrial planets.¹⁻³ This is because the abundances of ⁸⁷Sr, ¹⁴³Nd, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ¹⁷⁷Hf, vary in natural samples as a consequence of the long-lived radioactive decay of their respective parent isotopes ⁸⁷Rb, ¹⁴⁷Sm, ²³⁸U, ²³⁵U, ²³²Th and ¹⁷⁶Lu. As a result, ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁸Pb/²⁰⁴Pb and ¹⁷⁶Hf/¹⁷⁷Hf ratios in a geological sample reflect the time-integrated parent-daughter isotope ratios of its source.⁴⁻⁶ Therefore, it is crucial to extract Sr, Nd, Pb, Hf multi-isotopic messages from the same sample aliquot.

Thermal ionization mass spectrometry (TIMS) and multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) give excellent accuracy and precision regarding Sr, Nd, Pb and Hf isotopic measurements.⁴⁻⁴⁶ Commonly, using TIMS or MC-ICP-MS, external precision of ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd, ¹⁷⁶Hf/¹⁷⁷Hf isotope ratios are 0.002%~0.004% (2 RSD), and external precision of ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb isotope ratios are 0.02%~0.03% (2 RSD). However, sample preparations for such high precision isotope measurements are time consuming. This is because high precision determination of Sr, Nd, Pb, and Hf isotope ratios in geological samples using TIMS or MC-ICP-MS requires a high degree of sample purification to avoid potential matrix effects as well as poly-atomic and isobaric interferences. Therefore, it is important to develop an integrated separation scheme that enables the analyst to obtain sufficiently pure fractions of Sr, Nd, Pb, and Hf from single sample dissolutions in a straightforward manner. Purification of Sr-Nd-Pb-Hf is

traditionally accomplished by using a four-column chromatography after a single sample digestion. Traditionally, the first column involves the separation of Pb from other elements using an anion resin such as AG 1 or Dowex 1 resin^{24, 26, 28-31}, or a special resin column, such as Pb Spec²³ or Sr Spec resin^{4-6, 25, 27}. The discard containing most of the Sr-Nd-Hf and matrix element fractions from the first column is then dried and dissolved using HCl or HNO₃. Subsequently, Hf is separated from the matrix solution enriched in Sr, Nd, and Hf using a second resin column, such as anion resin column⁴⁴ or a special resin column, such as LN resin^{12, 35, 42}, U-TEVA resin^{8, 34, 38}, ⁴¹, TEVA^{33, 36, 37} or TODGA resin^{40, 43, 46}. The matrix solution enriched in Sr and Nd from the second column is also collected. Then, Sr and rare earth elements (REEs) enriched in Nd are separated from the matrix elements using a third cation exchange resin (AG50W) column¹¹⁻¹⁶ or a tandem resin column scheme(Sr Spec + TRU Spec)¹⁹. Finally, Nd is separated from other REEs using a fourth resin column, such as LN(HDEHP) Spec resin^{7-12, 16}, HEHEHP resin²¹, or Aminex A27 resin column¹⁵. Traditional four-step separation procedures involve tedious pre-cleaning of the columns and fraction evaporation and take at least four working days to complete Sr-Nd-Pb-Hf sample preparation for a batch of geological samples (e.g., 20~30 samples). Thus, the separation efficiency of traditional methods is low and sample throughput is impeded. In addition, traditional methods increase the probability of contamination from cross-operation in column chemistry associated with the complex operations.

Recently, Yang¹⁷ and Li¹⁸ presented methods to precisely determine ¹⁴³Nd/¹⁴⁴Nd

isotopic ratios without separation from other REEs using MC-ICP-MS and TIMS. Their methods allowed Sr-Nd-Pb-Hf isotopic determination using TIMS and MC-ICP-MS so well as high-purity Sr, Pb, Hf and REEs-enriched in Nd could be achieved. Based on this method, rapid chemical procedures in our previous investigations were developed to separate Sr-Nd-Pb⁵ or Sr-Nd-Hf⁶ from a single sample digest. However, analytical protocol to concomitantly separate Sr-Nd-Pb-Hf fractions from a single sample digest has not been documented. More recent, Pourmand⁴⁶ presents a rapid separation scheme for Sr-Nd-Hf purification using Sr and TODGA Spec resin. The method⁴⁶ gives a clue to afford a possibility of separation Sr-Nd-Pb-Hf from a single sample digest. In this study, we report a rapid tandem column separation procedure for all four elements based on optimization of Sr Spec and TODGA Spec resins.

This new method reduces the rather extensive and costly cleaning and separation procedures of resin and columns without negatively affecting the data quality. This method of obtaining Sr-Nd-Pb-Hf from a single dissolution thus provides the most rapid and efficient separation. This method also avoids potentially sample heterogeneity when the samples are scarce at a given sampling scale. To verify the robustness of this tandem column separation protocol for Sr-Nd-Pb-Hf, eight certified reference materials (CRMs) of silicate rocks, encompassing a wide range of matrix compositions and analyte concentrations, were analyzed.

2. Experimental

2.1 Chemicals and chromatographic materials

Reagents: All AR grade acids (hydrochloric acid, phosphoric acid, nitric acid, hydrofluoric acid, boric acid and perchloric acid) were further purified using a SavillexTM DST-1000 sub-boiling distillation system. Ultrapure water with a resistivity of 18.2 M Ω .cm⁻¹ was obtained from a Milli-Q Element system (Millipore, USA) and used throughout this work for diluting concentrated acids. The silica-gel obtained from Merck company was dispersed in Milli-Q H₂O.

Sr-Nd-Pb-Hf standard solutions: A stock solution of 100 ppm Sr, Nd and Pb was gravimetrically prepared to monitor the stability of the Triton Plus instrument using NIST NBS-987, JNdi-1 and NIST NBS-981 reference materials. A JMC 475 Hf international standard solution of 100 ppb was used to monitor the stability of the Neptune Plus instrument.

Re ribbons: 0.035 mm thick, 0.77 mm wide and 99.98% pure, H. Cross Company.

Pb double spike: Instrumental fractionation is the major limiting factor precluding accurate determination of lead isotopic ratios by TIMS. To correct accurately for effects of the Pb mass fractionation, ²⁰⁴Pb-enriched and ²⁰⁷Pb-enriched spikes were obtained from Oka Ridge National Laboratory, USA. The ²⁰⁷Pb-²⁰⁴Pb double spike composition and the spike/sample mixing ratio were optimally determined by error simulation using the method reported by Galer⁴⁵. The ²⁰⁷Pb-²⁰⁴Pb double spike solution was diluted with 0.5 M HNO₃ to 1 ppm and calibrated using NIST NBS-981. Resin: The Sr Spec and TODGA Spec resins produced by Eichrom Technologies were used for chromatographic extraction. The Sr Spec resin and was based on a crown ether di-tert-butylcyclohexane-18-crown-6 in octanol, ^{19, 27} at sorbed onto an

Journal of Analytical Atomic Spectrometry

Column: The Sr Spec cation-exchange quartz glass column was 7 cm long with a 5 mm i.d. and 6 mL reservoir, packed with 0.4 mL of Sr Spec resin. The TODGA Spec cation-exchange polypropylene column was 7 cm long with a 5 mm i.d. and 5 mL reservoir, packed with 0.8 mL of TODGA Spec resin.

Rock standard samples: Rock powders of CRMs were obtained from the United States Geological Survey (USGS) and the Geological Survey of Japan (GSJ). These CRMs included USGS BCR-2 (basalt), BHVO-2(basalt), BIR-1(basalt) and AGV-2(andesite) GSJ JG-1a (granite), JA-3 (andesite), JB-2 (basalt) and JB-3 (basalt).

Labware: The labware used included 15 and 7 mL PFA Teflon vials with screw top lids (Savillex Corporation, USA). These vials were used for sample digestion, solution collection, and evaporation. These vials were cleaned prior to use with a degreasing agent followed by sequential washing with AR grade HNO₃, HCl, and ultra-pure Milli-Q H₂O.

2.2. Sample digestion

To achieve excellent Sr-Nd-Pb-Hf blank levels, all chemistry was performed inside better than Class 100 chemical workstations located inside a suite of Class 1000 over-pressured clean rooms. Approximately 120~130 mg of rock powder materials were weighed into a steel-jacketed acid-washed high-pressure PTFE

bombs.⁶ The samples were dissolved on a hotplate at 190 °C using an acid mixture of 3 mL of 29 M HF, 0.3 mL of 14 M HNO₃ and 0.3 mL of HClO₄ for 4 days. The dissolved sample solution was then evaporated to dryness and treated overnight with 2 mL of 6 M HCl and 1mL of saturated (~0.46 M) H₃BO₃ solution at ca. 120 °C on a hotplate. After the H₃BO₃ dissolution step, the fluoride gels formed during decomposition of mafic and ultra-mafic rocks were completely dissolved. 1mL of 6M HCl was then added to the residues and evaporated to dryness. When cool, the residues were dissolved in 1.0 mL of 3.5 M HNO₃ + 0.23 M H₃BO₃ mixture. The capsule was then sealed and placed on a 120 °C hot plate overnight prior to chemical separation.

2.2. Column chemistry

Each sample solution was loaded into the Sr Spec resin and TODGA Spec resin columns arranged in tandem (Fig 1 and Table 1). Before sample loading, the tandem column was pre-washed in turn with 10 mL of 7 M HNO₃, 5 mL of H₂O, and 5 mL of 3.5 M HNO₃+0.23 M H₃BO₃ mixture. As shown in Table 1, after complete draining of the sample solution(1 mL), tandem Sr and TODGA Spec columns were rinsed four times with 0.5 mL of 3.5 M HNO₃. At this stage, most Rb, K, Na, Al, Ti, Fe, Mg (>98%) and Ba (>98%) passed through both the Sr and TODGA Spec columns. Sr and Pb were strongly retained into the Sr Spec column, and the REEs enriched in Nd and Hf were strongly retained into the TODGA Spec column. The TODGA Spec column absorbed significant matrix element (Ca), whereas only minor matrix

Journal of Analytical Atomic Spectrometry

elements (Ba and Fe) and minor Rb were retained into the Sr Spec column. Then, the two columns were decoupled and further processed separately (Table 1 and Fig. 1).

Firstly, Sr and Pb fraction was stripped from the Sr Spec column. The Sr Spec column was washed with 3 mL of 3.5 M HNO₃. Minor matrix elements and all Rb were removed during this step. Minor Sr (~ 8.1 %) was also washed out in this step. Then, the Sr fraction, containing ~ 89.8 % of Sr, was stripped with 5.5 mL of 0.05 M HNO₃. Finally, most Pb (~ 93.4 %) fraction was then stripped with 2 mL of 8 M HCl.

Secondly, we stripped Hf and Nd fraction from the TODGA Spec column. Minor residual matrix (≤ 2 %) elements (Mg, Na, Fe, Ti, K, Al) and significant amounts of Ca (~33 %) were removed with 20 mL of 3.5 M HNO₃. Then, the remaining Ca (~39 %) was completely washed with 10 mL of 12 M HCl. The Hf fraction, containing ~ 97.3 % of Hf, is stripped with 25 mL of 3.5 M HNO₃ + 1 M HF mixture. Finally, the LREEs containing the Nd fraction (~98.2 %) was stripped with 10 mL of 0.4 M HCl. All Yb, Lu and other HREEs were washed out with 10 mL of 0.04 M HCl.

To eliminate potential interference from minor organic materials in the Sr Spec and TODGA Spec columns that affect the TIMS measurements,^{5, 27} the Sr fraction, the LREEs fraction-enriched in Nd, the Hf fraction, and the Pb fraction were first evaporated to dryness, and then digested using 0.3 ml of 14 M HNO₃ on a 180°C hotplate for 1.5 hours in closed PFA vials. Finally, the digested Sr-Nd-Pb fractions were dried at approximately 150°C again prior to TIMS measurements. The Hf fraction was evaporated to dryness on a hotplate at 120°C, taken up in 0.1 mL of 0.5 M HF + 0.8 mL of 3.5 M HNO₃, and then was ready for MC-ICP-MS analysis. The

complete separation procedure, including pre-cleaning of the columns, took approximately 8 hours for 25 samples or approximately 75 % less time compared with conventional four-step column chemistry.

2.3 Thermal ionization mass spectrometry for Sr, Nd and Pb isotopic analysis

Sr, Nd and Pb isotopic compositions were measured using a Triton Plus (ThermoFisher) at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) in Beijing. All Sr, Nd and Pb data were acquired by static multi-collection with the collector array illustrated in Table 2. To eliminate all gain calibration errors, amplifier gains were calibrated at the start of each day. Before the commencement of the analysis, a peak-center routine was run, and then, the baseline was measured. Single Re filament geometry was used to obtain Sr^+ and Pb^+ ion beams. Double Re filament geometry was employed to obtain the Nd⁺ ion beam. Each run consisted of 140~180 cycles that were divided into 7~9 blocks. Detail sample loading and TIMS measurement conditions for Sr, Nd and Pb isotope ratios were reported in our previous investigations.^{5,6} The ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios were normalized using 88 Sr/ 86 Sr = 8.375209 and 146 Nd/ 144 Nd = 0.7219 for mass bias correction using the exponential law. Standards NBS-987, NBS-981 and JNdi-1 were analyzed during the sample measurement period to monitor instrument status. The NBS-987 standard gave a mean 87 Sr/ 86 Sr of 0.710245 ± 11(2 SD, n = 5), and the JNdi-1 standard gave a mean 143 Nd/ 144 Nd of 0.512109 ± 8 (2 SD, n = 5). The NBS-981 standard gave a mean 206 Pb/ 204 Pb of 16.934 ± 0.003, 207 Pb/ 204 Pb of 15.484 ± 0.003, 207 Pb/ 206 Pb of 0.9144 ±

0.0002 and ²⁰⁸Pb/²⁰⁴Pb of 36.682 ± 0.011 (n = 5). All NBS-987, NBS981, and JNdi-1 standards were in good agreement with previously reported values^{4-7, 11-14, 16-22, 24-32} within error.

2.4 MC-ICP-MS for Hf isotopic analysis

Hf isotopic ratios were measured using a Thermo Scientific Neptune Plus MC-ICP-MS at the IGGCAS. Analyses were performed in the static mode and cup configurations were shown in Table 2. Typical operating parameters for Hf measurement using Neptune Plus were reported by Yang et al.^{12, 44} Each run consisted of a baseline measurement and collections of 96~108 cycles that were divided into $8 \sim 9$ blocks. The integration time was 4 s, and the typical time of one measurement was ~ 11 min. Isobaric interferences of 176 Yb and 176 Lu on 176 Hf were monitored by ¹⁷²Yb, ¹⁷³Yb, and ¹⁷⁵Lu. The effects of these interferences were corrected on-line using the following values for the stable ratios: 176 Yb/ 173 Yb = 0.79323 and 176 Lu/ 175 Lu = 0.026528. After column chemistry, Lu/Hf and Yb/Hf ratios were generally $\leq 1 \times 10^{-5}$ in natural silicate samples, showing no significant difference in ratios before and after interference correction. After subtraction of the isobaric interferences, the ¹⁷⁶Hf/¹⁷⁷Hf ratio was normalized to ${}^{179}\text{Hf}/{}^{177}\text{Hf} = 0.7325$ for mass bias correction using the exponential law. To examine the accuracy of Hf measurement by MC-ICP-MS, samples presented here were interspersed with analyses of the JMC-475 Hf standard. In this study, 100 ppb of JMC-475 yielded a value of 0.282149 ± 14 (2 SD, n = 4), which was slightly lower than the recommended the well-accepted JMC-475 value of

0.282160. Hence, all measured ¹⁷⁶Hf/¹⁷⁷Hf ratios of silicate samples were normalized to the well-accepted JMC-475 value of 0.282160.^{9, 12, 36, 41, 44}

3. Results and discussion

3.1 Separation protocol using tandem columns

To avoid matrix and isobaric interference effects, efficient chemical separation of Sr, Nd, Pb, and Hf from silicate samples is required. Previous studies^{25, 27} have revealed that the Sr Spec resin is an excellent resin for separating Sr and Pb from rock matrix solution. In relatively strong concentrations (\geq 3M) of HNO₃ acid, ^{4, 19, 27} Sr and Pb are retained in Sr Spec resin and few matrix elements are retained. Similarly, the selectivity of TODGA spec resin^{40, 43} allows the efficient separation of Hf, LREEs, and HREEs from complex rock matrixes using HNO₃ or HCl. In different concentrations of HNO₃ or HCl acid, Ca, Fe, Ti, LREEs, HREEs, and Hf are variably retained in TODGA Spec resin.⁴³ Hence, it is possible to separate Sr, Nd, Pb, and Hf fractions from silicate matrix solution in sequence using the tandem columns separation procedure, as long as further optimization of both Sr Spec and TODGA Spec resins is undertaken as described below.

To obtain strong absorption of Hf in TODGA Spec resin, TODGA Spec resin is commonly preconditioned⁴⁰ using a mixture of $HNO_3 + H_3BO_3$. To obtain the best yield of Sr and Pb, previous investigations have documented that the Sr and Pb can be strongly retained in Sr Spec resin in pure HNO_3 acid media rather than the mixture of $HNO_3 + H_3BO_3$. Thus, the question whether or not the Sr and Pb can be also strongly

retained in the Sr Spec resin in the mixture of HNO₃ + H₃BO₃ media is unclear. To directly address this issue, 100 mg of BCR-2 in 1 mL of mixture of 3.5M HNO₃ + 0.23M H₃BO₃ was loaded into the Sr Spec resin column and all fractions from the loading sample and the washing columns were collected. Before back-extracted Sr and Pb factions, only ~10 % of Sr and ~7 % of Pb were lost. Thus, in contrast to pure HNO₃ acid media, the yield of Sr using a mixture of 3.5M HNO₃ + 0.23M H₃BO₃ loading seems slightly low. Considering conventional silicate sample digestion size (\geq 100 mg), it is easy to obtain a sufficient sample size (\geq 50 ng) of Sr and Pb for TIMS measurements. Hence, a slightly low yield of Sr is acceptable for TIMS measurements.

The order of the resin setup is a crucial consideration. It is similar to the scheme presented by Pourmand⁴⁶ which is devised to purify Sr-Nd-Hf. Pourmand⁴⁶ employs a special vacuum box equipped with a pneumatic pressure regulator to perform Sr-Nd-Hf chemical separation and give a quick eluting speed. In our case, it is no need to prepare a special vacuum box because the eluting speed in our column with a 5mm internal diameter is quick and all operations are convenient. As shown in Figure 1, our columns containing 0.40 mL of Sr Spec and 0.80 mL of TODGA Spec resins were used as the top and bottom layers, respectively. By reversing the setup order of the Sr Spec and TODGA Spec resins, Pb passed through the TODGA Spec resin and was retained into the Sr Spec resin column. However, Sr and Ca are first absorbed on the TODGA Spec resin. In order to wash out Sr from the TODGA Spec rein, at least, 10 mL of high concentration (≥ 10 M) of HNO₃ should be employed.

Then, Sr is retained into the Sr Spec resin. However, some matrix elements (Ca, Fe) are also gradually washed out from TODGA Spec resin and absorbed into the Sr Spec resin. In order to obtain high purity Sr and Pb, more HNO₃ acid should be used to eliminate these matrix element effects. Hence, an imperfect column setup will result in a long chemical procedure for Sr and Pb separation and rising procedure blanks of Sr and Pb.

The concentration of HNO₃ is crucial as the main eluting reagent. Strong HNO₃ acid is necessary to strongly retain Sr-Pb on the Sr Spec resin, and Hf-Nd on the TODGA Spec resin. Hence, using strong HNO₃ acid as the loading and rinsing reagent is crucial to obtain a high yield of Sr, Nd, Pb and Hf. However, strong HNO₃ acid hamper the rinsing of Ti and Fe from the TODGA Spec resin due to the fact that the distribution coefficient (K_d) value of Ti and Fe is significant elevated with increasing concentration of HNO₃.⁴³ Hence, to quickly wash out Ti and Fe from TODGA Spec resin, several HNO₃ concentrations (e.g., $3\sim5$ M) were tested to check which concentration of HNO₃ acid shows the best performance to remove the matrix elements. After many experimental analyses, we found that moderately strong concentration (3.5 M) of HNO₃ is most suitable to quickly remove Fe and Ti before back-extraction of Nd and Hf from TODGA Spec resin.

In addition, a mixture of HF +HNO₃ acid was employed as eluting reagent in previous investigations $^{40, 43}$ to get a satisfactory yield of Hf and back-extract Hf quickly. These studies recommend weak HF (0.2~0.5 M) acid as the eluting reagent for stripping Hf from TODGA Spec resin. However, our study shows that a large

eluting volume is required to achieve a high yield of Hf when using weak HF $(0.2 \sim 0.5 \text{M})$ acid. To give a quick eluting Hf. Pourmand⁴⁶ employ a hot mixture solution (1M HNO₃ + 0.2M HF) as eluting reagent. In spite of good yield of Hf is obtained, the mixture solution must be preheated to 70°C and eluting Hf step should be performed in ambient temperature of 90°C. Hence, it is inconvenient and unfriendly for most users who need pre-heat eluting reagent and keep a good temperature control for eluting solution (70°C) and ambient (90°C) in a special vacuum box. Hence, it is necessary to search the most suitable eluting reagent for Hf from TODGA resin. The effect of variation proportion of HNO₃ versus HF in the mixture, such as 3.5M HNO₃ + 0.3 M HF, 3.5M HNO₃ + 0.5 M HF, 3.5M HNO₃ + 1 M HF, 4.5M HNO₃+ 0.5 M HF and 4.5M HNO₃ + 1 M HF, on the yield of Hf and back-extraction of Hf were further examined. This study showed that the 3.5M HNO₃+ 1 M HF mixture is the optimal eluting reagent to obtain a satisfactory yield and purity of Hf. Thus, the concentration of HF acid in the mixture of HNO₃+HF should be higher than 1M otherwise it is difficult to elute Hf quickly.

Journal of Analytical Atomic Spectrometry Accepted Manuscript

3.2 Purity, recovery, blank and memory effect

To investigate the behavior of matrix and trace elements retained in the tandem columns, a basalt standard (BCR-2) was employed. A 100 mg aliquot of BCR-2 was dissolved and loaded onto the tandem columns. Strontium, Pb, Hf and Nd fractions were collected following the procedure described in Table 1. Semi-quantitative trace element analyses were performed using a Thermo Fisher Element-XR ICP-MS. Strontium, Pb and Hf fractions showed very high sample purity. Lanthanum, Ce, Pr,

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Sm were also co-existed in Nd fraction. In spite of the ¹⁴⁴Sm isobaric interference exists in TIMS analysis, it is easy to correct using our previously reported method.¹⁸

In summary, the yield of Sr, Nd, Pb and Hf fractions was good at 89.8 %, 98.2 %, 93.4 %, and 97.3 %, respectively. Procedural blanks are crucial for accurate Sr-Nd-Pb-Hf isotope analysis. In this study, blank values of 30~40, 50~60, 110~130, and 55~65 pg were obtained for Sr, Nd, Pb, and Hf, respectively. Bearing in mind that amounts of analytes processed were 1.3~7.9 µg for Sr, 0.3~3.4 µg for Nd, 0.15~3.1 µg for Pb, 0.08~0.6 µg for Hf, respectively, the contribution of analytical contamination to the separated analytes was negligible. Previous studies show significant memory effect when re-using Sr Spec resin.^{5, 25} To eliminate the "memory effect" and obtain the lowest blank, fresh Sr and TODGA Spec resins are recommended to use especially for samples with low concentration of Sr, Nd, Pb, Hf.

3.3 Validation of the method and final results

To examine the analytical reproducibility and feasibility of our procedure for silicate samples, eight CRMs were selected to encompass a wide range of matrix compositions, and analyte concentrations were determined. During Sr, Nd and Hf isotope analyses, as shown in Table 3, the ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf ratios of all analyzed USGS and GSJ reference materials were obtained with an internal precision better than 0.005 % (2 RSE), most internal precision was better than 0.003 % (2 RSE). For Pb isotope analysis, as shown in Table 4, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb ratios of all analyzed USGS and GSJ reference materials were obtained were obtained

Journal of Analytical Atomic Spectrometry

with an internal precision better than 0.01 % (2 RSE). Average values of ⁸⁷Sr/⁸⁶Sr,
¹⁴³Nd/¹⁴⁴Nd, ¹⁷⁶Hf/¹⁷⁷Hf, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb in the present study agreed well with previously published data<sup>4-7, 10-14, 16, 18, 20-22, 24-26, 28-32, 35, 36, 39-41, 44
obtained using TIMS or MC-ICP-MS. Currently the reference value of the ¹⁷⁶Hf/¹⁷⁷Hf ratio of JG-1a is not available. In this study, we provide the first the high precision
¹⁷⁶Hf/¹⁷⁷Hf value for JG-1a.
</sup>

During ¹⁴³Nd/¹⁴⁴Nd ratio determination, the analyte was a LREEs mixture instead of high-purity Nd. Thus, to further examine whether ¹⁴⁴Sm can be accurately subtracted from mixed signals of 144(¹⁴⁴Sm+¹⁴⁴Nd), the ¹⁴⁵Nd/¹⁴⁴Nd ratio of silicate samples was also measured and corrected following the previously reported method¹⁸. As shown in Table 3 and Fig 2, the corrected ¹⁴⁵Nd/¹⁴⁴Nd value is 0.348406 \pm 0.000006 (2 SD, n = 22) in actual silicate samples, which agrees well with reported values of 0.348405 \pm 0.000015.^{4-6, 11, 17, 18, 20, 22} The obtained data imply that the ¹⁴⁴Sm isobaric interference can be accurately subtracted.

The BCR-2 CRM has an excellent homogeneity and is widely used to monitor the quality of chemical procedures and the instrumental status in many geochemical laboratories. Hence, in this study, we employed BCR-2 to verify the stability of the procedure. The reproducibility was demonstrated by eight different dissolutions of BCR-2 powder materials. As shown in Table 3, eight replicate measurements of BCR-2 yielded a ⁸⁷Sr/⁸⁶Sr value of 0.705004 \pm 0.000018 (2 SD), a ¹⁴³Nd/¹⁴⁴Nd value of 0.512630 \pm 0.000010 (2 SD), and a ¹⁷⁶Hf/¹⁷⁷Hf value of 0.282871 \pm 0.000014 (2 SD). Strontium, Nd and Hf isotope data of BCR-2 were thus consistent with reported

values.^{5, 6, 11, 12, 17, 18, 20-22, 34-36, 40} The external reproducibility of the ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd, and ¹⁷⁶Hf/¹⁷⁷Hf ratios of BCR-2 were better than \pm 0.0026 % (2 RSD), \pm 0.0020 % (2 RSD), and \pm 0.0049 % (2 RSD), respectively. As shown in Table 4, eight replicate measurements of BCR-2 yielded ²⁰⁶Pb/²⁰⁴Pb value of 18.758 \pm 0.006 (2 SD), ²⁰⁷Pb/²⁰⁴Pb value of 15.624 \pm 0.004 (2 SD) and ²⁰⁸Pb/²⁰⁴Pb value of 38.721 \pm 0.013 (2 SD). Pb isotope data of BCR-2 were consistent with the reported values.^{5, 11, 26, 29, 31} The external reproducibility of ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb from BCR-2 was 0.027~0.034 % (2 RSD).

Overall, the data reproducibility and precision of the proposed method is satisfactory and completely fills the demands of geochemistry and petrology.

4. Conclusions

A rapid and robust tandem chemical separation procedure was developed for measuring ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd, ¹⁷⁶Hf/¹⁷⁷Hf, ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, and ²⁰⁸Pb/²⁰⁴Pb isotope ratios in the same sample digest. Sr, Pb, and Nd, Hf were sequentially separated from the same rock matrix solution using tandem columns packed with Sr Spec resin and TODGA Spec resin without the need for intervening evaporation. The chemical separation scheme is based on the enhanced elemental selectivity permitted by the Sr Spec and TODGA Spec resins. The proposed separation procedure achieved both the satisfactory and rapid separation of Sr, Pb, Nd, and Hf and reduced cross-contamination, thereby offering significant advantages over existing methods in terms of simplicity, separation efficiency and waste reduction. High separation performance was examined by analysing a series of reference silicate rock samples. The bottleneck associated with sample preparation prior to TIMS and MC-ICP-MS

measurements can be significantly reduced using the new protocol.

Acknowledgements

We thank Professor S.A. Wilde (Curtin University) for constructive suggestions and proofreading. This work was jointly supported by the National Natural Science Foundation of China (grants 41373020, 41525012, 41273018) and the Australian Research Council (ARC) Future Fellowship (FT140100826).

References:

- 1. A. Zindler, Hart. S, Sciences., 1986, 14, 493-571.
- 2. S.R. Hart, Earth and Planetary Science Letters., 1988, 90, 273–296.
- 3. A.W. Hofmann, Nature., 1997, 385, 219-229.
- 4. C. Pin, A. Gannoun, A. Dupont, J. Anal. At. Spectrom., 2014, 26, 2012–2022.

Journal of Analytical Atomic Spectrometry Accepted Manuscript

- C.F. Li, Z.Y. Chu, J.H. Guo, Y.L. Li, Y.H. Y, X.H. Li, Anal. Methods., 2015, 7, 4793–4802.
- C.F. Li, J.H. Guo, Y.H. Yang, Z.Y. Chu, X.C. Wang, J. Anal. At. Spectrom. 2014, 29, 1467–1476.
- D. Weis, B. Kieffer, C. Maerschalk, W. Pretoriun, J. Barling. Geochemistry Geophysics Geosystems. 2005, 6Q02002, doi: 10.1029/2004GC000852.
- B.N. Nath, A. Makishima, J. Noordmann, R. Tanaka, E. Nakamura, Geochem. J., 2009, 43, 207–216.
- 9. A. Makishima, E. Nakamura, Geochem. J., 2008, 42, 199–206.
- 10. A. Makishima, B. N. Nath, E. Nakamura, Geochem. J., 2008, 42, 237–246.
- 11. D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. D. Jong, G. A. Williams, D.

Hanano, W. Pretorius, N. Mattielli, J. S. Scoates, A. Goolaerts, R. M. Friedman and J. B. Mahoney, Geochem. Geophys. Geosyst., 2006, 7Q08006 doi: 10.1029/2006GC001283.

- Y.H. Yang, H.F. Zhang, Z.Y. Chu, L.W. Xie, F.Y. Wu, Int. J. Mass Spectrom.
 2010, 290, 120–126.
- Y. Orihashi, J. Maeda, R. Tanaka, R. Zeniya, K. Niida, Geochem. J., 1998, 32, 205–211.
- 14. T. Miyazaki, K. Shuto, Geochem. J., 1998, 32, 345-350.
- M. Griselin, J.C.V. Belle, C. Pomies, P.Z. Vroon, M.C.V. Soest, G.R. Davies, Chem. Geol., 2001, 172, 347–359.
- 16. T. Shibata, M. Yoshikawa, Y. Tatsumi, Front. Res. Earth. Evol. 2003, 1, 363-367.
- 17. Y.H. Yang, F.Y. Wu, L.W. Xie, Y.B. Zhang, Anal. Lett., 2010, 43, 142–150.
- C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, J. Anal. At. Spectrom., 2011, 26, 2012–2022.
- 19. C. Pin, D. Briot, C. Bassin, F. Poitrasson, Anal. Chim. Acta., 1994, 298, 209-217.
- C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li. L.J. Feng, Z.Y. Chu, Anal. Chem.,
 2012, 84, 6040–6047.
- Z. Y. Chu, F. K. Chen, Y. H. Yang, J. H. Guo, J. Anal. At. Spectrom., 2009, 24, 1534–1544.
- C.F. Li, X.H. Li, Q.L. Li, J.H. Guo, X.H. Li, Y.H. Yang, Anal. Chim. Acta., 2012, 727, 54–60.
- E. P. Horwitz, M. L. Dietz, S. Rhoads, C. Felinto, N. H. Gale, J. Houghton, Anal. Chim. Acta., 1994, 292, 263–273.

1
2
2
3
4
5
6
7
0
8
9
10
11
12
12
13
14
15
16
17
12
10
19
20
21
22
23
24
24 05
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
30
10
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
55
56
57
58
59
60
00

24. J.D. Woodhead, F. Volker, and M.T. McCulloch, Analyst., 1995, 120, 35-39.
25. K. Misawa, F. Yamazaki, N. Ihira, N. Nakamura, Geochem. J., 2000, 34, 11-21.
26. J. D. Woodhead, J. M. Hergt, Geostand. Newslett., 2000, 24, 33-38.
27. C. Deniel, C. Pin, Anal. Chim. Acta., 2001, 426, 95-103.
28. T. Kuritani, E. J. Nakamura, Chem.Geol., 2002, 186, 31-43.
29. H.K. Li, Y.L. Niu, Acta Geologica Sinica., 2003, 77, 44–58.
30. M. Tanimizu, T. Ishikawa, Geochem. J., 2006, 40, 121-133.
31. J. Baker, D. Peate, T. Waight, C. Meyzen, Chem. Geol., 2004, 211, 275-303.
32. M. Hattori, Y. Takaku, T. Shimamura, Bunseki Kagaku., 2008, 57, 113-121.
33. X.J. Yang, C. Pin, Anal. Chem., 1999, 71, 1706–1711.
34. B. Lefvre, C. Pin, Anal. Chem., 2001, 73, 2453–2460.
35. N.C. Chu, R.N. Taylor, V. Chavagnac, R.W. Nesbitt, R.M. Boella, J.A. Milton,
C.R. German, G. Bayon, K. Burton, J. Anal. At. Spectrom., 2002, 17, 1567–1574.
36. M. Bizzarro, J.A. Baker, D. Ulfbeck, Geostand. Newslett., 2003, 27, 133-145.
37. D. Ulfbeck, J. Baker, T. Waight, E. Krogstad, Talanta., 2003, 59, 365-373.
38. B. Lefvre, C. Pin, Anal. Chim. Acta., 2005, 543, 209-221.
39. T. Hanyu, S. Nakai, R. Tatsuta, Geochem. J., 2005, 39, 83-90.
40. J.N. Connelly, D.G. Ulfbeck, K. Thrane, M. Bizzarro, T. Housh, Chem.Geol.,
2006, 233, 126–136.
41. Y.H. Lu, A. Makishima, E. Nakamua, J. Anal. At. Spectrom., 2007, 22, 69-76.
42. R. Shinjo, Y. Ginoza, D. Meshesha, Journal of Mineralogical and Petrological
Sciences., 2010, 105, 297–302.
43. A. Pourmand, N. Dauphas, Talanta., 2010, 81, 741-753.
21

44. Y.H. Yang, F.Y. Wu, S.A. Wilde, L.W. Xie, Int. J. Mass Spectrom., 2011, 299,

47-52.

45. S.J.G. Galer, Chem.Geol., 1999, 157, 255-274.

46. A. Pourmand, J.M. Prospero, A. Sharifi, Geology., 2014, 42, 675-678.

Figure captions

Fig 1. Tandem column separation scheme in this study compared with the traditional

four columns separation procedure

Fig 2. Corrected ¹⁴⁵Nd/¹⁴⁴Nd ratios for silicate rock from USGS and GSJ.

2		
3 ⊿		
5		
6		
/ 8		
9		
10		
11 12		
13		
14 15		
16		
17		
18 19		
20		
21		
22		
24		
25 26		
20 27		
28		
29 30		
31		
32		
33 34		
35		
36 37		
38		
39 40		
40 41		
42		
43 44		
45		
46 47		
47 48		
49		
50 51		
52		
53		
54 55		
00		

1

Table 1. The separation scheme enabling the successive isolation of Sr, Pb, and Nd, Hf by tandem extraction chromatography without intervening evaporations.

Procedure	Reagents	Eluting Volume(mL)
Tandem column pre-cleaning and	l sample loading	
Cleaning column	7M HNO ₃	10
Cleaning column	Millipore water	5
Pre-conditioning column	3.5M HNO ₃ +0.23M H ₃ BO ₃	5
Sample loading	3.5M HNO ₃ +0.23M H ₃ BO ₃	1
Rinsing matrix	3.5M HNO ₃	2(0.5×4)
Decoupling Sr and Pb from the S	r Spec resin column	
Rinsing matrix	3.5M HNO ₃	3
Eluing Sr	0.05M HNO ₃	5.5
Eluing Pb	8M HCl	2
Decoupling Nd and Hf from the T	ГОDGA Spec resin column	
Rinsing matrix	3.5M HNO ₃	20
Rinsing matrix	12M HNO ₃	10
Eluing Hf	3.5M HNO ₃ +1M HF	25
Eluing LREEs enriched Nd	0.4M HCl	10
Rinsing Lu, Yb and other HREEs	0.04M HCl	10

Comment: The yield of Sr, Pb, Hf, and Nd is approximately 89.8 %, 93.4 %, 97.3 %, and 98.2 %, respectively.

Table	e 2.Cup	config	gurat	ion f	or Sr-Nd	-Pb isotop	e analy	sis using T	riton
plus	TIMS	and	for	Hf	isotope	analysis	using	Neptune	plus
MC-	ICP-MS								

Element	L4	L3	L2	L1	CC	H1	H2	Н3	H4
Sr			⁸⁴ Sr	⁸⁵ Rb	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr		
Nd	¹⁴³ Nd	144Nd+144Sm	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁹ Sm			
Pb					²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	
Hf	¹⁷² Yb	¹⁷³ Yb	¹⁷⁵ Lu	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	$^{180}\mathrm{Hf}$	¹⁸² W

CRMs	⁸⁷ Sr/ ⁸⁶ Sr	Refs values	¹⁴⁵ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	Refs values	¹⁷⁶ Hf/ ¹⁷⁷ Hf	Refs value
	(±2 SE)		(±2 SE)	(±2 SE)		(±2 SE)	
BIR-1	0.703112(8)	0.703104 ⁴ ; 0.703105 ⁵	0.348409(4)	0.513099(7)	0.513078 ⁴ ; 0.513092 ⁵	0.283263 (14)	0.283288 ⁶ ; 0.283268 ³⁴
BIR-1	0.703090(12)	$0.703116^6; 0.703104^{22}$	0.348403(5)	0.513092 (8)	$0.513101^6; 0.513107^{21}$	0.283275 (14)	0.283277 ³⁶ ; 0.283265 ³
Mean	0.703101	0.703107	0.348406	0.513096	0.513095	0.283269	0.283275
JB-2	0.703678(10)	0.703675 ⁴ ;0.703691 ⁵	0.348405(4)	0.513098(6)	0.513094 ⁴ ; 0.513096 ⁵	0.283258 (8)	0.283246 ¹² ;0.283287 ³⁵
JB-2	0.703670(9)	$0.703671^{12}; 0.703668^{14}$	0.348405(5)	0.513100 (6)	$0.513102^{12}; 0.513090^{14}$	0.283238 (12)	0.283244 ⁴¹
Mean	0.703674	0.703676	0.348405	0.513099	0.513096	0.283248	0.283259
JB-3	0.703420(11)	0.703422 ⁴ ;0.703435 ⁵	0.348403(4)	0.513056(6)	0.513049 ⁴ ;0.513056 ⁵	0.283242 (10)	0.283223 ⁹ ;0.283222 ¹²
JB-3	0.703421(9)	0.703396 ¹² ;0.703432 ¹³	0.348405(5)	0.513058 (6)	0.513064 ¹² ;0.513056 ¹³	0.283248 (8)	0.283249 ³⁹ ; 0.283223
Mean	0.703421	0.703421	0.348404	0.513057	0.513056	0.283245	0.283229
JA-3	0.704170(10)	0.704171 ⁵ ; 0.704160 ¹⁴	0.348405(5)	0.512850(5)	0.512846 ⁶ ;0.512859 ¹⁴	0.283082 (10)	0.283052 ⁶ ; 0.283084 ³
JA-3	0.704157(6)	0.704177 ²²	0.348409(4)	0.512860 (6)	$0.512859^{20}; 0.512852^{22}$	0.283088 (8)	$0.283063^{41}; 0.283067^{41}$
Mean	0.704164	0.704169	0.348407	0.512855	0.512854	0.283085	0.283067
JG-1a	0.710951(10)	0.710981 ¹³ ; 0.710970 ¹⁴	0.348411(5)	0.512376(7)	0.512365 ¹³ ; 0.512383 ¹⁴	0.282741 (10)	No data
JG-1a	0.710975(11)		0.348405(4)	0.512384 (6)	0.512374 ¹⁸	0.282736 (8)	
Mean	0.710963	0.704175	0.348408	0.512380	0.512374	0.282739	
3HVO-2	0.703466(11)	0.703479 ⁵ ;0.703487 ¹¹	0.348407(4)	0.512979(6)	0.512984 ¹¹ ;0.512983 ²⁰	0.283110 (8)	0.283096 ⁷ ; 0.28311

Table 3 Comparison of Sr Nd and Hf isotonic ratios in this study with reported values for CPMs

BHVO-2	0.703470(8)	0.703479 ²²	0.348405(4)	0.512987(5)	0.512988 ²² ; 0.512978 ¹⁷	0.283106 (8)	0.283105 ⁴² ; 0.283094 ⁴⁴
Mean	0.703468	0.703482	0.348406	0.512983	0.512983	0.283108	0.283103
		<i>.</i>					
AGV-2	0.703977(12)	0.703979 ⁵ ; 0.703981 ¹¹	0.348403(4)	0.512794(7)	0.512788 ⁵ ; 0.512791 ¹¹	0.282984 (8)	0.282966 ¹² ,0.282961 ⁴²
AGV-2	0.703965(12)	0.703978^{12}	0.348405(4)	0.512789(6)	$0.512781^{12}; 0.512797^{20}$	0.282976 (8)	
Mean	0.703971	0.703979	0.348404	0.512792	0.512789	0.282980	0.282964
BCR-2	0.704997 (11)	0.705015^5 ; 0.705010^6	0.348409(4)	0.512633(6)	0.512635 ⁵ ; 0.512634 ⁶	0.282877 (10)	$0.282885^6; 0.282877^{12}$
BCR-2	0.704999(12)	$0.705018^{11}; 0.705023^{12}$	0.348406(5)	0.512633(6)	$0.512637^{11}; 0.512640^{12}$	0.282880 (10)	$0.282884^{34}; 0.282859^{35}$
BCR-2	0.705010(11)	0.705026^{22}	0.348404(4)	0.512630(6)	$0.512638^{17}; 0.512636^{18}$	0.282876 (10)	$0.282875^{36}; 0.282869^{40}$
BCR-2	0.705004(10)		0.348408(4)	0.512627(6)	$0.512638^{20}; 0.512641^{21}$	0.282873 (12)	
BCR-2	0.705000(11)		0.348412(5)	0.512630(7)	0.512636 ²²	0.282862 (12)	
BCR-2	0.705005(10)		0.348405(4)	0.512634(6)		0.282870 (13)	
BCR-2	0.705023(11)		0.348406(5)	0.512622(6)		0.282863 (10)	
BCR-2	0.704995(13)		0.348407(4)	0.512629(5)		0.282865 (14)	
Mean ± 2 SD	0.705004(18)	0.705018	0.348407(5)	0.512630(10)	0.512637	0.282871 (14)	0.282875

	²⁰⁶ Pb/ ²⁰⁴ Pb	Reported values	²⁰⁷ Pb/ ²⁰⁴ Pb	Reported values	²⁰⁸ Pb/ ²⁰⁴ Pb	Reported values
CRMs	(±2 SE)		(±2 SE)		(±2 SE)	
BIR-1	18.8566(6)	18.8533 ⁴ ; 18.841 ⁵	15.6484(6)	15.6585 ⁴ ; 15.655 ⁵	38.4901(17)	38.4968 ⁴ ; 38.484 ⁵
BIR-1	18.8586(5)	18.842 ²⁹ ; 18.851 ³¹	15.6534(4)	15.641 ²⁹ ; 15.662 ³¹	38.5040(12)	38.449 ²⁹ ; 38.501 ³¹
Mean	18.8576	18.847	15.6509	15.654	38.4970	38.483
JB-2	18.3478(5)	18.3428 ⁴ ; 18.341 ⁵	15.5469(4)	15.5594 ⁴ ; 15.560 ⁵	38.2669(11)	38.2770 ⁴ ; 38.267 ⁵
JB-2	18.3495(6)	18.3436 ³⁰ ;18.3416 ³²	15.5513(6)	15.5624 ³⁰ ;15.5658 ³²	38.2726(16)	38.2786 ³⁰ ; 38.276 ³²
Mean	18.3487	18.342	15.5491	15.562	38.2698	38.275
JB-3	18.2993(7)	18.2952 ⁴ ; 18.290 ⁵	15.5259(6)	15.5356 ⁴ ; 15.531 ⁵	38.2442(16)	38.2506 ⁴ ; 38.232 ⁵
JB-3	18.3001(4)	18.2958 ³⁰ ; 18.2910 ³²	15.5257(4)	15.5389 ³⁰ ; 15.5403 ³²	38.2440(9)	38.2540 ³⁰ ; 38.250 ³²
Mean	18.2997	18.293	15.5258	15.536	38.2441	38.247
JA-3	18.3359(5)	18.3290 ³⁰ ; 18.3263 ³²	15.5585(5)	15.5701 ³⁰ ; 15.5719 ³²	38.4257(15)	38.4282 ³⁰ ; 38.428 ³²
JA-3	18.3355(4)		15.5561(4)		38.4170(10)	
Mean	18.3357	18.328	15.5573	15.571	38.4213	38.428
JG-1a	18.6223(3)	18.6177 ³⁰ ; 18.6442 ³²	15.6140(3)	15.6265 ³⁰ ; 15.6257 ³²	38.7793(7)	38.7425 ³⁰ ; 38.761 ³²
JG-1a	18.6240(4)		15.6123(3)		38.7421(8)	
Mean	18.6231	18.631	15.6131	15.626	38.7607	38.752
BHVO-2	18.6765(6)	18.638 ⁴ ; 18.6474 ¹¹	15.5249(6)	15.539 ⁴ ; 15.5334 ¹¹	38.2513(18)	38.237 ⁴ ; 38.2367 ¹¹
BHVO-2	18 6278(6)	18.641^{26} . 18.640^{31}	15 5580(6)	$15538^{26} \cdot 15540^{31}$	29 2751(22)	28 22826. 28 24031

Table 4.	Comparison	of Pb isotopi	c ratios in	this study	with reported	l values for	CRMs
	1	1		e e	1		

Mean	18.6522	18.644	15.5419	15.538	38.2632	38.238
AGV-2	18.8781(4)	18.869 ⁵ ; 18.8474 ¹¹	15.6116(3)	15.620 ⁵ ; 15.6173 ¹¹	38.5497(8)	38.540 ⁵ ; 38.5443 ¹¹
AGV-2	18.8784(4)	18.879 ²⁹ ; 18.873 ³¹	15.6111(4)	15.618 ²⁹ ; 15.617 ³¹	38.5477(9)	38.547 ²⁹ ; 38.552 ³¹
Mean	18.8783	18.867	15.6114	15.618	38.5487	38.546
BCR-2	18.7546(4)	18.752 ⁵ ;18.7529 ¹¹	15.6247(3)	15.620 ⁵ ;15.6249 ¹¹	38.7207(8)	38.715 ⁵ ;38.7237 ¹¹
BCR-2	18.7587(3)	18.750 ²⁶ ; 18.760 ²⁹	15.6225(2)	15.615 ²⁶ ; 15.621 ²⁹	38.7204(6)	38.691 ²⁶ ; 38.731 ²⁹
BCR-2	18.7568(4)	18.765 ³¹	15.6241(3)	15.628 ³¹	38.7160(9)	38.752 ³¹
BCR-2	18.7631(3)		15.6234(2)		38.7200(6)	
BCR-2	18.7613(4)		15.6241(3)		38.7261(7)	
BCR-2	18.7587(4)		15.6244(3)		38.7332(7)	
BCR-2	18.7549(3)		15.6207(3)		38.7109(8)	
BCR-2	18.7595(4)		15.6266(3)		38.7228(8)	
Mean ± 2 SD	18.758(6)	18.760	15.624(4)	15.622	38.721(13)	38.723