JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

The approach combines the advantages of microwave and dynamic extraction technique, and up to five samples can be treated.

2
3
1
4
5
6
7
8
9
10
10
10
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
20
26
27
28
29
30
21
31
32
33
34
35
36
37
20
38
39
40
41
42
43
Δ <i>Λ</i>
74 15
40
46
47
48
49
50
51
50
52
53
54
55
56
57
58
50
59
60

22

1

1	Multi-throughput dynamic microwave-assisted leaching coupled with
2	inductively coupled plasma atomic emission spectrometry for heavy
3	metal analysis in soil
4	Jiahui Zhao ^a , Xu Yan ^a , Tianyu Zhou ^a , Jing Wang ^a , Huiyu, Li ^a , Ping Zhang ^a , Hong
5	Ding ^b , Lan Ding ^a *
6	^a College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR
7	China
8	^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of
9	Chemistry, Jilin University, Changchun 130012, PR China
10	
11	Abstract
12	A rapid and simple multi-throughput dynamic microwave-assisted leaching
13	combined with inductively coupled plasma atomic emission spectrometry
14	determination has been proposed for the simultaneous determination of Cu, Mn, Zn
15	and Pb in soil. The approach combines the advantages of microwave and dynamic
16	leaching technique, and up to five samples could be treated at the same time within 15
17	min. Nitric acid aqueous solution (20%, w/w) was employed as leachant at the flow
18	rate of 1.5 mL min ⁻¹ . The leaching condition was optimized systematically and the
19	leaching efficiencies were above 95% for Cu, Mn, Zn, Pb and lower for Cr, Cd, Ni
20	and Co, compared to the conventional method. The leaching efficiencies of Cr, Cd, Ni,
21	Co could be enhanced to above 60% when a soak progress was appended. Relative

standard deviations of intra- and inter-day of Cu, Mn, Zn, Pb were in the range of

1

23	1.7-6.3% and 5.0-6.9%, respectively. The proposed method was more rapid than
24	conventional digestion method and could be an alternative approach for the analysis
25	of heavy metals in complex solid samples. The relatively closed system may have a
26	broad prospect for leaching volatile elements, such as As, Se and Hg if combined with
27	compatible detecting instrumentation.
28	
29	Keywords: Dynamic microwave-assisted leaching, Soils, Heavy metals, Inductively
30	coupled plasma atomic emission spectrometry
31	
32	
33	
34	* Corresponding author.
35	Phone: +86-431-85168399.
36	Fax: +86-431-85112355.
37	E-mail: dinglan@ jlu.edu.cn
38	
39	1. Introduction
40	Heavy metal contamination is considered as one of the most important
41	environmental issues. Heavy metals accumulate in soils due to their utilization in
42	fertilizers, pesticides, plastic products, industrial wastes and mine area, etc. ¹⁻⁴ The
43	presence of heavy metals in soils may result in bioaccumulation in the food chain and
	 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

44 cause serious problems to human health. $^{5-8}$

Among the various analytical techniques used for heavy metal analysis, atomic absorption spectrometry (AAS),⁹ inductively coupled plasma atomic emission spectrometry (ICP-AES)^{10,11} and inductively coupled plasma mass spectrometry (ICP-MS)^{12,13} are the most common techniques because of their good selectivity and sensitivity. The analysis of heavy metals in soil is a challenging topic, since the metals combined with high inorganic fraction in soil lattice are difficult to bring into solution for instrumental detection. Conventional wet digestion procedure which decomposes soils with agua regia on a hotplate is time-consuming and tedious. The procedure has the loss hazard of volatile elements and high potential contamination to atmosphere due to the acid evaporation in the open system.^{14,15}

Since the 1980s, microwave-assisted digestion (MAD) in closed vessels has been widely used due to its advantages over conventional procedures, including reduced loss risks, relatively less reagent and time consumption.^{16,17} Many publications¹⁶⁻¹⁹ have introduced the application of MAD to the digestion of heavy metals in soils, while the MAD procedure still has some drawbacks. Concentrated acids are still used during the procedure. When the digestion process is finished, the vessels must be cooled to room temperature before opening in case of danger. The digestion solution obtained needs to be treated with acid evaporation, centrifugation and filtration process before the subsequent determination, which lead to the complexity of the operation and cause the increase of sampling time and environment contamination due to acid evaporation. Hence, it is necessary to propose a new, rapid and eco-friendly preparation method for the analysis of heavy metals in soil.

67	Microwave-assisted continuous leaching ²⁰ has been developed to leach cadmium
68	and lead from leaves, as well as extractable arsenic from soils with sample throughput
69	of not more than two, during which acid aqueous solution was used as leachant under
70	microwave irradiation for 10-15 min. ^{21,22} Despite the advantages of minimal time
71	consumption and simplification for sample preparation, the microwave assisted
72	leaching techniques have the drawback of relatively low throughput compared to
73	high-pressure MAD technique ²³ . Dynamic microwave-assisted extraction (DMAE) of
74	organic pollutants from soils has been developed coupled with other enrichment
75	technique. ²⁴ The DMAE can reduce the total analysis time and increase throughput of
76	complex solid samples with simpler operation. But as far as we know, it has not been
77	used to the leaching of heavy metals in soil.
78	In this work, we proposed a multi-throughput dynamic microwave-assisted

leaching (MTDMAL) method combining the advantages of microwave²⁵ and dynamic leaching technique²⁶ with five soil samples treated simultaneously. The MTDMAL method has been successfully applied to the analysis of Cu, Mn, Zn and Pb in soils. The nitric acid aqueous solution was used as leachant, then the leachates were centrifugated and diluted before ICP-AES determination, instead of the cumbersome step of acid-evaporation, transfer, and filtration. The experiment parameters such as microwave power, kinds and concentrations of leachants, soil particle size and collection volume were optimized. As a consequence, the obtained contents of Cu, Mn, Zn and Pb in soils are comparable with those of conventional digestion procedure under the optimized conditions. The system may have a broad prospect for leaching

Journal of Analytical Atomic Spectrometry Accepted Manuscript

volatile elements from soil, such as As, Se and Hg, if combined with compatible detecting instrumentation. 2. Experimental 2.1. Apparatus An inductively coupled plasma atomic emission spectrometry (OPTIMA 3300DV, PerkinElmer, America) is equipped with a pneumatic nebulizer, a baffled Scott spray chamber, a quartz torch with a quartz injector tube (2 mm i.d.). The entire system was controlled by PE ICP Winlab software. The instrumental parameters were shown in Table 1. The MTDMAL system represented in Fig.1 was assembled in our laboratory, which was modified based on our previous work.²⁴ The system was placed in the fume hood and consisted of a vacuum pump (HPD-25, Anlt, China), a vacuum SPE manifold (PN WA/T 058833, Waters, America), a centrifuge (SC-3610, Keda, China) and a flat countertop domestic microwave oven (EM720KG1-PW, Midea, China) with a maximum power of 750 W. The cylinder column (polypropylene, 66.0 mm height, 12.7 mm i.d.) with corresponding polyethylene sieve plates (aperture: 20 µm) was used as the leaching vessel (volume: 6 mL), which was static in the whole experiment process. The upper ends and the bottoms of the leaching vessels were connected with the leachant containers and the ports of the vacuum SPE manifold by tubes (T_1 and T_2) (polyethylene, 500.0 mm long, 0.5 mm i.d.), respectively (Fig. 1). The centrifuge tubes (polypropylene, 105.0 mm height, 28.5 mm i.d.) were used as containers of leachant and leachate.

1	1	1		
I	I	I		

2.2. Reagents and standards

Ultrapure water (18.2 M Ω ·cm, Milli-Q system, Millipore, Billerica, MA, America) was used to prepare all the standard solutions and reagents. Quartz sand (0.710mm, G.R.), Nitric acid (65%, G.R.), Hydrochloric acid (37%, G.R.) from Beijing Chemical Works were used during the experiment process. The quartz sand was digested in aqua regia for 2 hours, and rinsed with ultrapure water to neutral, dried and stored in the desiccators.

The 1000 mg L⁻¹ single element stock reference solutions of Cu, Mn, Zn, Pb, Cr, Cd, Ni and Co (NCS, China Iron & Steel Research Institute Group, China) were used to prepare working analytical solutions by serial dilution in nitric acid aqueous solution (8%, w/w) for ICP-AES. The Certified Reference Material GBW07401-GSS-1 Soil (NRCCRM, Institute of Geophysical and Geochemical Exploration, China) and GBW 08303 Soil (NRCCRM, Beijing Municipal Environmental Monitoring Center, China) supplied by the National Research Center for Certified Reference Material (NRCCRM) were used for the method validation in Section 3.3. The former was dark brown earth from Xilin lead-zinc ore district in Heilongjiang Province of China, and the latter was polluted agricultural soil. All glassware and plastic materials used were soaked in nitric acid aqueous solution (10%, w/w) for 48 hours and rinsed with ultrapure water.

2.3. Sample collection and preparation

Journal of Analytical Atomic Spectrometry Accepted Manuscript

2
3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
20
24
25
26
27
28
29
30
31
22
3Z
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
41
48
49
50
51
52
53
54
55
55
56
57
58
59
60

1

133 Natural soil sample 1, 2 and 3 were collected from different places in Changchun 134 City, and sample 4, 5 and 6 were collected from different agricultural fields in Jilin 135 City. The natural soil samples (1-2 kg) were air-dried in fume cupboards and ground 136 to break down aggregates in a porcelain mortar. Then each kind of the samples was 137 divided into four parts, and sieved with nylon of different sieves to particle size of 149 μ m, 75 μ m, 53 μ m and 45 μ m, respectively. The sieved soils obtained were stored in 138 139 polyethylene bottles in desiccators at room temperature. The physical and chemical 140 properties of the natural soil samples were shown in Table 2.

141

142 **2.4. Procedure**

143 2.4.1 MTDMAL procedure

Firstly, 1.000 g soil sample was accurately weighed and mixed with 3 g quartz sand (used as dispersant agent). The mixture was transferred to the leaching vessel fitted with the sieve plate containing a layer of 2g quartz sand, and then the top of the leaching vessel was fitted with another sieve plate. Four samples and one blank were loaded with the same method and arranged systematically in the microwave oven, and connected with the leachant container and the ports of the vacuum SPE manifold by T_1 and T_2 (Fig. 1).

151 Subsequently, the vacuum pump was activated and leachant passed through the 152 leaching vessel. When the leachant was pumped into the leaching vessel thoroughly, 153 microwave irradiation was started with the power of 375 W. When the collection 154 volume was 20 mL, the microwave irradiation was stopped and 10 mL of ultrapure

water was pumped into the polyethylene tubes for rinse. The collected solution wasdiluted to 50 mL, and centrifuged before ICP-AES analysis.

157 2.4.2 Conventional digestion method

The conventional digestion procedure was based on standard method of China (NY/T 1613-2008). Accurately weighed 1.000g soil sample and 10 mL of concentrated nitric acid were transferred into triangular flask contained with a glass bead. The flask was heated to keep a slightly boiling state on hot plate until 7 mL left. Then 20 mL of concentrated hydrochloric acid was added to the flask. It was heated to keep a slightly boiling state for 2 h, and then the mixture was volatilized to wet salt state and 10 mL of ultrapure water was added. The mixture was fully transferred into a centrifuge tube and centrifuged for 2 min, and then diluted to 50 mL. The solution was finally analyzed by ICP-AES.

2.5. Leaching efficiencies

169 The conventional digestion procedure was regarded as reference to evaluate the 170 leaching efficiencies of the proposed MTDMAL method. The leaching efficiencies 171 were calculated using the following method:

172 Leaching efficiency(%) =
$$\frac{C_{\text{MTDMAL}}}{C_{\text{Reference}}} \times 100\%$$

 C_{MTDMAL} : metal content in soil obtained with MTDMAL method.

174 C_{Reference}: certified value of metal content in soil or those obtained with conventional

175 digestion procedure.

176 All the procedures were performed at least three times and the mean values were

177 reported.

3. Results and discussion

3.1 Optimization of the dynamic microwave system

181 3.1.1 Microwave radiation power

Microwave radiation accelerates the leaching process and the experimental results are as expected. It is found that microwave power has distinct effect on the leaching efficiencies of the heavy metals and larger microwave power is helpful to improve the leaching efficiencies. The effect of microwave power of 600 W and 750 W could not be evaluated, since the leachant cannot go through the sample vessel due to a fierce ebullition over the vessel. The leaching efficiencies of the heavy metals were too low at power of 75 W (not shown). The results indicate that the leaching efficiencies of the heavy metals with 375 W are better than 225W (Fig. 2A). Thus, the microwave power of 375 W was selected in the subsequent experiment.

191 3.1.2 Kinds and concentrations of leachants

The leachant should have enough oxidability and corrosivity to destroy soil lattice and release metal ions to the solution. Firstly, we investigated the effect of nitric acid aqueous solution, aqua regia aqueous solution and athwart aqua fortis aqueous solution as leachant. The results (Fig. 2B) demonstrated that the best leaching efficiencies of the heavy metals were achieved with nitric acid aqueous solution.

197 Furthermore, the effect of the concentration of nitric acid aqueous solution on the198 leaching efficiencies of the heavy metals was investigated. The experiments were

1	
2	
3	
1	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠ I 20	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
40 17	
+1 10	
40	
49	
50	
51	
52	
53	
54	
55	
56	
00	
5/	
58	
59	

performed with 20 mL of nitric acid aqueous solution (15–35%, w/w) and the results are shown in Fig. 2C. The leaching efficiencies of the heavy metals increase with the nitric acid concentration, and remain relatively constant when the concentration is above 20%. Therefore, nitric acid aqueous solution (20%, w/w) was chosen as leachant in the following experiment.

204 3.1.3 Particle size of soil samples

We investigated the influence of particle size of soil samples on the leaching efficiencies of the heavy metals. The soil samples with particle size of 149 μ m, 75 μ m, 53 μ m and 45 μ m were tested. The results (Fig. 2D) show that the higher leaching efficiencies followed with smaller particle size of soil samples, while the leachant couldn't go through swimmingly the soil samples with the particle size of 53 μ m and 45 μ m. In view of this regard, the soil samples with particle size of 75 μ m were selected in the experiment.

212 3.1.4 Collection volume

Under the certain flow rate, the leaching time depends on the collection volume, and we investigated the effect of the volume on the leaching efficiencies from 10 mL to 30 mL (Fig. 2E). The satisfactory results were obtained with collection volume of 20 mL and the leaching efficiencies remain relatively constant when the collection volume is above 20 mL. In consideration of less consumption of reagent and time, collection volume of 20 mL was finally selected, which can be completed in about 15 min.

220 3.1.5 Soak time

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
24
21
22
23
24
27
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
/1
+1
42
43
44
45
40
46
47
48
49
50
50
51
52
53
51
54
55
56
57
59
50
59
<u>^</u>

242

1

221	The leaching efficiencies of Cu, Mn, Zn and Pb were comparable with the
222	conventional method under the optimized condition, while the leaching efficiencies of
223	Cr, Cd, Ni and Co were relatively lower. In consideration of the shorter contact time
224	between the leaching reagent and the sample, a soak process using 1 mL of leachant
225	before MTDAML procedure was carried out with different soak time 0 h, 12 h, 24 h
226	and 48 h, respectively.
227	When the soak progress was appended, the leaching effect of Cr, Cd, Ni, Co
228	has certain extent enhancement by 10-50% in the studied samples. Under the soak
229	time of 48 h, it significantly improved the leaching efficiencies of Cr, Cd, Ni, Co from
230	43.9%, 38.8%, 64.9%, 79.7% to 73.1%, 91.4%, 85.9%, 87.4%, respectively (Fig. 2F).
231	As for Cu, Mn, Zn and Pb, the leaching efficiencies had no significant increase with
232	the soak progress. It indicated that the additional soak process supplied enough time
233	to destroy the soil lattice and facilitate the leaching of Cr, Cd, Ni and Co.
234	
235	3.2 Performance of the method
236	The limit of detection (LOD) and limit of quantitation (LOQ) were three times
237	and ten times the standard deviation (n=11) of the blank, respectively. The LODs of

Cu, Mn, Zn and Pb ranged from 0.0002 to 0.006 μ g ml⁻¹, and the LOQs ranged from 0.0007 to 0.02 μ g ml⁻¹ (Table 3), which was comparable with those in literature¹⁰. The linear correlation coefficients were higher than 0.99 for all the heavy metals in regression analysis.

Precisions were evaluated by measuring intra- and inter-day relative standard

2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
10
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
50
52 50
53
54
55
56
57
58
59
60

243	deviations (RSDs). The intra-day precision of the method was performed by analyzing
244	six identical samples in one day, and the inter-day precision was performed by
245	analyzing the samples once a day over six consecutive days. The RSDs of intra- and
246	inter-day were in the range of 1.7-6.3% and 5.0-6.9% for Cu, Mn, Zn and Pb,
247	respectively (Table 4), and comparable with those in literature. ^{10,21} The inadequate
248	dissolution resulted in the higher RSDs of Cr, Cd, Ni, Co under the proposed method.
249	The proposed method has two advantages: the less time consumption and
250	simplification of sample preparation versus MAD (15 min versus 1-2 h) ^{$16-19$} , the
251	higher throughput of sample versus microwave assisted leaching technique (five
252	versus two) ^{$20-22$} .

253

264

3.3 Validation and application of the proposed method

In order to evaluate the compatibility and accuracy of the proposed method, we analyzed the heavy metals in Certified Material GBW 07401-GSS-1 Soil and GBW 08303 Soil with the soak progress. The contents of the heavy metals in the certified soils obtained with the proposed method were compared with the certified values (Table 5).

The natural soil samples were employed to further validate the applicability of the method with the soak progress, and the results were compared with those of conventional digestion method. Obviously, the MTDMAL method was effective to leach Cu, Mn, Zn and Pb with leaching efficiencies above 95% for the studied samples, as shown in Table 6.

The leaching efficiencies of Pb in the studied soil samples were among

109.5%-132.1%, perhaps because the closed MTDMAL system avoided the volatilization loss of Pb caused by acid-evaporation process in the conventional method. It can be estimated that the system may be propitious to leach volatile elements from soil, such as As, Se and Hg. The leaching efficiencies of Zn in the natural soil samples were above 100%, and it agreed well with the results of the literature that microwave could improve the leaching efficiency of Zn^{27} .

The leaching effciencies of Cr, Cd, Ni and Co were still lower than the other metals' with an additional soak progress. The leaching efficiencies of Cd in Certified Material GBW 07401-GSS-1 and GBW 08303 were higher than that in the natural soil samples, perhaps it's due to the difference between the Certified Material and natural soil samples. We speculate that the leaching efficiency is in connection with the different speciation distributions of heavy metals in soils. The study about metal speciation in soil and sediment indicated that Cr, Cd, Co and Ni mainly existed in residue²⁸⁻³⁰, Cu, Mn, Zn and Pb mainly existed in acid extractable phase³¹⁻³⁴, which means the latter is easier to be dissolved than the former³⁵. In addition, the relatively lower leaching efficiencies of Cr, Ni are perhaps owing to the absence of HF in the leachant, which is insufficient to destroy the soil lattice as shown in the literature²⁷. All of the above reasons result in the lower leaching effciencies of Cr, Cd, Ni, Co compared with Cu, Mn, Zn and Pb in the studied soil samples.

4. Conclusion

In this study, a multi-throughput dynamic microwave-assisted leaching method

287	was first used for the leaching of heavy metals in soils, followed by ICP-AES
288	determination. A rapid and convenient determination of Cu, Mn, Zn and Pb in soil has
289	been realized under the optimized condition. The leaching efficiencies of Cr, Cd, Ni
290	and Co have certain enhancement with an additional soak progress. The whole
291	leaching process was performed in a closed system with nitric acid aqueous solution
292	used as leachant, thereby reducing risks of environmental pollution and volatilization
293	loss of Pb. The leachates were directly analyzed after centrifugation and dilution,
294	thereby simplify manual handling and decrease preparation time. In conclusion, the
295	main benefits of the proposed method are eco-friendly, less consumption of acid,
296	simplification of sample preparation in a short period. The method may have a broad
297	prospect for leaching volatile elements from soil such as As, Se and Hg if combined
298	with compatible detecting instrumentation.

Journal of Analytical Atomic Spectrometry Accepted Manuscript

301 Acknowledgments

- 302 This work was supported by the Development Program of the Ministry of Science and
- 303 Technology of Jilin Province, China (Grant number 20150204070GX).

306	References
307	1 J. Nouri, A. H. Mahvi and G. R. Jahed, Environ. Geol., 2008, 55, 1337–1343.
308	2 X. L. Cheng, H. L.Shi and C. D. Adams, Environ. Sci. Pollut. R., 2010, 17,
309	1323–1330.
310	3 S. Suthipong and S. Siranee, J. Environ. Manage., 2009, 90, 3283-3289.
311	4 W. J. Wang and A. Wu, Prog. Environ. Sci. Tech., 2007, 1, 1183–1187.
312	5 Myung Chae Jung, Sensors, 2008, 8, 2413–2423.
313	6 M. Habilaa and E. Yilmazb, J. Ind. Eng. Chem., 2014, 20, 3989–3993.
314	7 A. Waseem, J. Arshad and F. Iqbal, Biomed. Res. Int., 2014, 1076, 1–29.
315	8 R. Weber and B. Hrynczuk, <i>Nukleonika</i> , 2000, 45 , 137–140.
316	9 M. Zemberyova, J. Bartekova and M. Zavadska, Talanta, 2007, 71, 1661–1668.
317	10 V. Sandroni and C. M. M. Smith, Anal. Chim. Acta., 2002, 468, 335-344.
318	11 N. Sadiq and D. Beauchemin, Anal. Chim. Acta., 2014, 851, 23-29.
319	12 J. Otero-Romani, A. Moreda-Pineiro and P. Bermejo-Barrera, Talanta, 2009, 79,
320	723–729.
321	13 M. Ochsenkühn-Petropoulou, B. Michalke and P. Schramel, Anal. Chim. Acta.,
322	2003, 478 , 219–227.
323	14 M. Siaka, C. M. Owens and G. F. Birch, Anal. Lett., 1998, 31, 703-718.
324	15 V. Hornburg and B. Lüer, J. Plant Nutr. Soil Sc., 1999, 162, 131–137.
325	16 J. Sastre, A. Sahuquillo, M. Vidal and G. Rauret, Anal. Chim. Acta., 2002, 462,
326	59–72.
327	17 S. Melaku, R. Dams and L. Moens, Anal. Chim. Acta., 2005, 543, 117-123.

328	18 C. Micó, M. Peris, J. Sánchez and L. Recatalá, Commun. Soil. Sci. Plan., 2008, 39,
329	890-904.
330	19 M. Tuzen, H. Sari and M. Soylak, Anal. Lett., 2004, 37, 1925-1936.
331	20 M. Silva, K. Kyser, C. Oates and D. Beauchemin, J. Geochem. Explor., 2007, 94,
332	30–42.
333	21 M. C. Herrera and M. D. Luque de Castro, J. Anal. At. Spectrom., 2002, 17,
334	1530–1533.
335	22 H. Gürleyük, J. F. Tyson and P. C. Uden, Spectrochim. Acta. B, 2000, 55, 935-942.
336	23 J. A. Nóbrega, C. C. Nascentes, G. C. Labuto Araújo, A. R. Araújo Nogueira and C.
337	Pirola, Commun. Soil. Sci. Plan., 2007, 38, 2333-2345.
338	24 L. G. Chen, Q. L. Zeng, H. Wang, R. Su, Y. Xu, X. P. Zhang, A. M. Yu, H. Q.
339	Zhang and L. Ding, Anal. Chim. Acta., 2009, 648, 200-206.
340	25 B. PeÂrez-Cid, I. Lavilla and C. Bendicho, Anal. Chim. Acta., 1999, 378, 201-210.
341	26 R. Chomchoei, J. Shiowatana and P. Pongsakul, Anal. Chim. Acta., 2002, 472,
342	147-159.
343	27 M. Chen and Lena Q. Ma, Soil Sci. Soc. Am. J., 2001, 65, 491-499.
344	28 C. M. Davisson, A. L. Duncan and D. Littlejohn, Anal. Chim Acta., 1998, 363,
345	45–55.
346	29 J. Medved, V. Stresko and J. Kubova, J. Anal. Chem., 1998, 360, 219–224.
347	30 M. L. Alonso Castillo, I. Sánchez Trujillo, E. Vereda Alonso, A. García de Torres
348	and J. M. Cano Pavón, Mar. Pollut. Bull., 2013, 76, 427-434.
349	31 M. K. Zhang and M. Q. Wang, Acta Pedologica Sinica, 2003, 40, 915–920.

1
2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
16
10
1/
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
<u>4</u> 1
<u>4</u> 2
12
44 15
40
46
47
48
49
50
51
52
53
54
55
56
57
51
58
59

350	32 C. Ianni, N	. Ruggieri, P.	Rivaro and R.	Frache, Anal.	Sci.	2001, 17,	1273-1278.
					~~~,	, ,	

- 351 33 M. L. Alonso Castillo, E. Vereda Alonso, M.T. Siles Cordero, J. M. Cano Pavón
- and A. García de Torres, *Microchem. J.*, 2011, **98**, 234-239.
- 353 34 M. L. Alonso Castillo, E. Vereda Alonso, J. M. Cano Pavón and A. García de
- 354 Torres, Intern. J. Environ. Anal. Chem., 2014, 94, 441–462.
- 355 35 S. M. Nasr, N. F. Soliman, M. A. Khairy and M. A. Okbah, Environ. Monit. Assess.,
- 356 2015, **187**, 1-10.

357

- **Fig. 1** Schematic diagram of the MTDMAL system.
- 361 Fig. 2 Effect of the different parameters on the leaching efficiencies of the heavy
- 362 metals (n = 3), (A) Microwave power; (B) Kinds of leachant; (C) Nitric acid
- 363 concentration; (D) Soil particle size; (E) Collection volume; (F) Soak time.







Journal of Analytical Atomic Spectrometry Accepted Manuscript

373	

# Table 1 Instrumental parameters for Cu, Mn, Zn, Pb, Cr, Cd, Ni and Co determination

# 375 by ICP-AES

Parameter	
RF power (W)	1300
Plasma gas flow rate (L min ⁻¹ )	15
Auxiliary gas flow rate (L min ⁻¹ )	0.5
Nebulizer gas flow rate (L min ⁻¹ )	0.80
Pump flow rate (mL min ⁻¹ )	1.5
Speed (RPM)	29.43
Element	Wavelength (nm)
Cu	324.752
Mn	257.610
Zn	213.857
Pb	220.353
Cr	267.716
Cd	214.440
Ni	231.604
Со	228.616

## **Table 2** The physicochemical properties of the natural soil samples

		Organic		Cation-exchange capacity (cmol	Sand (%)	Silt (%)	Clay (%
Soils	pН	(%)	Carbonates (%)	kg ⁻¹ )	(2>d>0.02) ^a	$(0.02>d>0.002)^{a}$	(d<0.00
1	6.9	4.5	4.2	35.6	62.1	27.2	10.7
2	7.2	3.8	2.0	53.9	50.4	37.8	11.8
3	6.7	0.2	0.1	45.3	24.5	29.4	46.1
4	6.7	1.7	1.1	43.4	29.4	34.5	36.1
5	6.6	1.6	1.9	48.6	26.2	28.6	45.2
6	6.7	2.4	1.3	51.2	45.2	28.6	26.2

380 ^a d: particle diameter (mm).

# **Table 3** Analytical characteristic of the ICP-AES method

	-				
Element	Linearity range (µg mL ⁻¹ )	Calibration equation	Correlation coefficient (r ² )	$\begin{array}{c} LOD \\ (\mu g \ m L^{-1}) \end{array}$	LOQ (µg mL ⁻¹ )
Cu	0.003~100	Y = 32739x + 125	0.9997	0.0007	0.003
Mn	0.007~1000	Y = 59033x - 2052	0.9999	0.002	0.007
Zn	0.001~500	Y = 9512.2x + 148	0.9998	0.0004	0.001
Pb	0.02~250	Y = 419.2x + 0.1	0.9996	0.006	0.02
Cr	0.007~100	Y = 9892.2x - 38.5	0.9991	0.002	0.007
Cd	0.0007~5	Y = 80180x - 50.3	0.9991	0.0002	0.0007
Ni	0.01~50	Y = 3158.4x - 8.4	0.9998	0.003	0.01
Co	0.007~50	Y = 1960.4x + 3.3	0.9996	0.002	0.007

385	Table 4	Intra-	and	inter-day	relative	standard	deviations	(RSDs)	of the	proposed
-----	---------	--------	-----	-----------	----------	----------	------------	--------	--------	----------

# $386 \quad \text{method } (n = 6)$

	intra-d	lay	inter-day		
Element					
	Content/mg kg ⁻¹	RSD/%	Content/mg kg ⁻¹	RSD/%	
Cu	20.5	5.4	20.5	5.7	
Mn	1671.6	6.3	1708.3	6.3	
Zn	644.6	1.7	649.1	5.0	
Pb	108.8	2.7	110.3	6.9	
Cr	39.6	6.5	38.3	9.3	
Cd	5.7	4.9	5.8	8.6	
Ni	12.7	8.5	12.1	8.9	
Со	8.9	4.0	9.1	7.1	

# 

# **Table 5** Determination of heavy metals in certified soils.

	0	GBW07401-C	GSS-1	GBW08303			
Element	Certified value	Found value	Leaching efficiencies/%	Certified value	Found value	Leaching efficiencies/%	
Cu	21±2	20.5±0.3	97.6	120±6	116±5	96.7	
Mn	1760±63	1692±76	96.1	519±18	510±15	98.3	
Zn	680±25	648±35	95.2	260±11	253±12	97.3	
Pb	98±6	110±4	111.8	73±2	81±2	111.9	
Cr	62±4	39±2	62.2	112±6	89±5	79.4	
Cd	4.3±0.4	5.3±0.4	122.6	1.2±0.1	1.25±0.08	104.2	
Ni	20.4±1.8	12.3±0.4	60.1	40±2	31.0±1.8	78.1	
Со	14.2±1.0	9.3±0.4	65.5	13.0±0.6	9.0±0.5	69.2	

391 All values reported as mean  $(n = 3) \pm SD (mg kg^{-1} dried basis)$ .

## 3 4 5 6 36

## Table 6 Application of the proposed method

	Sample 1				Sample 2			Sample 3			
Element	Reference value ^b	Found value ^a	Leaching efficiencies/%	Reference value ^b	Found value ^a	Leaching efficiencies/%	Reference value ^b	Found value ^{$a$}	Leaching efficiencies/%		
Cu	62±3	64±3	104.3	19±5	21±5	112.1	20±3	19±3	95.9		
Mn	540±5	540±21	99.9	511±19	520±23	101.8	517±18	503±15	97.2		
Zn	263±3	300±14	114.4	85±2	95±2	112.2	69±1	74±1	107.8		
Pb	83±5	104±6	125.6	16.1±1.6	21±2	132.1	10.6±1.1	12±1	112.7		
Cr	46.8±1.0	34.2±1.2	73.1	25.5±0.1	17.0±0.3	66.7	33±1	22±1	66.7		
Cd	1.7±0.1	1.4±0.1	82.3	1.7±0.8	1.5±0.7	85.3	1.8±0.2	1.2±0.1	70.3		
Ni	20.8±0.6	17.9±1.1	85.9	20.3±0.8	16.5±1.1	81.5	26.2±0.5	18.4±0.3	70.1		
Co	13.3±0.2	11.6±0.4	87.4	10.8±0.4	9.2±0.8	85.5	11.4±0.2	7.7±0.2	67.8		
		Sample 4			Sample 5			Sample 6			
	Reference		Leaching	Reference		Leaching	Reference		Leaching		
Element	value	Found value	efficiencies/%	value	Found value	efficiencies/%	value	Found value	efficiencies/%		
Cu	12.2±3.2	$11.9\pm3.0$	97.4	9.5±1.4	9.7±1.6	102.5	16±3	15.7±2.6	96.5		
Mn	675±21	664±23	98.4	623±25	601±26	96.6	615±22	606±23	98.6		
Zn	87.5±1.8	102±2	116.3	63.2±2.8	65.4±1.8	103.6	81.2±1.6	82.5±1.8	101.6		
Pb	14.6±1.3	16.2±1.4	110.9	10.3±1.1	12.2±0.9	118.2	13±1	14.2±0.9	109.5		
Cr	23.8±1.3	16.0±1.4	66.8	57±2	40.1±1.5	70.3	29.4±1.0	18±1	61		
Cd	1.9±0.2	1.7±0.2	88.2	$1.0{\pm}0.1$	0.7±0.1	68.6	1.6±0.3	1.2±0.2	72.6		
Ni	15.8±0.3	11.6±0.2	73.1	26±2	17.2±0.9	76.7	19.1±0.6	14.6±0.4	76.7		
Co	10.8±0.3	7.5±0.1	69.8	56±3	48±2	86.8	11.6±0.3	7.7±0.3	66.8		

393 All values reported as mean (n = 3)  $\pm$  SD (mg kg⁻¹ dried basis).

1		
2		
3		
4		
5		
6		
7	394	^a Obtained with MTDMAL method, ^b Obtained with conventional digestion method (NY/T 1613–2008 method).
8	395	
9	575	
10		
11		
12		
10		
14		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 15		
40		
40		
48		
40		



The approach combines the advantages of microwave and dynamic extraction technique, and up to five soil samples can be treated at the same time within 15 min. The leachates were centrifugated and diluted before ICP-AES determination, instead of the cumbersome step of acid-evaporation, transfer, and filtration in the conventional digestion procedure.

## **Figure legends**

Fig. 1 Schematic diagram of the MTDMAL system.

**Fig. 2** Effect of the different parameters on the leaching efficiencies of the heavy metals (n = 3), (A) Microwave power; (B) Kinds of leachant; (C) Nitric acid concentration; (D) Soil particle size; (E) Collection volume; (F) Soak time.



Fig. 1





Journal of Analytical Atomic Spectrometry Accepted Manuscript