JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

	0
1.1	
	\mathbf{C}
	0)
	σ
1	
	\geq
1	
1	
	Q
	0
	Y
	U
	Ō
1	
	3
	Y
	0
	65
	Ð
	0
	0
(S
	Sp
	c S D
(ic Sp
	nic Sp
	mic Sp
	omic Sp
	tomic Sp
	vtomic Sp
	Atomic Sp
	Atomic Sp
(Il Atomic Sp
	al Atomic Sp
	cal Atomic Sp
	ical Atomic Sp
	tical Atomic Sp
	ytical Atomic Sp
	Iytical Atomic Sp
	alytical Atomic Sp
	nalytical Atomic Sp
	nalytical Atomic Sp
	Analytical Atomic Sp
	Analytical Atomic Sp
	t Analytical Atomic Sp
	of Analytical Atomic Sp
	of Analytical Atomic Sp
	I of Analytical Atomic Sp
	al of Analytical Atomic Sp
	nal of Analytical Atomic Sp
	nal of Analytical Atomic Sp
	irnal of Analytical Atomic Sp
	urnal of Analytical Atomic Sp
	ournal of Analytical Atomic Sp
	ournal of Analytical Atomic Sp
	Journal of Analytical Atomic Sp

1	
1	Determination of a dminum in goals givel somelag by some al
2	Determination of cadmium in geological samples by aerosol
3	dilution ICP-MS after inverse aqua regia extraction
4	
5	
6	Qian Xu, Wei Guo*, Lanlan Jin, Qinghai Guo, Shenghong Hu*
7	
8	State Key Laboratory of Biogeology and Environmental Geology, China University of
9	Geosciences, Wuhan, 430074, P. R. China
10	
11	
12	
13	
14	
15	*Corresponding Author. Tel and Fax: +86-27-67883495;
16	Email address: Wei.Guo@cug.edu.cn (Wei Guo); Shhu@cug.edu.cn (Shenghong Hu).
17	

25 27 32

18 Abstrac	t
------------	---

19	The determination of cadmium (Cd) in geological samples by inductively
20	coupled plasma mass spectrometry (ICP-MS) is suffered to significant Mo and/or Zr
21	based oxide interference. We have developed a valid method for Cd determination
22	using Ar aerosol dilution ICP-MS after extraction with inverse aqua regia. Over 90%
23	of the Zr was removed in the extraction procedure, and the residual Zr-hydroxides
24	and Mo-oxides or hydroxides were successfully eliminated by adding an amount of
25	Ar to the sample aerosol prior to the plasma. Compared to the conventional mode
26	without adding Ar, the amount of oxide and hydroxide ions formed in the plasma
27	was reduced by up to 90%. The relative yields of the interfering oxides and
28	hydroxides were as low as 0.005% (MoOH/Mo or MoO/Mo) and 0.007% (ZrOH/Zr).
29	Under the optimized dilution gas flow rate (0.85 L min ⁻¹) and carrier gas flow rate
30	(0.24 L min ⁻¹), the limit of detection (LOD,3 σ) for ¹¹¹ Cd was 1.6 ng g ⁻¹ . The
31	proposed method was applied to the determination of Cd in 81 soil, sediment, and
32	rock standard reference materials (SRMs). The results for 68 of these geological
33	SRMs were in good agreement with the reference values. The Cd levels in 10
34	limestone SRMs (GSR-22, GSR-23, GSR-24, GSR-27, GSR-28, GUI-1, GUI-2,
35	GUI-2, DIAN-1, DIAN-2, and DIAN-3) were reported for the first time, and
36	reference Cd values for other 3 geological SRMs (GSD-7, GSD-19, and GSM-1)
37	were updated by this method. The results showed that this method has great potential
38	for Cd determination in geological samples.

40 Introduction

Cd is an important trace element in the study of environmental geochemistry, and is implicated in environmental quality and human health ¹ as it is a highly toxic metal, even at very low concentrations ^{2, 3}. The abundance of cadmium is just 0.08 μ g g⁻¹ in the Earth's crust ⁴. Therefore, the accurate determination of Cd in geological samples is often a challenge due to its low concentration and the presence of complex sample matrices ⁵.

Inductively coupled plasma mass spectrometry (ICP-MS) has been shown to be the most applicable technique for the determination trace elements in various geological samples, due to its high sensitivity, multi-element capability, and wide dynamic range.⁶⁻¹⁷ However, the measurement of all isotopes of Cd is interfered by various isobaric ions and/or oxide or hydroxide ions of Pd, Sm, In, Zr, Mo, Ru, Nb, and Y. Specifically, the two common isotopes of ¹¹¹Cd and ¹¹⁴Cd suffer interference from the polyatomic ions ${}^{95}Mo^{16}O^+$, ${}^{94}Mo^{16}OH^+$, ${}^{94}Zr^{16}OH^+$, ${}^{98}Mo^{16}O^+$, ${}^{96}Mo^{18}O^+$ and ⁹⁷Mo¹⁶O⁺, and the isobaric ion ¹¹⁴Sn⁺) (See ESI⁺ Table S1).¹⁸ In typical geological samples the contents of these interfering elements are hundreds to thousands of times higher than that of Cd, as the abundances of Zr and Mo are 132 and 0.8 μ g g⁻¹, respectively, in the Earth's crust,⁴ which causes erroneous results in Cd determination by ICP-MS method.¹⁹ Several techniques can be used to minimize this interference, such as solvent or solid phase extractions,^{20, 21} precipitation,⁵ volatile species generation,²² electrothermal volatilization (ETV),^{23, 24} membrane desolvation,²⁵ addition of carbon-containing compounds to modify the argon plasma,²⁶ isotope

Journal of Analytical Atomic Spectrometry Accepted Manuscript

.

Journal of Analytical Atomic Spectrometry Accepted Manuscript

62	dilution, ^{27, 28} and dynamic reaction cell techniques (DRC). ^{20, 29} Although these
63	methods can remove the matrix elements and polyatomic ion interference, they are
64	either time consuming or require special instrumental set-ups. Recently, an alternative
65	method employing online dilution of the sample aerosol with Ar before it enters the
66	plasma has been shown to reduce oxide formation without significantly compromising
67	detection limits. ³⁰ When a dilution gas was used, the aerosol entering the plasma
68	contains much less water (and acid) than a conventionally diluted sample, resulting in
69	much hotter plasma and as much as ten times lower oxide formation. ³¹ This technique
70	was shown to alleviate interference from the oxides of lower atomic number
71	lanthanoids on the detection of the heavy-lanthanoids in the analysis of airborne
72	particulate matter, but only a limited level of interfering species (ca. 20-fold) was
73	addressed in this study. ³¹

In this work, a method for the direct determination of trace-level Cd in geological samples based on aerosol dilution ICP-MS (in combination with sample pre-treatment by boiling in inverse aqua regia extraction) was developed, aiming to eliminate the complicated polyatomic interference from Zr and Mo based oxides and hydroxides. The optimization of the technique and its application to the determination of trace Cd in a series of geological standard reference materials (SRMs) are discussed in detail.

82 Materials and methods

-- --

83 Instrumentation, regents and standards

84	An Agilent 7700x ICP-MS (Agilent Technologies, USA) with an aerosol dilution
85	system (Fig. 1), a MicroMist nebulizer and a Peltier cooled (2 °C) quartz Scott-type
86	double pass spray chamber was used for this work. The operating parameters for
87	ICP-MS were optimized prior to the determinations with a tuning solution containing
88	1.0 ng mL ⁻¹ of Ce, Co, Li, Mg, Tl and Y, and the oxide production rate, calculated as
89	the ratio of CeO^+/Ce^+ was reduced from 3.0% to less than 0.3%. The optimized
90	instrument operating parameters are listed in Table 1. High purity water (18.2 M Ω
91	cm ⁻¹) used for the preparation of all blanks, standards and samples was obtained from
92	a Millipore water purification system (Millipore, France). HNO3 (99.999%), HCl
93	(99.999%), and HF (99.999%) were purchased from Alfa Aesar Ltd. (Tianjin). Single
94	element stock solutions (Cd, Mo, Zr, and Rh, etc.) were purchased from the National
95	Center for Analysis and Testing of Steel Materials (NCATSM, China). The accuracy
96	of the method was assessed by using two rock SRMs (andesite AGV-2 and basalt
97	BCR-2) obtained from the United State Geological Survey (USGS, USA), two SRMs
98	(metal-rich sediment SdAR-M2 and gabbro GSM-1) obtained from the International
99	Association of Geoanalysts (IAG, UK), and 77 Chinese geological SRMs (details
100	given in Table S2, see ESI [†]), from the Institute of Geophysical and Geochemical
101	Exploration (IGGE, China).

Journal of Analytical Atomic Spectrometry Accepted Manuscript

102 Sample preparation by boiling inverse aqua regia extraction

0.2000 g of the homogenized sample powder (200 mesh) was weighed into a 10 mL
polyethylene tube, to which 3.0 mL of a freshly prepared inverse aqua regia solution

105	$(HNO_3:HCl=3:1)$ was added. The capped tube was then placed in a water bath at
106	95 °C for 2h. After cooling to room temperature, the solution was diluted to 10 mL
107	with high purity water. The solution was centrifuged to remove the undissolved solid
108	particles, and 1.0 mL of supernatant was transferred to a 10 mL polyethylene tube.
109	Water (4.0 mL) was added, and the tube was shaken vigorously. For comparison, a
110	conventional complete digestion method employing closed pressurized digestion with
111	a mixture of HF + HNO ₃ was also used (see ESI ^{\dagger} Table S3). ^{32, 33}

113 Results and discussion

114 Optimization of aerosol dilution ICP-MS after inverse aqua regia extraction

¹¹¹Cd was selected as the isotope for ICP-MS analysis because it is the only isotope of Cd without isobaric interference. The major problem encountered in the determination of ¹¹¹Cd is interference from Zr and Mo polyatomic ions (i.e., ⁹⁵Mo¹⁶O⁺, ⁹⁴Mo¹⁶OH⁺, and 94 Zr 16 OH $^+$). ³⁴ In this study, the elimination of the interference from Zr/Mo-oxides using aerosol dilution was investigated for the analysis of the geological samples. As shown in Fig. 2, there is a significant decrease in the ratios of oxide species $({}^{95}Mo{}^{16}O{}^{+}/{}^{95}Mo{}^{+}, {}^{94}Mo{}^{16}OH{}^{+}/{}^{95}Mo{}^{+}, and {}^{94}Zr{}^{16}OH{}^{+}/{}^{94}Zr{}^{+})$ formed in the plasma with increasing gas dilution. At the optimized dilution gas rate (0.85 L min⁻¹), the ratios of $(MoOH^+ + MoO^+)/Mo^+$ and $ZrOH^+/Zr^+$ are 0.005% and 0.007%, respectively, which is 10 times smaller than that observed with the conventional standard mode (i.e., dilution gas = 0) (Fig. 2). The signal contribution to m/z 111 from different elements

126	under the standard mode and the aerosol dilution mode was compared. As shown in
127	Table 2, under standard mode, the signal intensities for m/z 111 are 12328 cps, 2987
128	cps, and 12080 cps for Cd (1 ng mL ⁻¹), Mo (200 ng mL ⁻¹) and Zr (1000 ng mL ⁻¹),
129	respectively. Conversely, under aerosol dilution mode, the signal intensities for m/z
130	111 are 1754 cps (Cd), 24.8 cps (Mo), and 91.5 cps (Zr). Compared to the
131	conventional ICP-MS method (without aerosol dilution), the signal intensity of Cd
132	dropped by 7 times, but the signal background ratio (SBR) increased from 0.82 to
133	15.1 by addition of the dilution gas (Table 2). Aerosol dilution ICP-MS was evaluated
134	by the analysis of geological SRMs with high Zr and/or Mo contents (i.e. Zr content /
135	Cd content >3000, and Mo content /Cd content >90). Table 3 lists the results obtained
136	by aerosol dilution ICP-MS and standard mode ICP-MS following the conventional
137	complete digestion procedure. The Cd values obtained by aerosol dilution ICP-MS are
138	much closer to the certified values than those obtained by standard mode ICP-MS,
139	due to the reduction of the Zr or Mo based oxide levels. When the proposed aerosol
140	dilution ICP-MS technique coupled with the conventional complete digestion method
141	is employed, unsatisfactory results are obtained for all selected SRMs with a Zr
142	content /Cd content> 1500. However, the result was satisfactory for the stream
143	sediment SRM (GSD-3a), which possesses a relatively low Zr content /Cd content
144	ratio (566). Most geological samples have a high Zr content (Zr content /Cd content
145	ratios > 1500) and a low Mo content (Mo content /Cd content ratios <100). Therefore,
146	use of the aerosol dilution technique can effectively reduce the Mo based
147	interferences, but it cannot completely eliminate Zr based interferences. Therefore,

148 further study should be conducted to obtain more accurate results.

In our recent paper, a pre-treatment procedure based on extraction with boiling aqua regia was established to alleviate the interference from matrix Zr on As determination in DRC ICP-MS.²⁹ As was extracted almost completely (>98%) but the Zr recovery was <5%. This is because Zr is a lithophilic element which is strongly bound in silicate minerals and cannot be dissolved out by this procedure.²⁹ A similar result for Ag and Cd determination in environmental samples with low Zr content /Cd content ratios was reported by Li *et al.*³⁵ To evaluate the feasibility of this preparation method, three geological SRMs (soil GSS-4, stream sediment GSD-9, and rock GSR-2) were extracted with boiling aqua regia (HCl: $HNO_3 = 3:1$) or inverse aqua regia (HCl: $HNO_3 = 1:3$). Table 4 shows that the recoveries of Zr are less than 10% using both extraction methods. However, much larger amounts of Zr (>95%) are dissolved by the conventional complete digestion procedure, which results in the positively biased results for Cd determination in standard mode ICP-MS. As can be seen from Table 4, some little positive bias for Cd was observed using this extraction procedure, which originates from the residual or dissolved Zr (<10%) and Mo (>60%).

Residual Zr and Mo were completely eliminated using the proposed aerosol dilution technique. It can be seen in Table 5 that the values obtained for the geological SRMs containing high levels of matrix Zr and/or Mo using aerosol dilution ICP-MS after inverse aqua regia extraction, without any correction, are in good agreement with the certified values. Although the values of Zr content /Cd content for GSS-3 and Mo

2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
30
10
40
41
42
43
44
45
40
40
47
48
49
50
51
51
52
53
54
55
56
57
5/ 50
58
59

60

170	content /Cd content for GSD-3 are high at 4100 and 920, respectively, our obtained
171	values for Cd content are 0.054 ± 0.001 and $0.093 \pm 0.013 \ \mu g \ g^{-1}$, which agree well
172	with the certified values of 0.060 \pm 0.009 and 0.100 \pm 0.020 $\mu g~{\rm g}^{\text{-1}},$ respectively. The
173	results clearly show that the proposed method based on aerosol dilution ICP-MS
174	combined with the boiling inverse aqua regia extraction is reliable. The extraction
175	procedure separates most of the Zr matrix (>90%) from the analyte, and the remaining
176	Zr (<10%) and Mo are eliminated by the subsequent aerosol dilution technique.

177

178 Analysis of geological SRMs

The signal background ratio (SBR) of Cd increases 200-fold (from 0.82 to 160, as shown in Fig. S1, see ESI[†]) by our proposed method compared to conventional mode ICP-QMS employing the complete digestion procedure. The limit of detection (LOD, 3σ) is 1.6 ng g⁻¹ (taking into account the 250-fold dilution factor). This sensitivity is sufficient for trace-level Cd determination of solid geological samples, in which the Cd levels typically range from 0.02 to 2.0 µg g⁻¹.

Two USGS SRMs (andesite AGV-2 and basalt BCR-2) and two IAG (metal-rich sediment SdAR-M2 and gabbro GSM-1) were assessed using the proposed method, as shown in Table 6. For comparison, the reference values and those reported in the literature are listed. As shown in Table 6, the Cd contents determined for AGV-2 and BCR-2 are in agreement with the USGS reference values. However, the Cd levels in AGV-2 and BCR-2 obtained using the conventional ICP-QMS coupled with the complete digestion procedure (0.121 μ g g⁻¹ and 0.227 μ g g⁻¹ for AGV-2, 0.082 μ g g⁻¹

1
2
2
4
4
5
6
7
Ω.
0
9
10
11
12
13
10
14
15
16
17
18
10
19
20
21
22
23
20
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
ΔΛ
 /
45
46
47
48
10
50
51
52
53
54
57
22
56
57
58
59
60
οU

192	and 0.75 μ g g ⁻¹ for BCR-2) ^{36, 37} are significantly higher than the USGS reference
193	values (0.061 $\mu g~g^{\text{-1}}$ and 0.140 $\mu g~g^{\text{-1}},$ respectively) and our reported values (0.058 \pm
194	0.004 $\mu g g^{-1}$ and 0.148 \pm 0.007 $\mu g g^{-1}$, respectively). For the two IAG SRMs
195	SdAR-M2 and GSM-1, which were used as an international proficiency test for
196	analytical geochemistry laboratories in 2014 (GeoPT36), ³⁸ our analysis yielded values
197	of 5.10 \pm 0.20 µg g ⁻¹ and 0.072 \pm 0.004 µg g ⁻¹ , respectively. The value for SdAR-M2
198	is consistent to the IAG reference value (5.10 \pm 0.19 μg g^-1), but the Cd level
199	determined value for GSM-1 (0.072 \pm 0.004 $\mu g~g^{\text{-1}})$ is lower than the
200	recommended value (0.128 \pm 0.012 μ g g ⁻¹). Ten separate aliquots of this SRM were
201	analysed over a period of three months, and consistent results (0.070-0.076 $\mu g~g^{\text{-1}})$
202	were obtained (Fig. S2, see ESI [†]). GSM-1 (gabbro) is a basic intrusive rock, which
203	differs from BCR-2 (basalt), which is a basic extrusive rock. The efficiency of Cd
204	extraction from the different basic rocks may be influenced by its crystallization
205	process, and further study is required to explain this phenomenon.

The proposed method was also employed to determine Cd levels in 77 Chinese 206 geological SRMs, comprising 28 soils, 30 sediments, and 19 rocks. The measured Cd 207 levels in 65 geological samples are in good agreement with their certified values (Fig. 208 3). Although Cd in present at ultra-trace levels (< 0.20 μ g g⁻¹) in 40 of the geological 209 SRMs, the measured values are consistent with the certified values (see inset of Fig 3). 210 211 Detailed results for these SRMs are given in Table S2 (see ESI⁺). Table 7 shows the values determined for two stream sediments (GSD-7 and GSD-19), which are 212 213 inconsistent with the IGGE certified values. In addition, ten limestone SRMs

2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
20
27
28
29
20
30
31
32
33
34
25
35
36
37
38
20
39
40
41
42
12
+J 4 4
44
45
46
47
10
40
49
50
51
52
52
23
54
55
56
57
57
58
59

60

(GSR-22, GSR-23, GSR-24, GSR-27, GSR-28, GUI-1, GUI-2, DIAN-1, DIAN-2, and
DIAN-3) have no current reference values or literature values, and the recommended
values of these SRMs are provided by this work (Table 7). The results of repeated
analysis, in which the SRMs were extracted and re-analysed ten times over a period of
three months, are consistent (Fig. 4), which indicates that our recommended values
are reliable. This method also could be used for the determination of other trace
elements, such as Ag (Table S4, see ESI[†]).

221

222 Conclusions

223 A method for the determination of trace-level Cd in geological samples using aerosol 224 dilution ICP-MS after extraction with boiling inverse aqua regia was developed. The 225 significant interfering Zr or Mo based oxides and hydroxides was effectively reduced by the proposed method, compared to conventional ICP-QMS coupled with the 226 227 complete digestion method, the SBR of Cd improved by two orders of magnitude. 228 The proposed method was employed to analyse 81 geological SRMs, and the results 229 of 68 samples were in good agreement with the certified or literature values. The Cd 230 levels of 13 other SRMs have been provided for the first time by this method. The 231 developed method shows great potential for the direct determination of trace levels of 232 Cd in geological samples.

233

234 Acknowledgements

1
2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
20
24
25
26
27
28
20
29
30
31
32
33
34
25
35
36
37
38
39
10
40
41
42
43
44
45
46
40
47
48
49
50
50
51
52
53
54
55
56
50
5/
58
59
60

235	This work was supported by the National Nature Science Foundation of China (No.
236	21207120), the National Key Scientic Instrument and Equipment Development
237	Projects of China (no. 2011YQ06010008), and the Fundamental Research Funds for
238	the China University of Geosciences (Wuhan) (no. CUGL140411).
239	
240	References
241	1. J. Sastre, A. Sahuquillo, M. Vidal and G. Rauret, Analytica Chimica Acta, 2002,
242	462 , 59-72.
243	2. B. J. Alloway, <i>Heavy metals in soils</i> , Springer Science & Business Media. 2013.
244	3. M. Shirani, A. Semnani, S. Habibollahi and H. Haddadi, Journal of Analytical
245	Atomic Spectrometry, 2015.
246	4. R. Rudnick and S. Gao, <i>Treatise on geochemistry</i> , 2003, 3 , 1-64.
247	5. K. Inagaki, A. Takatsu, A. Uchiumi, A. Nakama and K. Okamoto, Journal of
248	Analytical Atomic Spectrometry, 2001, 16, 1370-1374.
249	6. J. Avivar, L. Ferrer, M. Casas and V. Cerda, Journal Of Analytical Atomic
250	Spectrometry, 2012, 27, 327-334.
251	7. D. Wilhelms-Dick, T. Westerhold, U. Rohl, F. Wilhelms, C. Vogt, T. J. J.
252	Hanebuth, H. Rommermann, M. Kriews and S. Kasten, Journal Of Analytical Atomic
253	Spectrometry, 2012, 27, 1574-1584.
254	8. V. Yilmaz, L. Rose, Z. Arslan and M. D. Little, Journal Of Analytical Atomic
255	Spectrometry, 2012, 27, 1895-1902.
256	9. J. Liu, D. H. Zou, X. L. Yang, X. Z. Cheng and Q. Chen, Analytical Methods,

2	
3	
4	
5	
6 7	
/ 0	
8	
9	
10	
11	
12	
13	
14	
10	
17	
18	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

257	2013.	5.	6774-6780.

- 10. T. Ohno, Y. Muramatsu, Y. Shikamori, C. Toyama, N. Okabe and H. Matsuzaki, *Journal Of Analytical Atomic Spectrometry*, 2013, 28, 1283-1287.
- 260 11. P. Foltynova, A. Bednarik, V. Kanicky and J. Preisler, Journal Of Analytical
- 261 *Atomic Spectrometry*, 2014, **29**, 1585-1590.
- 262 12. N. S. Horner and D. Beauchemin, *Journal Of Analytical Atomic Spectrometry*,
 263 2014, **29**, 715-720.
 - 264 13. A. Pullen, M. Ibanez-Mejia, G. E. Gehrels, J. C. Ibanez-Mejia and M. Pecha,
- *Journal Of Analytical Atomic Spectrometry*, 2014, **29**, 971-980.
- 266 14. M. Tang, W. F. McDonough and R. Arevalo, *Journal Of Analytical Atomic*267 Spectrometry, 2014, 29, 1835-1843.
- 268 15. B. B. Chen, Y. L. Wu, X. Q. Guo, M. He and B. Hu, Journal Of Analytical Atomic

Journal of Analytical Atomic Spectrometry Accepted Manuscript

- 269 *Spectrometry*, 2015, **30**, 875-881.
- 270 16. W. Guo, S. H. Hu, Z. W. Wu, G. Y. Lan, L. L. Jin, X. G. Pang, J. C. Zhan, B.
- 271 Chen and Z. Y. Tang, *Journal Of Analytical Atomic Spectrometry*, 2015, **30**, 986-993.
- 272 17. R. Khan, Y. Yokozuka, S. Terai, N. Shirai and M. Ebihara, Journal Of Analytical
- 273 *Atomic Spectrometry*, 2015, **30**, 506-514.
- 274 18. T. W. May and R. H. Wiedmeyer, *Atomic Spectroscopy*, 1998, **19**, 150-155.
- 275 19. W. Guo, S. H. Hu, Y. F. Xiao, H. F. Zhang and X. J. Xie, *Chemosphere*, 2010, 81,
 276 1463-1468.
- 277 20. T. C. Duan, X. J. Song, P. R. Guo, H. F. Li, L. H. Pan, H. T. Chen and J. W. Xu,
- 278 Journal Of Analytical Atomic Spectrometry, 2007, 22, 403-406.

279	21. P. H. Liao, S. J. Jiang and A. C. Sahayam, Journal Of Analytical Atomic
280	Spectrometry, 2012, 27, 1518-1524.
281	22. W. N. Chen, S. J. Jiang, Y. L. Chen and A. C. Sahayam, Analytica chimica acta,
282	2015, 860 , 8-14.
283	23. S. M. Maia, D. Pozebon and A. J. Curtius, Journal Of Analytical Atomic
284	Spectrometry, 2003, 18, 330-337.
285	24. M. L. Lin and S. J. Jiang, Journal Of Analytical Atomic Spectrometry, 2011, 26,
286	1813-1818.
287	25. X. X. Duan and M. Regelous, Journal Of Analytical Atomic Spectrometry, 2014,
288	29 , 2379-2387.
289	26. D. Karunasagar and J. Arunachalam, <i>Analytica chimica acta</i> , 2001, 441 , 291-296.
290	27. A. Makishima, H. Kitagawa and E. Nakamura, Geostand Geoanal Res, 2011, 35,
291	57-67.
292	28. R. Q. Thompson and S. J. Christopher, Analytical Methods, 2013, 5, 1346-1351.
293	29. W. Guo, S. H. Hu, J. Y. Zhang, L. L. Jin, X. J. Wang, Z. L. Zhu and H. F. Zhang,
294	Journal Of Analytical Atomic Spectrometry, 2011, 26, 2076-2080.
295	30. S. Doker and M. Uslu, Food Anal Method, 2014, 7, 683-689.
296	31. V. Celo, E. Dabek-Zlotorzynska, J. J. Zhao, I. Okonskaia and D. Bowman,
297	<i>Analytica chimica acta</i> , 2011, 706 , 89-96.
298	32. W. Guo, S. H. Hu, X. J. Wang, J. Y. Zhang, L. L. Jin, Z. L. Zhu and H. F. Zhang,
299	Journal Of Analytical Atomic Spectrometry, 2011, 26, 1198-1203.
300	33. W. Guo, S. H. Hu, J. Y. Zhang and H. F. Zhang, Sci Total Environ, 2011, 409,
	14

3
4
5
5
6
7
8
9
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
33
30
37
38
39
40
<u></u>
40 1
42
43
44
45
46
47
18
40
49
50
51
52
53
54
54
55
56
57

58 59

60

301 2981-2986.

- 302 34. W. Guo, S. H. Hu, J. A. Zhao, S. S. Jin, W. J. Liu and H. F. Zhang, *Microchemical*
- 303 *Journal*, 2011, **97**, 154-159.
- 304 35. Z. X. Li, L. P. Zhou and F. Tan, *Microchim Acta*, 2006, **156**, 263-269.
- 305 36. Z. C. Hu and S. Gao, *Chem Geol*, 2008, **253**, 205-221.
- 306 37. S. K. Marx and B. S. Kamber, *Applied Geochemistry*, 2010, 25, 1221-1237.
- 307 38. P. C. Webb, M. Thompson, P. J. Potts and S. A. Wilson, GeoPT36-an international
- 308 proficiency test for analytical geochemistry laboratories report on round 36 / August
- 309 2014 (Gabbro, GSM-1). International Association of Geoanalysts: Unpublished

310 report.

312	
313	Figure captions
314	
315	Fig. 1. Schematic diagram of our aerosol dilution system.
316	Fig. 2. Effects of dilution gas flow rate on oxide formation ratios (($^{94}Mo^{16}OH^{+} +$
317	95 Mo ¹⁶ O ⁺)/ 95 Mo ⁺ and 94 Zr ¹⁶ OH ⁺ / 94 Zr ⁺) and the signal background ratio (SBR).
318	Fig. 3. Cd values determined for 65 geological SRMs by the proposed method vs.
319	their certified values. The inset shows the 40 geological SRMs containing ultra-trace
320	levels of Cd (< 0.20 μ g g ⁻¹).
221	Fig. 4. Stability of Cd values obtained through the proposed method in 12 geological
521	rig. 4. Stability of Cu values obtained through the proposed method in 12 geological
322	SRMs: two stream sediments: GSD-7 (a) and GSD-19 (b), and ten limestones SRMs:
323	GSR-22 (c), GSR-23 (d), GSR-24 (e), GSR-27 (f), GSR-28 (g), GUI-1 (h), GUI-2 (i),
324	DIAN-1 (j), DIAN-2 (k), and DIAN-3 (l). For each SRM, ten separate aliquots of the
325	samples were analysed over a period of three months.
326	
326	

ICP-MS instrument	Agilent 7700x ICP-MS
RF Power, W	1450
Plasma gas flow, L min ⁻¹	15
Nebulizer gas flow, L min ⁻¹	0.24 for aerosol dilution mode; 1.09 for
	standard mode.
Dilution gas flow, L min ⁻¹	0.85 for aerosol dilution mode; 0 fo
	standard mode.
Sampling depth ,mm	7.0
Sample uptake rate, mL min ⁻¹	0.3
Dwell time, ms	30
Sweeps	100
Readings	1
Replicates	3
140 CeO/ 140 Ce ratio (%)	< 0.3 for aerosol dilution mode; < 3.0 for
	standard mode.
Isotope monitored	¹¹¹ Cd

1	
2	
3 4	
5	
6	
/ 8	332
9	333
10	
11 12	
13	
14	
15	
10	
18	
19	
20 21	
22	334
23	335
24 25	
26	
27	
28 20	
30	
31	
32	
34	
35	
36 27	
38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	

				Elements					
Signal intensity	Blank, pu	re water	Cd, 1 ng	; mL-1	Mo, 200 r	ng mL-1	Zr, 1000 r	ng mL-1	Signal background
Signal Intensity	Intensity, cps	RSD, %	Intensity, cps	RSD, %	Intensity, cps	RSD, %	Intensity, cps	RSD, %	ratio (SBR)
Conventional ICP-MS	6.67	9.1	12328	0.9	2987	1.3	12080	1.2	0.82
erosol dilution ICP-MS	1.11	8.5	1754	1.2	24.8	6.5	91.5	5.6	15.1
					18				

		Mo/Cd	Cd, $\mu g g^{-1} (n = 3)$			
Geological SRMs	Zr/Cd		Aerosol dilution ICP-MS	Certified Value	Standard mode ICP-MS	
GSS-3, yellow-brown earth soil	4100	5	0.113 ± 0.001	0.060 ± 0.009	0.303 ± 0.006	
GSS-6, red soil	1692	138	0.180 ± 0.010	0.130 ± 0.030	0.402 ± 0.012	
GSS-22, soil	3923	10	0.113 ± 0.003	0.065 ± 0.012	0.330 ± 0.020	
GSD-3, stream sediment	2200	920	0.128 ± 0.007	0.100 ± 0.020	0.425 ± 0.002	
GSD-3a, stream sediment	566	96	0.520 ± 0.010	0.500 ± 0.060	0.770 ± 0.040	
GSR-4, quartz sandstone	3567	13	0.094 ± 0.012	0.060 ± 0.016	0.340 ± 0.020	

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Certified values

			Cd, $\mu g g^{-1} (n = 3)$				
	Geological SRMs	Elements	Complete digestion	Extraction with aqua regia	Extraction with inverse aqua regia	Certified valu	
		Zr	531 ± 5	16.6 ± 0.4	23.0 ± 0.8	500 ± 42	
	GSS-4, soil	Мо	2.30 ± 0.4	2.60 ± 0.02	1.80 ± 0.10	2.60 ± 0.30	
		Cd	1.05 ± 0.05	0.420 ± 0.010	0.393 ± 0.005	0.350 ± 0.06	
		Zr	387 ± 8	8.32 ± 0.04	10.1 ± 0.1	370 ± 20	
	GSD-9, sediment	Мо	0.750 ± 0.010	0.537 ± 0.005	0.610 ± 0.010	0.640 ± 0.110	
		Cd	0.680 ± 0.020	0.330 ± 0.01	0.320 ± 0.010	0.260 ± 0.040	
		Zr	93.0 ± 2.0	9.70 ± 0.70	7.30 ± 0.40	99.0 ± 11.0	
	GSR-2, rock	Mo	0.600 ± 0.020	0.350 ± 0.020	0.351 ± 0.004	0.540 ± 0.090	
		Cd	0.142 ± 0.005	0.088 ± 0.005	0.080 ± 0.003	0.061 ± 0.014	
343							
344							
				20			

1

Table 5. Results for Cd levels in six geological SRMs obtained through different ICP-MS methods after extraction with boiling inverse aqui					
regia.					
Coological SDMs	Zr/Cd	Mo/Cd —	Cd, $\mu g g^{-1} (n = 3)$		
Geological SKIVIS			Aerosol dilution ICP-MS	Certified value	Standard mode ICP-MS
GSS-3, yellow-brown earth soil	4100	5	0.054 ± 0.001	0.060 ± 0.009	0.069 ± 0.013
GSS-6, red soil	1692	138	0.134 ± 0.007	0.130 ± 0.030	0.179 ± 0.004
GSS-22, soil	3923	10	0.058 ± 0.003	0.065 ± 0.012	0.074 ± 0.002
GSD-3, stream sediment	2200	920	0.093 ± 0.013	0.100 ± 0.020	0.242 ± 0.006
GSD-3a, stream sediment	566	96	0.493 ± 0.005	0.500 ± 0.060	0.587 ± 0.005
GSR-4, quartz sandstone	3567	13	0.055 ± 0.005	0.060 ± 0.016	0.065 ± 0.005

350						
351						
352	Table 6. Cd levels in four geological SRMs ($\mu g g^{-1}$)					
	Geological SRMs	This study (N=10) ^a	Ref. ^b	Literature values		
	USGS AGV-2, andesite	0.058 ± 0.004	(0.061)	0.121 ^c , 0.082 ^d ,		
	USGS BCR-2, basalt 0.148 ± 0.007 (0.14) 0.227° , 0.7					
	IAG SdAR-M2, sediment	5.10 ± 0.20	5.10 ± 0.19	/		
	IAG GSM-1, gabbro	0.072 ± 0.005	0.128 ± 0.012	/		
353	^a Mean \pm SD, the SD is the standard deviation for ten separate aliquots of the samples					
354	analyzed over a period of three months					
355	^b Reference value by USGS and IAG					
356	^c Literature value with convention inductively coupled plasma quadrupole mass					
357	spectrometry method by Marx and Kamber ³⁷					
358	^d Literature value with convention inductively coupled plasma quadrupole mass					
359	spectrometry method by Hu and Gao ³⁸					

1	
2	
2	
J ⊿	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
20	
32	
33	
34	
35	
36	
37	
38	
30	
⊿∩	
40 14	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
09	
60	

361						
362	Table 7. Recommended Cd v	values for 12 geological SRMs	determined in this work			
363	$(\mu g g^{-1})$					
	Geological SRMs	This work (N=10)	Reference values			
	GSD-7, stream sediment	1.20 ± 0.06	1.05 ± 0.06 ^a			
	GSD-19, stream sediment	0.088 ± 0.007	$0.120\pm0.01~^{a}$			
	GSR-22, limestone	0.121 ± 0.011	/ b			
	GSR-23, limestone	0.770 ± 0.040	/ b			
	GSR-24, limestone	0.063 ± 0.006	/ b			
	GSR-27, limestone	0.550 ± 0.050	/ b			
	GSR-28, limestone	0.510 ± 0.030	/ b			
	GUI-1, Limestone	0.042 ± 0.005	/ b			
	GUI-2, Limestone	0.160 ± 0.017	/ b			
	DIAN-1, Limestone	0.520 ± 0.030	/ b			
	DIAN-2, Limestone	0.366 ± 0.027	/ b			
	DIAN-3, Limestone	0.209 ± 0.015	/ b			

^a Recommend value

^b No reported value

Fig. 1. Schematic diagram of our aerosol dilution system. 75x35mm (300 x 300 DPI)

Fig. 2. Effects of dilution gas flow rate on oxide formation ratios ((94Mo16OH+ + 95Mo16O+)/95Mo+ and 94Zr16OH+/94Zr+) and the signal background ratio (SBR). 209x148mm (300 x 300 DPI)

Fig. 3. Cd values determined for 65 geological SRMs by the proposed method vs. their certified values. The inset shows the 40 geological SRMs containing ultra-trace levels of Cd (< $0.20 \ \mu g \ g^{-1}$). 156x118mm (300 x 300 DPI)

Fig. 4. Stability of Cd values obtained through the proposed method in 12 geological SRMs: two stream sediments: GSD-7 (a) and GSD-19 (b), and ten limestones SRMs: GSR-22 (c), GSR-23 (d), GSR-24 (e), GSR-27 (f), GSR-28 (g), GUI-1 (h), GUI-2 (i), DIAN-1 (j), DIAN-2 (k), and DIAN-3 (l). For each SRM, ten separate aliquots of the samples were analysed over a period of three months. 210x148mm (300 x 300 DPI)