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Abstract 
For instrument calibration where interpolation between reference materials is required, there exists a need 

for a generally applicable technique to determine: 1) The value of the calibration (e.g., the mass bias at an 

arbitrary time); 2) The uncertainty of this value; and, 3) The degree to which the uncertainties in the 

reference material analyses account for their scatter about the calibration.  Here, we show that an 

implementation of the reversible-jump Markov Chain Monte Carlo (rj-MCMC) technique can provide all 

three values for a reasonable range of complexity.  Using this algorithm we treat a drifting calibration 

value as a function of time by a series of straight line segments.  The benefit of the rj-MCMC technique is 

that the number of straight line segments does not need to be specified a priori, but is a parameter that is 

estimated.  This technique is also able to simultaneously determine the presence and magnitude of 

overdispersion (the amount of scatter in the data not accounted for by estimated uncertainties) even in the 

presence of complex, non-linear drift.  The result of this data treatment is a probability distribution in 

calibration-time space that, despite having an origin in line segments, smoothly follows the data and 

therefore yields the calibration value and its uncertainty.  We validate this technique using synthetic data 

from prescribed distributions, and demonstrate its utility and flexibility by applying it to data collected by 

multi-collector inductively coupled plasma mass spectrometry that display complex non-linear drift. 
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Introduction 
When making measurements of relative isotopic or elemental abundances by mass spectrometry there is 

usually a difference between the relative ion beam intensities - a directly measured quantity - and the 

quantity of interest, the relative abundances of the isotopes in the sample.  In the absence of spectral 

interferences, this effect is most generally referred to as mass discrimination
1
 or when specifically 

referring to isotopes of the same element, it is often called mass bias or mass fractionation.   Correction 

for this effect is commonly made by measuring reference materials (RMs) interspersed with 

measurements of samples during an analytical session, a technique commonly referred to as sample-

standard bracketing (SSB).  This is a widely employed technique for the calibration of mass bias and 

relative sensitivity factors for mass spectrometers, particularly secondary ion mass spectrometry (SIMS
2,3

) 

and multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS
4,5

). 

In many cases, the calibration of mass discrimination in mass spectrometers drifts with time, making it 

necessary to make multiple calibration measurements during an analytical session to allow accurate 

interpolation between RM measurements.  The way that time-dependent SSB data are treated is often 

related to the technique that is employed.  For example, mass discrimination in ICPMS instruments may 

have significant fluctuations at timescales of minutes to hours
6
, and therefore to achieve the highest 

accuracy, each sample must be bracketed by measurements of RMs in order to capture high-frequency 

variability.  Alternatively, SIMS instruments tend to be very stable over several hours, and often the 

calibration may be indistinguishable from a single value for the duration of an analytical session
3
.  In the 

latter case, accurate analyses can be achieved with lower frequency sampling of the mass discrimination. 

Although the statistical tools currently in use by the mass spectrometry community are sufficient to 

produce good quality data, it is clear that improvements can be made.  For example, in some SIMS and 

MC-ICPMS measurements, it is common practice to use only two bracketing analyses of RM to calibrate 

a single sample analysis by using a linear model interpolated between this pair of measurements. This 

approach assumes that the mean of the RM measurement is the true mean composition of the RM and that 

differences between RM are due only to instrument drift. Therefore, any error associated with the 

measurement of the RM directly leads to error in the data. In practice, other (non-bracketing) analyses of 

RM during the same analytical session will have a conditional relationship with the pair of bracketing 

RM, and could therefore enable the level of noise, or overdispersion, in the RM measurements to be 

assessed. 

To the best of our knowledge, there is no technique available in the literature that is able to provide a 

straightforward method of model selection and overdispersion calculation for drifting calibration data. 

Paton et al.
7
 describe a technique to determine overdispersion on drifting data using jackknife cross-

validation technique, but their data were corrected using a spline fit. Compston and Clement
8 
utilized a 

locally weighted least squares technique and a bootstrap to account for drifting data and it’s uncertainty, 

but make no provision for overdisperson. Here, we provide an approach to infer the probability 

distribution of calibration drift through time along with an estimate of the overdispersion of the measured 

RM (the degree to which the uncertainties account for scatter in the data). In order to quantify this 

probability and simultaneously determine the complexity of the model, we use a reversible jump Markov 

chain Monte Carlo algorithm, a flexible numerical technique  (e.g., Sambridge et al. 
9
).  
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Interpolation using bracketing procedures 
Figure 1 provides an illustration of ambiguity associated with model selection when interpolation between 

RM analyses is required for instrument calibration.  We show twenty-seven measurements of the apparent 
208

Pb/
206

Pb of the reference material NIST SRM-612 glass by laser-ablation MC-ICPMS taken over the 

course of a ~7 hour analytical session (Figure 1a).  These analyses are used to calibrate the instrument for 

the sample analyses that take place between sets of RM measurements.  The total range of Pb isotopic 

compositions is about 0.1%, an order of magnitude larger than the uncertainties on individual analyses.  

The scatter in excess of the analytical uncertainties is not random: from inspection of Fig. 1a, it is clear 

that the Pb compositions rise for about the first ⅓ of the session, appear to either peak or are constant in 

the middle of the session, and then drop for the last half of the session.  These smooth variations in mass 

discrimination are common on ICPMS instruments
6
, where they probably reflect small changes in 

analytical conditions (expansion and contraction of components due to temperature changes, change in 

gas flow etc.). Unfortunately, there is no theory that predicts the form of the mass discrimination 

variation, nor is the drift reproducible from session to session in such a way that it can be predicted 

empirically.   

We illustrate two commonly used methods to calculate mass bias corrections from these RM analyses. 

The first method is by linear interpolation between each set of bracketing RMs and is illustrated in Fig. 

1b. The advantage of this technique is that it is flexible and can account for nearly any form of drift 

because it only utilizes adjacent pairs of analyses, provided that there is no variation in the mass bias at a 

higher frequency than the RMs are measured.  The main disadvantage is that it is an inefficient use of 

available data - by ignoring all but two analyses, the calibration is very sensitive to noise in the RM 

measurements and does not take into account the information provided by preceding and anteceding 

measurements.  Furthermore, this method makes it difficult to determine the degree to which the 

estimated RM uncertainties account for scatter in the mass bias calibration, because each bracket is a line 

fit to two points, which by definition fit the data perfectly.  This problem is ameliorated in analyses in 

which there is a large quantity of homogeneous sample available such that the measurement can be 

reproduced multiple times.  However, for analyses that cannot be repeated - microbeam measurements 

where small-length-scale heterogeneities are of interest, for example - estimating overdispersion of RMs 

is a crucial element of estimating the correct uncertainty of samples. 

A second method is to break the analytical session into segments that may be defined by arbitrary 

functions defined by the analyst, shown in Fig. 1c.  For example, this analytical session could be broken 

into three different functions: 1) linear increase in the Pb isotopic composition through time; 2) constant 

through time; and 3) linear decrease in the Pb isotopic composition through time.  These are illustrated in 

Figure 1. Unfortunately, the segmentation is arbitrary and cumbersome, induces sharp changes in the 

modelled mass discrimination, and can be challenging for more strongly non-linear drift. 

Methods 
Here we present a method to infer the calibration and its uncertainty as a function of time during an 

analytical session. We also use this method to simultaneously determine the overdispersion of the data.  In 

order to describe calibration drift through time we treat the calibration as a series of straight-line segments 

that change slope an unknown number of times during the analytical session.  We refer to the position of 
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changes in slope as “nodes” and define them as a function of mass bias and time. An advantage of this 

simple parameterization is that it can approximate a large range of complex functions by varying the 

positions and the number of the nodes.  Although the parameterization is comprised of line segments, 

through high-density sampling of parameter space (as described below) the resulting calibration and it’s 

uncertainty will be smooth functions, the final shape of which will be controlled by the structure of the 

input data. 

In order to infer the probability of the locations of these nodes and an overdispersion term we adopt a 

transdimensional Bayesian framework
10,11

. In this framework, the posterior probability distribution of the 

model parameters is the distribution of interest, as it describes the positions of the nodes (and hence the 

distribution of the calibration through time) and the magnitude of the overdispersion parameter.  The 

posterior probability distribution given the data is a product of the model likelihood function (which 

quantifies how well the data fit the model) and the prior distribution of the model parameters. For the 

likelihood function, we assume that each RM analysis is drawn from a normal distribution centered on the 

true, but unknown, value of the RM, with a variance of ��	 +	��, where �� is the measured variance and 

� is the overdispersion
12

. In turn, the log-likelihood of a model is a function of the observed ratios (��), the 

predicted ratios (��) and the overdispersion	�: 

	 = −0.5����� − ����
��� − �� + ������ − �� � + ���2���

�

���
	

 

where n is the number of measurements of the RM. 

The prior distribution quantifies what is known about the parameters “prior” to the analysis. Here, we 

assume that all parameters are independent and use what is referred to as a “weak” prior distribution, one 

that constrains the minimum and maximum values of the calibration to reasonable values but does not 

strongly control its final form.  We assign a uniform density prior distribution to the “time” parameter 

between the maximum and minimum times defined by the analytical session.  For the calibration itself, 

we also assign a uniform distribution that has maximum and minimum values that extend a reasonable 

distance above the highest and lowest measurements.  Similarly, the prior distribution of � is uniform and 

must be defined between ���� and ���� (which we define based on the observed data spread).   

In order to sample and approximate the posterior distributions of the calibration and �, we use a rj-

MCMC algorithm
13

. Here, we provide a short description of the algorithm and the philosophy behind this  

approach, but refer readers to Sambridge et al.
9
 for a more complete description. The rj-MCMC algorithm 

is similar to the MCMC algorithm, in which parameter space is explored in a sequential manner by 

proposing perturbations to a current model. The value of a perturbation is drawn from a proposal 

distribution, commonly described as a Gaussian distribution centered on zero, and the variance controls 

the proposed distance from the current model. For example, the value of a specific node describing the 

current calibration model may be perturbed to form a proposed calibration model. The proposed model is 

then accepted or rejected such that perturbations that lead to more likely models are always accepted 

while less likely models are accepted in proportion to the ratio of the current-proposed likelihood. Once a 

proposed model is accepted, this model replaces the current model and is saved and used to approximate 
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the posterior distribution. This process is typically repeated 1000s of times. Importantly, the variance of 

the proposal distribution controls the rate at which the algorithm samples parameter space not the final 

posterior distribution, provided sufficient models are proposed and accepted.  

In the case of the rj-MCMC algorithm, additional proposals account for the possibility of adding (Birth 

proposal) or subtracting (Death proposal) a node
9
. Increasing the complexity of the model by adding an 

additional node likely leads to increased data likelihood and vice versa. Therefore, it may be expected that 

the rj-MCMC will lead to overly complex models. However the acceptance criteria accounts for this 

change in dimensionality and not just the change in likelihood. The simplified acceptance criteria is  

 = !"� #1, &�!'�&�!(� ∙
	'	(* 

where m is a vector containing the model parameters (positions and values of nodes and the 

overdispersion) and P(m) is the prior distribution of the model parameters, and L is the likelihood (or data 

misfit) and the subscripts p and c correspond to the proposed and current models.  Although the ratio of 

the likelihoods, Lp/Lc, will tend to lead to more complex models, the prior ratio, P(mp)/P(mc), will favor 

simpler models. For example, if a new node is proposed but the likelihood remains unchanged, Lp and Lc 

cancel, leaving only P(mp), which is equivalent to P(mc) multiplied by the prior on the new parameter, 

which is less than one. Therefore, the probability of this proposal being accepted is equal to the prior on 

the new parameter. This highlights that simpler models will be favored over more complex models with 

similar misfits. Note that this is a simplified explanation for illustrative purposes. The exact value of P(m) 

is a complicated function of the width of the prior for permitted calibration values, the number of nodes 

describing the calibration and the width of the prior for overdispersion. For an in depth description of the 

rj-MCMC algorithm the reader is referred to
9
 and for a description of how P(m) is calculated the reader is 

referred to 
14

.  

There are five distinct proposals that are possible: 1) the time value of a node can move (Move); 2) the 

value of the calibration at a node can change (Change); 3) the number of nodes describing the calibration 

can be increased (Birth); 4) the number of nodes describing the calibration can be decreased (Death); 5) 

the value of � defining overdispersion can change (Noise). Proposals (1-5) are highlighted in figure 3. 

The proposed perturbations are drawn from Gaussian distributions centered on the current model with 

specified standard deviations and these must be tuned to provide acceptance rates as close to 44% for 

each type of perturbation
15

. The initial models in the Markov chain form the “burn in” period prior to the 

chain achieving convergence, and this part of the chain is very sensitive to the first model, which is 

selected at random. Therefore, only these models are not used approximate the posterior distribution.  

The multi-dimensional parameter space is projected onto a plane representing time and calibration drift.  

This is achieved by discretizing this plane into number of pixels with constant area. The number of times 

a model in the ensemble of accepted models intersects a specific pixel divided by the total number of 

these models provides the posterior probability that the calibration drift was that specific value at that 

specific time. Furthermore, we can characterize features of the distribution such as a mean value and 

Bayesian equivalents of confidence intervals. The mean value is approximated as the expected model, 

which is the weighted sum of the posterior distribution, we refer to this model as the mean below. The 

Bayesian equivalent of a confidence interval is a credible interval, which accounts for the prior 
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distribution. The 68 % and 95 % credible intervals are shown about the expected intervals. The 

overdispersion distribution can be visualized with a histogram of accepted models.  

Example Results 
To demonstrate the utility and validity of this technique, we provide four examples.  The first two 

examples apply the technique to simple synthetic datasets to demonstrate that despite the apparent 

complexity of the rjMCMC technique, it accurately returns the true model parameters.  The final two 

examples are real datasets for which the scatter in the calibration is a smooth but non-linear function of 

time. 

Synthetic Data 

In example A, there is no drift in the calibration and the prescribed measurement uncertainties capture all 

of the scatter in the calibration.  For this example, 20 random values representing measurements were 

drawn from a Gaussian distribution with a mean of 1 and a standard deviation of 0.001.  The 

“uncertainties” of the measurements were drawn from a lognormal distribution with a mean of 0.001 to 

simulate the real variation that is seen in measurement uncertainties.  Example B is the same as example 

A, except that an additional component of constant magnitude overdispersion (�) of 0.002 has been added 

to the Gaussian distribution prior to sampling. 

Example A 

For example A, the rj-MCMC analysis recovers a calibration consistent with the assigned values. The 

calculated mean value is approximately equal to 1 and does not systematically deviate from this value as a 

function of time. The 68 % credible interval of the calibration, approximately equivalent to one standard 

deviation varies somewhat, but is close to +/-0.001, similar to the assigned value.  The distribution of the 

predicted overdispersion has a broad maximum that extends from 0 to about 0.0005.  Since this value 

would be quadratically added to single analysis uncertainties (which have a mean of 0.001) their effect is 

negligible, and practically equivalent to an overdispersion of 0, which is the assigned value. 

Example B 

In example B, again we predict the true values for the mean. In this case, while the 68 % credible interval 

is somewhat variable but is between ±0.001 and ±0.002, the latter being the assigned total scatter of the 

data.  In contrast to example A, the overdispersion parameter is clearly separated from a value of zero, 

and the true value of overdispersion, 0.002 is captured by the distribution of �. 

Pb isotope data 

We now apply our approach, to the Pb isotope measurements discussed above  (Figure 4a,b). The mean 

value of the calibration model captures the overall structure of the data.  The distribution of the calibration 

has a relatively constant width at 68%, but has variable asymmetry and width at 95%, particularly at times 

when the calibration appears to be shifting.  The distribution of the overdispersion strongly resembles that 

from Example A, which has a broad maximum extending from a value of zero before monotonically 

decreasing near the value of the typical analysis precision.  This is a distribution that implies no or very 

little excess scatter.  Therefore the analytical uncertainties account for the scatter in the data. 
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K Isotope data 

For a final example, we show MC-ICPMS data of K isotope ratio measurements over the course of a 14 

hour analytical session (Figure 4c,d).  This dataset shows a number of interesting features, including a 

long period of nearly unchanging instrument calibration, a slow rise, and two substantial changes in slope.  

The rj-MCMC algorithm appears to capture the overall topology of the dataset quite well.  The flat, 

unchanging portion is characterized by a precisely defined calibration, but at the strong inflection points 

the distribution becomes very broad and asymmetric.  The consistency of the distribution is shown in the 

inset to Fig. 4c.  In contrast to the Pb isotope data, the K isotope data show a substantial amount of 

overdispersion, approximately equal to the value of the typical analysis precision (Fig. 4d). This suggests 

that the reported variance of a measurement (if treated in an identical manner as the RMs) needs to be 

doubled or equivalently the uncertainty needs to be expanded by a factor of approximately 1.4. 

Discussion 
The results from the synthetic datasets demonstrate that despite the complexity of the rj-MCMC technique 

and the fact that it can allow for very complex models, the technique accurately recovers the true values 

and simple parameter distributions from straightforward datasets.  In particular, the model performs well 

in resolving the tension between the attribution of overdispersion and model complexity and correctly 

attributes the extra scatter in the second synthetic example to overdispersion rather than complex 

instrument drift.  This is important, because it shows that our technique is robust and can be applied to 

simple datasets (where traditional techniques also work well) as well as more complex cases where this 

technique excels. 

We expect that datasets that have a low complexity but are highly overdispersed will challenge the rj-

MCMC technique.  However, datasets of this type (highly overdispersed) probably indicate a problem 

with either the measurements or the method by which the uncertainty is assigned, and should probably be 

addressed prior to treatment by any data reduction scheme. 

The two real datasets are characterized by mean values that smoothly capture the overall trends in the 

data.  The distributions of the calibration models are smooth, symmetric and close to Gaussian during 

periods in which the calibration is either unchanging or changing linearly, but near knickpoints the 

distribution widens and can become asymmetric, particularly in the tails.  This feature of the distributions 

is a consequence of the lower confidence that the drift of the calibration is accurately captured by the 

model in these regions.  Features such as non-linear changes and asymmetry in precision may be 

unfamiliar to some analysts, but they are a consequence of non-linear changes in mass bias. 

A disadvantage of our approach is that it is relatively computationally expensive, as many thousands of 

models are required to approximate the posterior distribution.  However, the computations involved in 

these calculations can be made in a couple of minutes on desktop personal computer. 

Conclusions 
We have developed a method to infer the probability of calibration drift through time along with an 

estimate of the overdispersion of the measured RM. Our approach uses a reversible jump Markov chain 
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Monte Carlo algorithm, which provides a means to simultaneously sample the calibration-time space, the 

model complexity and a term describing model overdispersion. The code used for the calculations is 

written in Fortran. These computations are straightforward enough to be run on inexpensive personal 

computers, and therefore can be built into general data reduction schemes, providing tools to analysts to 

make more accurate measurements. 
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Figure Captions 
Figure 1. Ambiguity associated with model selection when interpolating between twenty-seven 

measurements of 
208

Pb/
206

Pb of the reference material NIST SRM-612 glass by laser-ablation MC-ICP-

MS. The analytical session is ~7 hour in duration. (A) A general trend is observed in the data during the 

course of the analytical session. (B) Interpolating between each pair of measurements does not enable  

estimation of uncertainty of the RM. (C) Regressing linear segments through portions of the time series 

does permit the uncertainty to be estimated, however it is unclear how many segments to use and how to 

treat adjacent segments.  

Figure 2. Five changes to the current model (solid black lines) may be proposed at each step of the rj-

MCMC. (A) Proposals 1, 2 and 5 are shown: the location of the node may move (dotted line), the ratio 

value of a node may change (dashed line), or the overdispersion may change. (B) Proposals 3 and 4 are 

shown: a new node can be proposed (dashed line) or a node can be removed (dotted line).  

Figure 3. Application of our method for synthetic two synthetic datasets, examples A and B. Posterior 

probability of calibration drift through time for a synthetic dataset (A) with a mean of 1 and standard 

deviation of 0.001.  A(i). Measurement uncertainty has been assigned to each datum assuming a log-

normal distribution with a mean of 0.001. In A(i), the solid black curve shows the expected calibration 

through time, and the dark grey and light grey envelopes represent the 68 % and 95 % credible intervals, 

respectively. The histogram of overdispersion values for accepted models approximates the posterior 

probability of overdispersion in the data, A(ii). The true assigned overdispersion value is 0 as highlighted 

in the figure. The same figures are shown for example B. Posterior probability for calibration drift 

through time, B(i), for synthetic dataset (B) and, B(ii), histogram of overdispersion values.  
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Figure 4. Application of our method for two real datasets. The black line is the central tendency of the 

posterior distribution, and the dark and light grey are 68% and 95% credible intervals, respectively. (A) 

Measured 
208

Pb/
206

Pb of NIST SRM-612 glass by laser-ablation ICP-MS through time and the 

corresponding posterior probability of calibration drift. (B) Posterior distribution of overdispersion in the 

data. (C) Measured 
41

K/
40

K of NIST SRM-985 by solution MC-ICPMS through time with the 

corresponding posterior probability of calibration drift, with an inset showing a close up view of the 

posterior distribution.  (D) Posterior distribution of overdispersion in the data. 
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