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INSIGHT STATEMENT 

 

Auto-regulatory feedback loops are used by cells to maintain homeostasis and to initiate 

irreversible transitions between cell states. Genome-wide experimental and computational 

methods predict that many RNA binding proteins participate in auto-regulatory feedback 

loops.  However, experimental verification of these predictions, as well as measurement of 

the strength of individual feedback loops is lags behind. Here we present a mathematical 

and experimental framework for quantifying the presence and strength of native feedback 

loops, and validate the system using synthetic regulatory circuits constructed in yeast using 

RNA binding proteins.  This system allows rapid and high-throughput measurements of the 

strength of positive and negative feedback loops, and, importantly, can differentiate direct 

effects from indirect effects.  
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Auto	 regulatory	 feedback	 loops	occur	 in	 the	 regulation	of	molecules	 ranging	 from	ATP	 to	

MAP	 kinases	 to	 zinc.	Negative	 feedback	 loops	 can	 increase	 a	 system’s	 robustness,	while	 positive	

feedback	loops	can	mediate	transitions	between	cell	states.	Recent	genome-wide	experimental	and	

computational	 studies	 predict	 hundreds	 of	 novel	 feedback	 loops.	 However,	 not	 all	 physical	

interactions	 are	 regulatory,	 and	many	 experimental	methods	 cannot	 detect	 self-interactions.	Our	

understanding	of	regulatory	feedback	loops	is	therefore	hampered	by	the	lack	of	high-throughput	

methods	 to	 experimentally	 quantify	 the	 presence,	 strength,	 and	 temporal	 dynamics	 of	 auto	

regulatory	feedback	loops.	Here	we	present	a	mathematical	and	experimental	framework	for	high-

throughput	quantification	of	 feedback	 regulation,	 and	apply	 it	 to	RNA	binding	proteins	 (RBPs)	 in	

yeast.	 Our	 method	 is	 able	 to	 determine	 the	 existence	 of	 both	 direct	 and	 indirect	 positive	 and	

negative	feedback	loops,	and	to	quantify	the	strength	of	these	loops.	We	experimentally	validate	our	

model	 using	 two	 RBPs	 which	 lack	 native	 feedback	 loops,	 and	 by	 the	 introduction	 of	 synthetic	

feedback	loops.	We	find	that	the	the	RBP	Puf3	does	not	natively	participate	in	any	direct	or	indirect	

feedback	 regulation,	 but	 that	 replacing	 the	 native	 3’UTR	with	 that	 of	 COX17	 generates	 an	 auto-

regulatory	negative	 feedback	 loop	which	 reduces	 gene	 expression	noise.	 Likewise,	 the	RBP	Pub1	

does	not	natively	participate	in	any	feedback	loops,	but	a	synthetic	positive	feedback	loop	involving	

Pub1	 results	 in	 increased	 expression	 noise.	 Our	 results	 demonstrate	 a	 synthetic	 experimental	

system	for	quantifying	 the	existence	and	strength	of	 feedback	 loops	using	a	combination	of	high-

throughput	experiments	and	mathematical	modeling.	This	system	will	be	of	great	use	in	measuring	

auto-regulatory	 feedback	by	RNA	binding	proteins,	 a	 regulatory	motif	 that	 is	 difficult	 to	quantify	

using	existing	high-throughput	methods.	 

 

INTRODUCTION 

 

Homeostatic	maintenance	of	cell	state	and	transitions	between	states	are	often	mediated	by	

sets	of	feedback	loops1.	These	loops	can	be	positive	or	negative,	and	either	directly	auto-regulatory	

or	indirect,	acting	through	any	number	of	intermediate	genes.	Both	positive	and	negative	feedback	
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loops	are	used	by	both	organisms	and	synthetic	biologists	 to	perform	a	wide	 range	of	 tasks,	 e.g.,	

ATP	 biosynthesis2,	 MAPK	 signaling3	 and	 zinc	 homeostasis4.	 Genome-wide	 experimental	

measurements	 and	 computational	 predictions	 of	 protein-protein	 and	 protein-RNA	 interactions	

suggest	 the	 existence	 of	 thousands	 of	 feedback	 loops5–11.	 However,	 not	 all	 genes	 that	 physically	

interact	 with	 each	 other	 regulate	 each	 other.	 Interaction	 does	 not	 necessitate	 regulation.	 For	

example,	the	mRNAs	bound	by	a	given	RBP	and	the	RNAs	that	change	expression	upon	deletion	of	

that	 RBP	 show	 surprisingly	 little	 overlap12.	 Therefore,	 high-throughput	 experimental	 and	

computational	 methods	 that	 are	 increasingly	 good	 at	 correctly	 identifying	 physical	 interactions	

must	be	complemented	by	high-throughput	methods	for	quantifying	the	sign	and	strength	of	these	

regulatory	interactions. 

 

Feedback	loops	can	be	described	by	two	sets	of	properties:	positive	or	negative	and	direct	

or	indirect13,14.	A	direct	auto-regulatory	feedback	loop	is	one	in	which	a	protein	activates	or	inhibits	

itself,	 while	 in	 an	 indirect	 loop	 this	 feedback	 occurs	 through	 one	 or	 more	 intermediate	 genes.	

Furthermore,	 feedback	 loops	 can	 be	 positive,	 in	 which	 a	 gene	 increases	 its	 own	 expression	 or	

activity	(eg:	via	phosphorylation),	or	negative,	in	which	a	gene	represses	or	inactivates	itself.		Direct	

auto-regulatory	negative	 feedback	 loops	have	an	 intrinsic	ability	 to	 reduce	sensitivity	 to	 intrinsic	

and	extrinsic	perturbations	15–17.	In	addition,	the	negative	feedback	network	motif	can	shorten	the	

response	time	of	a	network,	as	is	found	in	the	SOS	DNA	repair	pathway	and	in	ribosome	biogenesis	

in	E	coli18–20,	 	and	can	alter	the	response	curve	of	a	gene	to	changes	 in	 inducer	concentration21,22.	

Time-separation	in	negative	feedback	loops,	often	in	indirect	feedback	via	intermediate	genes,	can	

generate	irreversible	transitions,	as	are	found	in	the	circadian	clock	and	the	cell-cycle23,24.	Positive	

feedback	loops	play	an	entirely	different	set	of	roles25,	the	most	common	of	which	is	bi-stability,	or	

all-or-none-transitions26.	 These	 networks	 motifs	 are	 common	 in	 the	 cell-cycle	 and	 in	 cell-

differentiation,	 both	 of	which	 often	 display	 a	 fast	 positive	 feedback	 loop	 and	 a	 delayed	 negative	

feedback	 loop	 in	order	 to	achieve	an	 irreversible	 transition	between	two	stable	states,	 such	as	 in	

the	cell-cycle	or	in	sex	differentiation24,27.	 

 

Functional	 genomic	 and	 bioinformatic	 methods	 predict	 that	 many	 RNA	 binding	 proteins	

(RBPs)	participate	in	feedback	loops,	in	which	the	RPB	regulates	the	level	of	its	own	protein,	either	

directly	or	indirectly10.	Direct	negative	feedback	auto-regulation	appears	to	be	a	common	motif	for	

RBPs,	and	many	genes	that	lack	a	canonical	RNA	binding	domain	may	bind	to	their	own	mRNA	and	

regulate	 their	 own	 translation10.	 However,	 very	 few	 of	 these	 feedback	 interactions	 have	 been	
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experimentally	 tested,	 as	 no	 high-throughput	methods	 exist	 for	 such	 validation.	The	 typical	 high	

test	to	measure	the	regulatory	effect	of	a	particular	RBP	involves	deletion	of	that	RBP,	and	therefore	

these	methods	are	incapable	of	determining	the	existence	of	feedback	loops.	In	order	to	determine	

the	 complete	 set	 of	 RBPs	 that	 control	 their	 own	 expression	 via	 direct	 or	 indirect	 feedback	

regulation,	we	developed	a	mathematical	model	and	a	high-throughput	experimental	method	that	

work	together	to	identify	the	presence	of	such	loops	and	to	measure	their	relative	strength.	 

 

 

 

RESULTS 

 

A mathematical model for detecting feedback loops using a synthetic inducible promoter.  

 

In	a	simple	feedback-free	model	of	gene	expression	(see	methods),	two	proteins	under	the	

control	 of	 the	 same	 inducible	 promoter	 will	 show	 similar	 inductions	 curves	 (Figure 1A-D).	

Differences	 in	 the	 transcription,	 translation,	 and	degradation	 rates	of	 these	 genes	 result	 in	 offset	

induction	 curves	 (Figure 1B).	 However,	 the	 offset	 between	 these	 two	 curves	 is	 constant,	 and	

therefore	the	log-ratio	of	expression	between	a	protein	of	interest	and	a	reference	protein	(eg:	GFP)	

under	control	of	the	same	promoter	will	remain	constant	across	induction	levels	(Figure 1C).	This	

effect	can	also	be	visualized	by	plotting	expression	of	the	protein	of	interest	against	the	reference;	a	

change	 in	 the	 transcription	 rate,	 translation	 rate,	or	degradation	 rate	will	 result	 in	diagonal	 lines	

with	the	same	slope	in	log-log	space	(Figure 1D).	However,	if	one	of	the	proteins	participates	in	a	

feedback	loop,	the	shape	of	the	induction	curve	will	change	(Figure 1E,F).	At	low	levels	of	induction	

(low	TF	concentration,	and	therefore	low	protein	levels),	the	feedback	loop	will	be	negligible,	and	

expression	will	be	similar	between	the	two	proteins.	As	the	induction	increases,	and	therefore	the	

expression	of	both	proteins	 increases,	 the	effect	of	 the	feedback	 loop	on	expression	will	 increase,	

resulting	in	larger	differences	in	the	ratio	between	the	expression	of	the	two	proteins	(Figure 1G).	

This	can	also	be	visualized	as	a	change	in	the	slope	when	comparing	the	expression	of	one	protein	

against	 the	 other	 (Figure 1H).	 Therefore,	 a	 relatively	 simple	model	 of	 gene	 expression	 suggests	

that	it	should	be	possible	to	detect	feedback	loops	by	placing	two	proteins	under	the	control	of	the	

same	 inducible	 reporter,	 and	 determining	 how	 the	 ratio	 between	 the	 two	proteins	 changes	 as	 a	

function	of	expression	level.	 
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Design of a feedback-detector master strain.  

In	 order	 to	 experimentally	 test	 the	 above	 predictions,	we	 developed	 a	 feedback	 detector	

control	strain	(bud9::Z3EVpr-GFP-GAL803’UTR	,	his3::Z3EVpr-mCherry-HIS33’UTR	,	hereafter	referred	to	

as	Y197)	in	which	both	GFP	and	mCherry	are	driven	by	the	same	Z3EV	promoter	under	the	control	

of	 the	 β-estradiol	 inducible	 synthetic	 zinc-finger	 transcription	 factor	 Z3EV	 (Figure 2A,B)28,29.	

Addition	of	β-estradiol	results	 in	increased	activity	of	 the	Z3EV	transcription	factor	and	increased	

expression	 of	 both	 GFP	 and	mCherry	 (Figure 2C).	 In	 the	 absence	 of	 feedback,	 the	 two	 proteins	

show	identical	induction	curves,	and	the	ratio	between	the	two	proteins	remains	constant	(Figure 

2C,D).	 Our	 model	 (see	 Methods)	 predicts	 that	 if	 we	 use	 the	 Z3EVpr-mCherry	 construct	 to	 N-

terminally	tag	an	RNA	binding	protein	that	participates	in	a	feedback	loop	(Figure 2E,F),	we	would	

alter	the	induction	curve	of	mCherry	but	not	GFP,	and	hence	the	ratio	between	the	two	fluorescent	

proteins	would	change	as	a	function	of	TF	concentration	(Figure 2G,H).	In	order	to	experimentally	

test	our	feedback	model,	we	built	synthetic	gene	circuits	with	and	without	feedback	regulation. 

 

A Puf3-COX17 construct participates in an auto-regulatory negative feedback loop.  

 

Puf3	 is	 an	 RNA	 binding	 protein	 that	 binds	 to	 sequence	 elements	 in	 the	 COX17	 3’UTR,	

resulting	in	a	destabilized	COX17	mRNA30.	We	therefore	hypothesized	that	a	puf3::Z3EVpr-mCherry-

Puf3-COX173’UTR	 strain	 (LBCY209,	 hereafter	 referred	 to	 as	 PUF3COX17)	 	 should	 have	 a	 negative	

feedback	 loop,	 while	 a	 puf3::Z3EVpr-mCherry-Puf3-PUF33’UTR	 (LBCY200,	 PUF3PUF3)	 should	 lack	

feedback	regulation.	We	therefore	built	 these	two	strains,	replacing	the	native	promoter	with	the	

Z3EVpr-mCherry	 construct,	 and	 measured	 the	 expression	 of	 mCherry-Puf3	 as	 a	 function	 of	 β-

estradiol.	We	 find	 that,	 as	predicted	by	 the	model,	 PUF3PUF3	 shows	 the	 same	 induction	curves	 as	

Y197,	 albeit	 shifted	 towards	 lower	mCherry	 expression	 (Figure 3B,C).	 In	 contrast,	 the	mCherry	

signal	 for	 the	 PUF3COX17	 flattens	 out	 at	 high	 β-estradiol	 (Figure 3B,C).	 The	 result	 is	 that	 the	 the	

log2(mCherry/GFP)	 ratio	 shows	 identical	 behavior	 between	 Y197	 and	 PUF3PUF3	 (Figure 3D).	 In	

contrast,	for	PUF3COX17,	the	ratio	decreases	with	increasing	β-estradiol,	consistent	with	the	presence	

of	 a	negative	 feedback	 loop.	 Further	 consistent	with	 the	presence	of	 a	negative	 feedback	 loop	 in	

PUF3COX17	but	not	in	PUF3PUF3,	the	slope	of	GFP	vs	mCherry	for	the	PUF3COX17	strain	is	lower	(Figure 

3E),	as	predicted	by	the	model	for	a	negative	feedback	loop.	 

 

Gene	expression	 is	a	stochastic	process	 in	which	promoters	switch	on	and	off,	generating	

bursts	of	protein	production31.	Therefore	gene	expression	can	be	decomposed	into	two	parts,	burst	
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frequency	 (the	 rate	 at	 which	 a	 promoter	 switches	 on),	 and	 burst	 size	 (the	 number	 of	 protein	

molecules	made	each	 time	a	promoter	switches	on)32.	We	hypothesized	 that	a	negative	 feedback	

loop	 that	 acts	 at	 the	 level	 of	 mRNA	 stability	 would	 decrease	 burst	 size.	 Consistent	 with	 this	

hypothesis,	 the	 burst	 frequency	 for	 the	 two	 strains	 is	 identical,	 while	 the	 burst	 sizes	 are	 vastly	

different	(Figure 4A-D).	Interestingly,	we	find	that,	at	low	induction	levels,	PUF3COX17	has	a	higher	

burst	 size	 than	 PUF3PUF3,	 though	 the	 burst	 size	 of	 PUF3COX17	 increases	more	 slowly	 than	 that	 of	

PUF3PUF3	(Figure 4B),	suggesting	that	two	competing	processes	control	expression	of	PUF3COX17:	an	

increase	 in	expression	 from	 increasing	β-estradiol,	 and	a	decrease	 in	expression	 from	decreasing	

stability	of	the	mRNA	due	to	negative	feedback.	The	final	result	of	the	negative	feedback	loop	is	that	

the	same	mean	expression	 is	reached	at	different	β-estradiol	concentrations,	 though	the	width	of	

the	single-cell	expression	distribution	of	mCherry-Puf3	is	wider	without	the	negative	feedback	loop	

(Figure 4E),	suggesting	that	cells	may	use	auto-regulatory	negative	feedback	loops	to	decrease	cell-

to-cell	variability	in	RBP	expression.	 

 

Z3EVpr-Pub1 participates in an indirect positive feedback loop 

Pub1	is	a	poly(U)	binding	protein	that	binds	to	and	stabilizes	up	to	10%	of	yeast	mRNAs.	

We	found	that	a	pub1Δ	strain	exhibits	reduced	Z3EVpr-GFP	expression	(Figure 5A).	However,	this	

reduction	 is	 not	 constant	 (Figure 5B),	 as	 would	 be	 expected	 from	 altered	 stability	 of	 the	 GFP	

mRNA.	Instead	the	effect	depends	on	the	level	of	induction,	suggesting	that	Pub1	acts	upstream	of	

GFP,	 i.e.,	 at	 the	 level	 of	 Z3EV	 activity.	 This	 suggests	 that	 Pub1	may	 increase	 expression	 all	 Z3EV	

targets	 in	 a	 dose-dependent	 manner.	 In	 other	 words,	 a	 Z3EVpr-Pub1	 will	 generate	 a	 positive	

feedback	 loop.	 To	 test	 this	 hypothesis	 we	 replaced	 the	 native	 Pub1	 promoter	 with	 the	 Z3EVpr-

mCherry	 construct,	 generating	 	 a	 pub1::Z3EVpr-mCherry-Pub1	 strain	 (Figure 5C)	 and	measured	

both	GFP	and	mCherry	as	a	function	of	β-estradiol	concentration.	Consistent	with	our	hypothesis,	

both	GFP	and	mCherry	show	more	steep	induction	curves	 in	a	Z3EVpr-mCherry-Pub1	strain	 than	

they	 do	 in	 the	 wild-type	 control	 (Figure 5D,E,F).	 In	 contrast	 to	 the	 negative	 feedback	 loop	

mediated	by	Puf3,	the	positive	feedback	loop	mediated	by	Pub1	results	in	an	increase	in	the	width	

of	the	single-cell	distribution	(Figure 5G).	Thus,	Z3EVpr-mCherry-Pub1	drives	a	positive	feedback	

loop	that	results	in	increased	expression	of	both	Z3EVpr-mCherry	and	Z3EVpr-GFP.	 

 

A mathematical model in which tagging RBPs with mCherry can explain all of the data.  

In	 the	 above	 experiments	we	measured	 expression	 of	 four	 different	 strains,	 all	 of	 which	

contain	Z3EVpr-GFP	as	an	 internal	 control,	 and	each	of	which	contains	a	unique	Z3EVpr-mCherry	
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derived	 construct.	 The	 different	 C-terminal	 ends	 on	 mCherry	 (mCherry,	 mCherry-Puf3	 and	

mCherry-Pub1),	and	the	different	3’UTRs	are	likely	to	affect	the	stability	of	the	mCherry	mRNA	and	

protein.	These	can	be	modeled	as	constant,	 transcription	 factor	 independent	changes	 in	mCherry	

expression	level.	In	contrast,	feedback	loops	introduced	transcription	factor	dependent	changes	in	

mCherry	expression.	To	determine	if	all	of	our	data	can	be	explained	by	this	model,	we	fit	a	model	

without	feedback	to	Y197	(mCherry)	data,	and	then	used	the	same	parameters,	but	allowed	only	K’b	

(TF	independent	transcription	&	translation)	to	vary	(see	methods).	We	find	that	this	model	can	fit	

Y200	(mCherry-PUF3PUF3)	but	not	the	other	strains,	consistent	with	our	above	hypothesis	that	this	

strain	lacks	any	feedback	loops	(Figure 6A,B).	We	next	fit	the	same	model	but	allowed	both	K’b	and	

F	 to	 vary.	 We	 find	 that	 this	 model	 can	 fit	 all	 measured	 strains,	 and	 that	 all	 good	 fits	 to Y209	

(mCherry-PUF3COX17)	have	a	negative	value	of	F,	and	all	good	fits	to	(mCherry-PUB1)	have	a	positive	

value	of	F,	 consistent	with	our	hypothesis	 that	 these	strains	have	negative	and	positive	 feedback	

loops,	respectively	(Figure 6 C,D).	Thus,	our	two-color	Z3EVpr	feedback	detector	system	is	able	to	

identify	the	presence	of	both	direct	and	indirect	feedback	loops	regulated	by	RNA	binding	proteins.	

In	addition,	by	fitting	the	model	to	data,	F	provides	a	single	value	quantification	of	the	strength	of	

the	 feedback	 loops,	 and	 permits	 quantitative	 comparison	 of	 positive	 and	 negative	 feedback	

interactions.		 

 

DISCUSSION 

In	 summary,	 we	 have	 developed	 and	 experimental	 and	 mathematical	 framework	 to	

measure	 the	 strength	 of	 native	 regulatory	 feedback	 loops.	 Through	 the	 use	 of	 an	 experimental	

system	in	which	two	fluorescent	reporters	are	driven	by	the	same	transcription	factor,	but	one	of	

these	 is	coupled	 to	an	RNA	binding	protein,	we	can	not	only	detect	 the	presence	of	both	positive	

and	negative	feedback	loops,	but	we	can	quantitatively	measure	the	strength	of	these	loops	as	well.	

We	applied	 this	system	to	a	synthetic	auto-regulatory	negative	 feedback	 loop	with	 the	RBP	Puf3,	

and	 found	 that	 introduction	 of	 this	 loop	 reduces	 the	 noise	 in	 Puf3	 expression.	 In	 addition,	 we	

applied	 this	 system	 to	 the	 RBP	 Pub1,	 and	 detected	 a	 positive	 feedback	 loop	 that	 increases	

expression	 noise.	 However,	 this	 feedback	 loop	 is	 not	 specific	 to	 Pub1,	 but	 acts	 on	 both	 Z3EVpr-

mCherry-Pub1	 and	 Z3EVpr-GFP,	 suggesting	 that	 it	 acts	 upstream	 of	 Pub1,	 possibly	 by	 directly	

regulating	the	concentration	of	the	Z3EV	TF.	Pub1	binds	the	ENO2	3’UTR	and	the	ACT1	5’UTR12,33.	

This	observation	highlights	an	important	strength	of	our	dual-reporter	method,	as	opposed	to	more	

traditional	approaches	in	which	the	gene	of	interest	is	overexpressed	or	deleted	without	an	internal	

control	 in	 the	 same	 cell.	 Many	 genetic	 perturbations	 result	 in	 both	 direct	 and	 indirect	 effects.	
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Varying	 Pub1	 changes	 both	 mCherry	 and	 GFP,	 showing	 that	 the	 effect	 is	 non-specific.	 The	 vast	

majority	 of	 changes	 in	 mRNA	 levels	 observed	 in	 deletion	 and	 overexpression	 experiments	 are	

indirect34.	GFP	serves	as	an	internal	control	for	the	state	of	the	cell	and	for	the	state	of	the	synthetic	

gene	 circuit.	 Thus,	 by	 combining	 the	 dual	 reporter	 system	 with	 a	 mathematical	 model	 we	 can	

accurately	different	direct	and	specific	effects	from	indirect	pathway-specific	or	global	effects.	 

 

The	measured	change	of	expression	due	to	the	negative	feedback	loop	is	a	relatively	modest	

2-fold.	The	strength	of	direct	auto-regulatory	synthetic	feedback	loops	can	be	tuned	from	less	than	

2-fold	 to	 greater	 than	 100-fold35.	 Quantitative	 measurements	 of	 the	 strength	 of	 direct	 auto-

regulatory	negative	feedback	loops	tend	to	be	on	the	low	end	of	this	range.	The	Gal4	gene	activates	

its	own	expression,	and	is	a	classic	example	of	feedback	regulation	in	eukaryotes,	yet	the	effect	size	

is	 only	 20-50%36,37,	 far	 smaller	 than	 that	 measured	 here.	 Metabolic	 feedback	 in	 amino	 acid	

metabolism	 is	 responsible	 for	 2-5	 fold	 changes	 in	 expression38.	 The	 Zap1	 transcription	 factor	

positively	 regulates	 its	 own	 expression,	 	 driving	 a	 10-fold	 increase	 in	 its	 own	 expression4.	 By	

combining	mathematical	modeling	 and	a	 standardized	 experimental	 setup,	 the	 feedback	detector	

presented	here	provides	quantitative	measurements	of	 feedback	 regulation,	 and	 so	will	 enable	a	

more	complete	understanding	of	the	range	of	strengths	in	naturally	occurring	feedback	loops.	 

 

 

Consistent	with	past	theory	and	experiments15,17,39–42,	we	find	that	a	negative	feedback	loop	

decreases	noise,	while	a	positive	feedback	loop	increases	noise.	Interestingly,	the	increase	in	noise	

is	far	larger	than	the	decrease	in	noise.	However,	at	this	point	we	cannot	say	if	this	difference	in	the	

magnitude	 of	 the	 changes	 is	 a	 general	 property	 of	 positive	 vs	 negative	 loops	 or	 of	 direct	 auto-

regulatory	loops	vs	pathway-specific	or	global	feedback	loops.	It	will	be	interesting	to	determine	if	

global	regulators	of	expression,	such	as	Pub1,	also	act	as	global	regulators	of	expression	noise,	or	if	

the	large	increase	in	noise	is	due	to	a	pathway-specific	positive	feedback	loop. 

 

Interestingly,	we	 find	 that	 the	parameter	 regime	 that	 fits	 Z3EVpr-mCherry-Puf3	 is	 exactly	

continuous	 with	 the	 regime	 that	 fits	 Z3EVpr-mCherry-Puf3-COX17	 (Figure 6D).	 In	 addition,	 the	

induction	curves	intersect	at	around	the	position	of	half-maximal	expression	(Figure 4, Figure 6C).	

This	suggests	 that,	at	half-maximal	 induction,	 the	two	constructs	have	 identical	 transcription	and	

translation	rates,	but	that	at	low	induction	(less	Puf3)	the	COX173’UTR	mRNA	is	more	stable	than	the	
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PUF33’UTR	mRNA,	while	at	high	induction	the	reverse	is	true.	This	would	explain	the	result	(Figure 

4B)	that	the	burst	size	is	higher	for	the		COX173’UTR	mRNA	at	low	induction. 

 

Finally,	this	system	may	serve	as	a	platform	for	the	design	and	characterization	of	synthetic	

RBPs43,44.	Synthetic	regulatory	circuits	with	designed	sequence	specificities	have	many	advantages	

over	 the	repurposing	of	native	circuits,	such	as	Gal4-UAS28.	However,	 it	 is	difficult	 to	design	such	

circuits	so	 that	 they	do	not	 interfere	with	 the	host	 cell45.	The	dual-reporter	aspect	of	our	system	

ensures	that	secondary	effects	of	synthetic	circuits	can	easily	be	detected,	and	constructs	that	lack	

secondary	effects	chosen.	 

 

 

MATERIALS AND METHODS 

 

Yeast strains and media 

 

All	 yeast	 strains	 are	 listed	 in	 Supplementary Table 1.	 As	 non	 inducible	 and	 autofluorescence	

control	we	used	FY4,	a	wild	prototrophic	yeast	strain46.	The	parental	strain	for	all	Z3EV	strains	is	

DBY1905429.	 To	 generate	 LBCY197,	 we	 generated	 a	 PCR	 amplicon	 containing	 KanMX-Z3EVpr-

mCherry	 using	 primers	 196	&	 197	 and	 LBCP80,	 and	 transformed	 this	 amplicon	 into	DBY19054.	

Activation	of	the	Z3	transcription	factor	with	β-estradiol	does	not	affect	growth	rate	or	expression	

of	 any	 genes	 in	 the	 genome28,29.	 	 	 To	 generate	 yeast	 strains	 LBCY200	 and	 LBCY201	 we	 first	

generated	plasmids	LBCP94	and	LBCP95,	and	amplified	these	plasmids	using	primer	pairs	325,326	

and	 365,366	 respectively,	 and	 transformed	 these	 PCR	 amplicons	 into	 DBY19054.	 In	 order	 to	

generate	LBCY209	we	first	generated	a	puf3::HYGR	strain	(LBCY203),	and	then	generated	LBCY209	

using	primers	325&	327	and	plasmid	LBCP96.	Colony	PCR	was	used	to	confirm	correct	integrations	

of	all	strains,	and	to	verify	that	the	Z3EV	promoter	has	the	the	correct	number	of	Z3EV	binding	sites.	

All	 transformations	 were	 performed	 using	 the	 standard	 lithium	 acetate	 method47.	 PCR	 for	

transformation	 was	 performed	 with	 Phusion	 DNA	 Polymerase	 (Sigma Aldrich).	 Colony	 PCR	 was	

performed	 using	 Taq	 Polymerase	 2x	 Master	 Mix	 (Sigma Aldrich).	 Selection	 for	 drug	 resistant	

transformants	was	done	on	YPD	plates	with	Hygromycin	B(IBIAN),	CloNAT(Werner	bioreagents),	

or	G418(VWR).	 

 

Plasmid construction 
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In	 order	 to	 create	 plasmid	 LBCP80,	 a	 1.5kb	 PCR	 amplicon	 containing	 the	 Z3EVpr from	 gDNA	 of	

DBY19054	was	amplified	using	two	rounds	of	PCR,	first	with	primers	316	&	317,	then	with	primers	

308	&	309.	This	PCR	product,	 along	with	mCherry,	was	 cloned	by	Gibson	assembly	 into	plasmid	

PYM-N1448	which	had	 cut	with	 SacI	and	EcoRI	 to	 remove	 the	GPD	promoter.	To	create	plasmids	

LBCP94	&	LBCP95	the	PUF3	and	PUB1	ORFS	were	PCR	amplified	using	primer	pairs	318,	319	and	

329,	 330	 and	 Gibson	 cloned	 into	 EcoRI	 linearized	 LBCP80.	 Plasmid	 LBCP96 was	 created	 using	

Gibson	assembly	with	EcoRI	linearized	LBCP80,	the	PUF3	ORF,	and	a	200	bp	3’UTR	region	of	COX17	

PCR	amplified	from	the	genome	using	primers	321	&	322.	After	Gibson	assembly,	each	plasmid	was	

transformed	to	E. coli	by	electroporation	and	transformants	confirmed	by	colony	PCR,	minipreped	

and	checked	by	Sanger-sequencing	and	multi-site	restriction	digest.	 

 

Flow Cytometry 

Single	 colonies	were	picked	 from	YPD	plates	and	cultured	overnight	 in	 SCD	media,	 inoculated	 at	

OD600	=	0.02	into	different	concentrations	of	SCD	+	β-estradiol	(Sigma	E8875)	and	measured	after	

7.5	h	of	growth	at	30ºC	(in	which	OD600	was	between	0.25	and	0.5)	(Figure S1).	The	flow	cytometry	

machine	 used	 was	 BD	 LSRFortessa	 (BD	 Biosciences)	 and	 with	 488nm	 and	 561nm	 lasers	 with	

530/28	or	610/20	filters	for	GFP	and	mCherry.	All	data	analysis	was	performed	using	MATLAB	as	

previously	described4.	To	estimate	burst	size	and	burst	 frequency	we	fit	a	gamma	distribution	 to	

the	measured	mCherry	 expression	 distribution	 using	maximum	 likelihood	 estimation.	 The	 same	

results	are	obtained	using	noise	and	noise	squared	as	estimates	of	burst	frequency	and	size	(Figure 

S2).	 

 

 

 

 

Mathematical modeling and fitting to data 

To	 construct	 a	 mathematical	 model	 that	 could	 explain	 the	 fluorescence	 values	 over	 the	

range	of	 inducer	concentrations,	 it	was	assumed	a	constant	rate	of	mRNA	synthesis	and	a	mRNA	

degradation	 rate	 proportional	 to	 the	 actual	 mRNA	 concentration,	 and	 a	 protein	 synthesis	 rate	

proportional	to	the	mRNA	concentration	and	a	degradation	rate	proportional	to	the	actual	protein	

concentration.	Thus,	it	was	defined	the	following	ODE	system,	which	defines	the	background	model 
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�[����]�� = 
�⍺ − 
�[����]	 	 	 (1) 

�[����]�� = 
�′ [����][����]� − 
�′ [����]	 (2) 

� = (1���)[ !"#]$%50&[ '(�]$ + *+	 	 	 	 (3) 

*+ = ,-.	�01��'(2'.2',34	�01��'(2'.2'	 	 	 	 (4) 

 

 

in	which	kb	and	k'b	are	 rates	of	 transcription	and	 translation,	 respectively,	and	kd	and	k’d	rates	of	

mRNA	degradation	and	protein	degradation,	respectively.	The	factor	⍺	is	the	transfer	function	that	

establishes	 the	 relation	 between	 inducer	 concentration	 and	 promoter	 activation,which	 has	 been	

supposed	 to	 follow	 a	 Hill	 equation.	 K50	 is	 the	 concentration	 of	 β-estradiol	 at	 which	 expression	

reaches	its	half-maximal	value.	F	is	a	feedback	constant,	with	negative	values	for	negative	feedback	

interactions	and	positive	values	for	positive	 feedback.	Considering	(1)	and	(2)	at	equilibrium,	we	

can	write 

 

[����]'5 = 6 7878′7979′ :
;<1

	 	 	 	 (5)	  

 

We	note	that	this	feedback	model	is	invalid	with	regards	to	the	rate	of	protein	production	

when	 [Prot]	 approaches	 0,	which	 is	 not	what	we	would	 expect	 for	 such	 a	biological	 system.	We	

therefore	used	fluorescence	data,	which	always	has	values	greater	than	zero,	as	a	proxy	for	[Prot].	

We	note	that	all	tested	strains	show	GFP	and	mCherry	signals	significantly	above	background	in	the	

absence	 of	 β-estradiol,	 suggesting	 that,	 averaged	 across	 the	 population,	 [Prot]	 is	 always	 greater	

than	 zero.	 Furthermore,	 we	 note	 that	 each	 of	 the	 variables	 within	 (kd*k’d)/(kb*k'b),	 cannot	

measured	individually	using	our	system.	We	therefore	vary	a	single	of	these	parameters	and	keep	

the	other	three	constant.	 

 

All	data	were	first	normalized	by	subtracting	either	autofluorescence,	as	measured	from	a	

strain	lacking	GFP	and	mCherry,	or	basal	expression,	as	measured	at	0nM	B-estradiol.	All	analysis,	

figures,	 and	 model	 fitting	 was	 performed	 using	 both	 normalization	 methods;	 the	 results	 are	
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qualitatively	 identical.	 The	 latter	 corrects	 for	 differences	 in	 the	 basal	 expression	 level	 between	

strains,	and	is	used	when	plotting	GFP	vs	mCherry.	The	former	explicitly	shows	differences	in	basal	

expression	level	and	is	used	for	fitting	the	model	to	data.	Prior	to	fitting,	normalized	fluorescence	

measurements	were	log10	transformed	to	prevent	the	high	expression	values	from	dominating	the	

fit.	The	model	was	first	fit	to	data	from	Y197.	Then,	either	F,	k'b,	or	both	F	and	k'b	were	varied	over	

two	orders	of	magnitude	and	the	R2	was	calculated	between	model	and	data.	 

 

In	order	 to	quantitatively	decide	what	R2	 constitutes	a	good	 fit,	 for	each	strain,	we	 fit	 the	

model	to	one	biological	replicate	and	then	calculated	R2	of	that	model	a	different	biological	replicate	

of	the	same	strain.	The	R2	is	always	greater	than	0.95	for	all	strains	(Supplementary Table 2);	we	

therefore	chose	0.95	as	the	threshold.	 
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FIGURES 

  

 

Figure 1. A mathematical model for detecting feedback loops using inducible promoters. (A) 

In	 a	 simple	 no-feedback	 model	 in	 which	 expression	 of	 three	 proteins	 is	 driven	 by	 identical	
promoters,	but	these	genes	differ	in	other	characteristics,	such	as	mRNA	or	protein	stability,	(B)	all	
three	proteins	will	be	expressed	with	offset	but	identically	shaped	induction	curves.	(C) Therefore	
the	log2	ratio	of	the	expression	level	of	a	protein	of	interest	and	a	constant	reference	protein	will	
remain	constant	 throughout	 the	 induction	curve.	(D) This	can	also	be	quantified	by	graphing	 the	
expression	of	each	protein	against	a	common	reference;	 the	 lines	will	be	offset	 from	the	diagonal	
but	have	the	same	slope.	(E) In	a	model	in	which	the	expression	of	the	genes	of	interest	differs	due	
to	the	presence	of	positive	(green)	or	negative	(red)	feedback	loops,	(F)	 the	induction	curves	will	
differ	but	not	in	a	purely	offset	manner.	(G) Instead,	 the	 log2	ratio	of	expression	will	change	as	a	
function	of	induction,	because	the	effect	of	the	feedback	loop	will	be	greater	at	greater	expression	
levels.	(H) If	 each	protein	of	 interest	 is	graphed	against	a	 common	reference,	 the	 result	 is	 that	a	
positive	feedback	 loop	will	result	in	a	 larger	slope,	while	a	negative	feedback	 loop	will	result	 in	a	
smaller	slope.	 
 

Figure 2. An experimental system to implement a feedback detector for RNA binding 

proteins. (A) A	control	strain	in	which	both	GFP	and	mCherry	are	driven	by	the	same	β-estradiol	
inducible	promoter,	the	Z3EVpr,	which	is	a	mutated	GAL1	promoter	that	contains	six	binding	sites	
for	 the	synthetic	zinc	 finger	 transcription	 factor	Z3EV.	(B) Both	GFP	and	mCherry	show	similarly	
shaped	offset	 induction	 curves,	 resulting	 in	 a	 relatively	 flat	 log2	 ratio	of	 expression	between	 the	
two	proteins.	(C) Expression	data	 from	Y197	(panel	A)	are	well	 fit	by	a	straight	 line	with	a	slope	
close	to	one,	suggesting	that	GFP	and	mCherry	show	almost	identical	changes	in	expression	across	a	
wide	range	of	β-estradiol	concentrations.	(D) A	test	strain	for	determining	if	an	RBP	participates	in	
a	feedback	loop.	The	native	RBP	is	replaced	with	an	N-terminally	tagged	version	driven	by	the	Z3EV	
inducible	promoter,	in	a	strain	that	already	contains	Z3EVpr-GFP.	Thus	expression	of	the	RBP	can	
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be	monitored	over	 a	wide	 range	of	 induction	 levels.	(E) Simulated	data	using	 the	measured	GFP	
expression	from	Y197,	showing	the	effect	of	positive	or	negative	feedback	on	the	induction	curves	
and	the	log2	ratio	between	GFP	and	mCherry.	(F)	Given	the	measured	GFP	expression	of	Y197,	the	
expected	mCherry	signal	in	the	presence	of	positive	or	negative	feedback.	 
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Figure 3. The RBP Puf3 with a COX17 3’UTR is a direct negative feedback loop. (A) A yeast	
strain	 in	which	 the	native	Puf3	 locus	was	replaced	with	either	Z3EVpr-mCherry-PUF3	or	Z3EVpr-
mCherry-PUF3-COX173’UTR.	The	latter	strain	is	expected	to	generate	a	direct	negative	feedback	loop,	
as	 Puf3	 binding	 destabilizes	 the	 COX17	 3’UTR.	 (B)	 GFP	 induction	 curves	 are	 similar	 in	 Y197,	
mCherry-PUF3	and	mCherry-PUF3-COX17	strains.	(C) The	mCherry-Puf3	induction	curve	is	offset	
from	the	Y197	mCherry	 induction	curve,	yet	the	two	curves	are	similarly	shaped.	 In	contrast,	 the	
mCherry-Puf3-COX17	 induction	 curve	 flattens	 out	 at	 high	 induction	 levels.	 (D)	 The	 log2	
mCherry/GFP	ratio	shows	a	 large	decrease	with	 increasing	 induction	 for	PUF3-COX17,	consistent	
with	a	negative	 feedback	 loop.	mCherry-Puf3	alone	has	 the	 same	 trend	 in	ratio	as	does	mCherry	
alone,	 consistent	 with	 no	 feedback	 loops.	 (E)	 The	 GFP	 vs	 mCherry	 slope	 of	 mCherry-Puf3	 and	
mCherry	are	nearly	identical.	The	Puf3-COX17	slope	is	lower,	suggesting	the	presence	of	a	negative	
feedback	loop.	 
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Figure 4. The PUF3-COX17 negative feedback loop results in a change in burst size with 

increasing Puf3-COX17 expression. Burst	 frequency	 (A)	 and	 burst	 size	 (B)	 were	 inferred	 by	
fitting	a	gamma	distribution	to	the	fluorescence	data	(see	methods),	and	are	presented	in	arbitrary	
units	 (as	 are	 all	 flow-cytometry	 data).	 (A) Burst	 frequency	 increases	 similarly	 with	 increasing	
induction	for	both	strains,	suggesting	that	the	negative	feedback	loop	does	not	affect	the	frequency	
of	transcriptional	bursts.	(B) Increasing	β-estradiol	results	in	increased	burst	size	for	both	strains.	
Burst	 size	 increases	more	 slowly	 for	 the	PUF3-COX17	 strain,	 suggesting	 that,	 as	Puf3	 expression	
increases,	 RNA	 stability,	 and	 therefore	 burst	 size,	 decreases.	 The	 difference	 in	 burst	 size	 is	
significantly	different	at	both	low	and	high	induction	levels.	(C)	The	same	data	as	in	(A)	but	burst	
frequency	graphed	against	expression.	(D) The	same	data	as	in	(B)	but	burst	size	graphed	against	
expression.	(E) There	exist	 induction	 levels	at	which	both	strains	have	 the	same	measured	mean	
expression,	but	PUF3-COX17	shows	a	decrease	in	the	width	of	the	distribution.	 
 

Figure 5. Z3EVpr-Pub1 generates an indirect positive feedback loop that acts on the Z3EV 

transcription factor. (A)	 A	 pub1Δ	 strain	 shows	 decreased	 Z3EVpr-GFP	 expression	 at	 low	 β-
estradiol	concentrations.	(B) The	 log2	 ratio	of	GFP	expression	 in	pub1Δ	 vs	wild-type	cells	shows	
that	 both	 strains	 have	 the	 same	 maximal	 GFP	 expression.	 (C) An	 inducible	 Pub1	 strain	 for	
determining	if	this	is	due	to	regulation	of	the	Z3EV	TF	by	Pub1.	(D)	Z3EVpr-GFP	exhibits	a	steeper	
induction	 curve	 in	 a	 Z3EVpr-mCherry-Pub1	 strain.	 (E)	 Z3EVpr-mCherry-Pub1	 exhibits	 a	 steeper	
induction	 curve	 than	 does	 Z3EVpr-mCherry	 in	 the	 Y197	 control	 strain.	 (F)	 The	 log2(Z3EVpr-
Pub1/WT)	ratios	 for	both	GFP	and	mCherry	 increase	with	 increasing	β-estradiol,	 consistent	with	
mathematical	models	of	a	positive	feedback	loop.	(G) A	positive	feedback	loop	results	in	increased	
width	of	the	single-cell	expression	distribution	in	the	Z3EVpr-Pub1	strain.	 
 

Figure 6. A mathematical model including feedback is required to fit the Z3EVpr-Pub1 and 

Z3EVpr-Puf3-COX17 data, but not the Z3EVpr-Puf3-PUF3 data. A	 model	 that	 does	 not	
incorporate	 feedback	 was	 fit	 to	 mCherry	 expression	 data	 from	 Y197,	 and	 either	 one	 or	 two	
parameters	were	allowed	to	vary	to	fit	data	from	the	other	strains.	(A) A	model	fit	to	Y197	in	which	
only	the	feedback	parameter	F	is	allowed	to	vary	can	fit	fit	all	strains	with	an	R2	greater	than	0.95.	
(B)A	model	in	which	only	k'b	is	allowed	to	vary	can	only	fit	PUF3	with	an	R2	greater	than	0.95.	(C) 

A	model	in	which	both	F	and	k'b	are	allowed	to	vary	is	able	to	fit	all	experimental	strains.	(D) The	
effect	of	varying	both	F	and	k'b	on	the	ability	of	a	model	fit	on	Y197	to	fit	the	other	strains	is	shown.	
Only	R2	values	>=	0.95	are	shown	for	clarity.	 
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Figure 2. An experimental system to implement a feedback detector for RNA binding proteins. (A) A control strain in 

which both GFP and mCherry are driven by the same B-estradiol inducible promoter, the Z3EVpr, which is a mutated GAL1 

promoter that contains six binding sites for the synthetic zinc finger transcrition factor Z3EV. (B) Both GFP and mCherry 

show similarly shaped offset induction curves, resulting in a relativly flat log2 ratio of expression between the two proteins. 

(C) Expression data from Y197 are well fit by a straight line with a slope close to one, suggesting that GFP and mCherry 

show almost indentical changes in expression across a wide range of B-estradiol concentrations. (D) A test strain for 

determining if an RBP participates in a feedback loop. The native RBP is replaced with an N-terminally tagged version 

driven by the Z3EV inducible promoter, in a strain that already contains Z3EVpr-GFP. Thus expression of the RBP can be 

monitored over a wide range of induction levels. (E) Simulated data using the measured GFP expression from Y197, 

showing the effect of positive or negative feedback on the induction curves and the log2 ratio between GFP and  mCherry. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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A sythetic gene circuit for quantifying the strength of native feedback 
regulation among RNA binding proteins in yeast. 
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