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Some animals regenerate limbs and remodel complex organs. Despite progress in 
molecular biology, we still lack understanding of the remarkable coordination of cell 
activity towards a large-scale anatomical outcome, stopping when target morphology is 
achieved. Cognitive neuroscience offers a paradigm for how cellular networks store 
memories of specific shapes and pursue goal states. We propose that these key 
insights map closely onto regenerative biology.  Advances in developmental 
bioelectricity reveal that all cells could form networks using electrical communication to 
store and implement shape memories. We propose that bioelectricity is a nexus that 
shows how shape homeostasis can be implemented in somatic networks, and suggests 
tractable new approaches for increased control of growth and form in regenerative 
medicine and synthetic bioengineering. 
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A major goal of regenerative medicine and bioengineering is the regeneration of complex organs, such as limbs, 
and the capability to create artificial constructs (so-called biobots) with defined morphologies and robust self-repair 
capabilities. Developmental biology presents remarkable examples of systems that self-assemble and regenerate 
complex structures toward their correct shape despite significant perturbations. A fundamental challenge is to translate 
progress in molecular genetics into control of large-scale organismal anatomy, and the field is still searching for an 
appropriate theoretical paradigm for facilitating control of pattern homeostasis. However, computational neuroscience 
provides many examples in which cell networks (brains) store memories of geometrical states and coordinate their activity 
towards proximal and distant goals. In this Perspective, we propose that programming large-scale morphogenesis 
requires exploiting the information processing by which cellular structures work toward specific shapes. In non-neural 
cells, as in the brain, bioelectric signaling implements information processing, decision-making, and memory in regulating 
pattern and its remodeling. Thus, approaches used in computational neuroscience to understand goal-seeking neural 
systems offer a toolbox of techniques to model and control regenerative pattern formation. Here, we review recent data on 
developmental bioelectricity as a regulator of patterning, and propose that target morphology could be encoded within 
tissues as a kind of memory, using the same molecular mechanisms and algorithms so successfully exploited by the 
brain. We highlight the next steps of an unconventional research program, which may allow top-down control of growth 
and form for numerous applications in regenerative medicine and synthetic bioengineering. 
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1. Introduction 

 

1.1. The challenge of next-generation regenerative bioengineering 

A key goal in regenerative medicine is to replace damaged or aging organs, for example the 

repair of entire amputated limbs 1. Taking the control of biological growth and form to its ultimate 

conclusion, bioengineering hopes to eventually be able to make self-repairing living structures in any 

desired configuration – the so-called “biobots” (bioengineered hybrid constructs with specific morphology 

and function) 2.  However, even when it becomes possible to make any cell type from stem cells, how 

would we restore a complete hand or eye?  Micromanaging the construction process at the lowest level 

is likely not feasible for such complex structures. A teratoma tumor may possess hair, teeth, and muscle, 

but lacks appropriate 3D organization, demonstrating that well-differentiated cell types are necessary but 

not sufficient for forming a functional complex structure. Moreover, what is required is not merely correct 

initial morphogenesis, but understanding and implementing reparative robustness in the face of 

subsequent challenges. Fortunately, the field of developmental and regenerative biology provides 

extensive proof-of-principle of control circuits that enable efficient self-repair and dynamic control of 

multicellular, large-scale shape 1a. 

Eggs reliably self-assemble into adults with many distinct tissues in precise geometric 

configuration. Crucially, the embryos of many species are not pre-determined mosaics, but display 

astonishing capabilities of self-repair, dynamic rescaling, dynamic reconfiguration, and functional 

plasticity (Figure 1). For example, embryos that are split or combined early in development revise their 

developmental program to the number of available cells and give rise to multiple complete organisms. 

Dynamic re-scaling of organs allows even adults to incorporate foreign tissue and re-pattern it 

appropriately; transplanted cockroach legs with the wrong number of segments will undergo intercalation 

to restore leg segmentation more appropriate to the leg’s new location 3, while planarian flatworms 

continually reconfigure their body tissues to maintain correct relative proportions despite changing cell 

number during starvation 4. 

Adult salamanders regenerate amputated limbs, tails, eyes, jaws, hearts, and portions of the 

brain; remarkably, the rapid growth that produces these new structures stops once the correct pattern 

has been completed. Moreover, tails ectopically grafted to the flank of an amphibian host slowly remodel 

into limbs 5, revealing the body’s ability to coordinate cell behavior towards a specific anatomical plan. 

The same remarkable capability is revealed in the process of metamorphosis, as tadpoles will correct 

experimental rearrangements of their craniofacial structures to reach a normal frog facial anatomy 6. In 

all of these cases, the correct shape outcome can be seen as a homeostatic target range; interestingly, 
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in some species (such as deer antlers, crabs, and planaria), this target anatomy can be re-set 

permanently 7, revealing that the encoding of the ideal homeostatic anatomical state is somewhat labile 

and not genetically fixed. 

The fact that the process of limb regeneration 8 and embryogenesis 9 can reprogram (normalize) 

tumor cells into normal structures highlights the causal potency of not only single-cell states but of large-

scale anatomical configurations. Development, cancer, and regeneration are distinct processes, which 

may involve diverse underlying molecular mechanisms in addition to conserved ones. However, what all 

of these examples have in common is a kind of “shape homeostasis” – the ability of systems to flexibly 

regulate cell-level events in order to achieve higher-level (organ-, tissue-, or whole-organism) patterning 

states despite deviations from those states.  While recent advances in bio-printing, materials 

engineering, and scaffolding 10 seek to address creation of complex structures, these technologies do 

not address the functionality of adaptive (on-demand) remodelling, nor reveal the endogenous biology 

that allows cellular structures to implement specific morphology changes aimed toward a correct 

configuration. Here, we define “Target Morphology” as that anatomical state towards which remodelling 

occurs, and which, when reached, causes a cessation to proliferation and morphogenetic 

rearrangements.  

The major knowledge gap is the understanding of how remodeling of complex shape is driven by 

the physical activity and information processing of smaller subunits (not necessarily cells). Next-

generation bioengineering must move beyond direct assembly of cell types, toward the control of the 

built-in error correcting morphogenetic networks and the programming of shape by specifying organs 

and their topological relationships 11. A key issue for the future of biology and medicine is to find the 

appropriate theoretical paradigm with which to understand complex pattern regulation besides feed-

forward emergence, and derive quantitative models with predictive power that will enable rational 

modification of shape for engineering and biomedical applications. Here we discuss a complementary, 

top-down approach, which can encompass the known molecular elements that implement pattern 

formation: chemical gradients 12, physical forces 13, and bioelectrical signaling 14. We propose that the 

field of computational neuroscience has developed theoretical and computational tools that can help 

understand and exploit pattern regulation as a closed-loop cybernetic system that incorporates feedback 

mechanisms and operates on high-level (anatomical) metrics (Supplemental Figure 1). 

 

1.2. A new approach: top-down programming of pattern formation 

 Today’s dominant approach to pattern regulation is bottom-up – the hope that complex 

outcomes can be understood via “emergence” once we have all of the relevant details on cellular, 
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subcellular, and protein interactions. However, it is widely recognized that there remains a gulf between 

ever finer-resolution analyses of molecular pathways and global understanding of the control of large-

scale measurable such as topological arrangement of organs. Indeed, direct management of emergent 

patterning cascades 2, 11b, 15 is likely to be limited by the inverse problem that plagues complex emergent 

systems 7. We hypothesize that efficient programming at the level of anatomical outcome can be 

achieved if we harness the kind of top-down control algorithms that have been so successfully exploited 

by nervous systems in the control of animal behavior, and which are studied in the field of computational 

neuroscience.  

 The rest of the article is organized as follows. We first discuss one set of control pathways that 

has recently been implicated in just such a large-scale control of pattern: developmental bioelectricity. 

Slow changes of resting potential in non-excitable cells regulate the coordination among cells required 

for morphogenesis, and appear to confer on all tissues capabilities that are usually thought of only in 

association with neuronal networks. Developmental bioelectricity is of high relevance for regenerative 

biology because it demonstrates practical applications for exploiting neural-like information processing 

within somatic structures during morphogenesis. Here, we highlight some features of non-neural cell 

signaling that can be mapped to information processing in the brain, and elaborate the implications for 

designing top-down intervention strategies. We next discuss both algorithmic and molecular homologies 

between information processing in the central nervous system (CNS) and pattern regulation during 

regeneration development. We propose that shape regulation may be efficiently understood and 

manipulated as a kind of learning and (constructive) memory/recall process - in analogy to a scheme in 

which generative models learn and memorize patterns and error-correction mechanisms trigger actions 

that involve body changes (e.g., growth and differentiation) that restore them as necessary. In this 

discussion, we hold to an objective, unambiguous, empirical success criterion for any approach to 

pattern formation, not an a priori commitment to a philosophical position. The best model is the one that 

optimally facilitates predictable changes in large-scale shape, regardless of whether the model is 

formulated in terms of genes, information, topological concepts, or anything else (top-down, bottom-up, 

or mixed). We conjecture that developmental bioelectricity is an emerging field ideally placed to facilitate 

the practical transfer of insights from computational neuroscience into control of dynamic morphogenesis 

in biomedicine and bioengineering. 

Our goals in this Perspective are to: 1) Refocus the community on the design challenge of 

programming dynamic, adaptive remodeling capabilities, beyond stem cell differentiation; 2) Review data 

in developmental bioelectricity, showing how the function of endogenous ionic gradients can be 

harnessed to implement neural-like information processing in regenerative and bioengineering 

applications relevant to all cell types; 3) Introduce concepts from computational and cognitive 

neuroscience, widening the toolbox of bioengineers with new ideas that can be exploited to design 
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mechanistic strategies for top-down control of growth and form (processes with a goal state, not only 

bottom-up emergence); and 4) Offer a specific example of a mathematical methodology that can be used 

to model - and possibly control - pattern formation from a top-down perspective. We synthesize these 

ideas into a hypothesis about the algorithmic and molecular homologies between information processing 

in the central nervous system (CNS) and pattern regulation during regeneration development.  

 

2. Harnessing non-neural bioelectricity to implement organ-level programming 

 

2.1. The basics of molecular bioelectricity: definitions and tools 

 Developmental bioelectricity refers to signaling among non-excitable cells mediated by 

endogenous electric fields and differences in resting potential 14d, 16. These bioelectrical states are 

created by ion channel and pump proteins that maintain voltage gradients across the cell membrane, 

and are transduced into a variety of transcriptional and epigenetic cell responses by known mechanisms 

(including neurotransmitter movement) 14e, 17. Pattern regulation by specific spatial distributions of 

transmembrane potential (Vmem) within tissues has recently been implicated as an instructive factor in 

numerous patterning events during development, regeneration, and cancer suppression 18, revealing 

how many cell types exploit the physics of ion flows to communicate much like neurons in the brain, and 

how this dynamics helps shape complex large-scale morphogenesis. Crucially, as in the CNS, the 

spatio-temporal patterns of somatic bioelectrical signaling are regulated by flexible electrical synapses 

known as gap junctions, which establish iso-potential cell regions and maintain dynamic boundaries 

between compartments with distinct voltage gradients and thus different anatomical fates 19. It is not 

surprising that these versatile regulatory building blocks are also implicated in memory, learning, and 

establishment of circuits in the CNS 20. McCulloch’s answer to why the mind is in the head: “Because 

there, and only there, are hosts of possible connections to be performed as time and circumstance 

demand it” 21, in fact applies also to somatic tissues. Highly dynamic changes in selective gap junctional 

communication and tunneling nanotubes allow any cell field to form complex activity-dependent networks 

that communicate via electric and neurotransmitter-mediated signaling during pattern formation 19, 22. 

Many cell types, including cancer cells 23 and skin 24 cells, are known to propagate gap junction-

dependent electrical waves, and GJs regulate global decision-making during the patterning of the 

somatic left-right axis 25, tumorigenesis 26, head-tail polarity 27, and tail regeneration 28. 

 Recent advances have resulted in new tools for studying developmental bioelectricity at the 

molecular level, and for mechanistically linking biophysical events with downstream genetic targets via 

dissection of transduction machinery 29. Voltage-responsive fluorescent dyes 30 (Figure 2A,B) and 
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genetically-encoded voltage reporters 31 allow the monitoring of bioelectric state of complex tissues in 

vivo. Novel reporters (nano-scale materials that can report physiological parameters via MRI imaging) 

will even further facilitate the bioelectric profiling of thick and complex tissue, although even today’s 

technology is sufficient to characterize important structures in metazoan patterning models in vivo 30, 32. 

Most importantly, a panel of constructs encoding well-characterized gap junctions, ion channels, and 

pumps enable the targeted modulation of Vmem and network topology in any cell group (Figure 3), for 

functional studies 33. Mis-expressed or endogenous ion translocator proteins can be regulated 

pharmacologically, and the technique of optogenetics, which is revolutionizing neuroscience 34, has now 

been applied to the control of regeneration-specific bioelectric signals 32d, 35.  

Suppression screen analysis, in combination with targeted depolarization or hyperpolarization, 

has shown that slow bioelectrical signals in vivo are transduced into downstream changes of 

transcription and chromatin modification by regulation of calcium and serotonin signaling 32c, 33, 36, just as 

in neurons. Additional transduction machinery also exists, making use of voltage-gated movement of 

butyrate 37, voltage-sensitive phosphatases 38, and receptor clustering 39 to convert specific ranges of 

resting potential (and changes therein) into downstream transcriptional responses and second-

messenger signaling events. 

 

2.2. Bioelectric state controls single cell function 

The Vmem state of cells and their neighbors determines cell behaviors, in concert with other 

signaling modalities. In general, terminally differentiated, quiescent cells tend to be strongly polarized 

(bearing a more-negative resting potential), while embryonic, stem, and tumor cells tend to be 

depolarized (closer to zero) 40.  The picture is complicated by the fact that many cells in fact do not have 

a single Vmem, but like neurons bear a set of distinct voltage domains over their surface 41 – analogous to 

the way an action potential travelling down an axon establishes local domains of depolarization that can 

underlie computation 42. While the functional significance of voltage microdomain patterns within single 

cells (e.g., a combinatorial code of voltage domains on the membrane) has not yet been tested, 

regulation of overall cell Vmem is beginning to be used in bioengineering contexts to regulate cell 

connectivity 43, wound healing 44, and differentiation 45. 

These strategies work because Vmem is not a read-out or a house-keeping parameter but is a 

functional determinant of cell state, such as proliferative capacity, migration, and plasticity 46. 

Differentiation and proliferation are controlled by changes in Vmem, as has been shown in human 

mesenchymal stem cells 45a, 47, cardiomyocytes 48, iPSCs 49, vascular muscle 50, embryonic stem cells 51, 

myoblasts 52, the specification of neurotransmitter types 53, and the precise control of precursor 
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differentiation 54 in the developing nervous system and heart. Given the known roles of Vmem in regulating 

normal migration, differentiation, and proliferation, it is not surprising that control of bioelectric states is 

also increasingly implicated in the developmental dysregulation known as cancer 23, 55, and is a 

suspected causal agent in several kinds of birth defects 56. 

 

2.3. Bioelectric regulation of large-scale pattern formation 

Most importantly, bioelectric signals also mediate long-range coordinating influences. Spatio-

temporal gradients of Vmem among cells in vivo are now known to regulate organ identity, positional 

information, size control, and polarity of anatomical axes 14e, 18. One mode of Vmem signaling is as a 

prepattern. Much like Hox genes, whose combinatorial patterns of gene expression encode specific body 

regions during development, bioelectric prepatterns in the developing face of the frog and planarian 

models regulate the gene expression, size, and shape of craniofacial components 57. In the frog for 

example (Figure 2B), patterns of hyperpolarization in the nascent face reveal the prospective locations of 

the eyes and other structures; experimental perturbation of these distributions alters the boundaries of 

expression of face patterning genes such as Frizzled, with the expected effects on craniofacial anatomy. 

Spatial differences of resting potential can serve as a direct scaffold for subsequent morphogenesis. 

Bioelectric gradients also specify orientation of the LR axis in frog and chick embryos 36d, 58 and 

set the size of regenerating structures in segmented worms, the brain in frog embryos, and regenerating 

zebrafish tails 32c, 59. The gradients created by ion transporters, such as the V-ATPase, are required for 

consistently-oriented left-right patterning of the heart and viscera 36d, fin regeneration 60, and eye 

development 61. The instructive information is mediated by bioelectric gradients per se, and not other 

functions of ion channel proteins or chemical signaling by specific ions: pattern can be predictably 

altered by specific modulation of those spatial gradients using any convenient channel or ion to achieve 

the desired change in Vmem state 
33, 36c. This offers the opportunity for bioengineers to use structured light 

(for optogenetic activation) 62 or substrates with embedded channel drugs 63, to impose patterned 

bioelectrical states on in vitro constructs or regenerating tissues for augmented control of 

morphogenesis. 

 In addition to directly specifying the pattern of subsequent anatomy, some bioelectric signals 

trigger whole developmental modules. In the case of tail regeneration in Xenopus, forcing a 

regeneration-specific bioelectric state in non-regenerative animals for just one hour overcame 

physiological, chemical, and age-dependent blockade of regenerative capacity to induce complete 

regrowth of this complex neuromuscular appendage over 8 days 64. Importantly, a very simple (low 

information content) and brief stimulus, such as “pump protons”, is sufficient to initiate a complete and 
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self-limiting cascade of events that rebuilt the entire appendage 16a, in essence providing a “build 

whatever normally goes here” signal. Likewise, imposition of a bioelectric state via misexpression of 

specific ion channels can rescue normal brain formation despite the presence of a mutated form of the 

Notch protein, which otherwise significantly impairs neural development 32c. These examples reveal that 

bioelectric state can function as a master regulator, exploiting the innate modularity of developmental 

cascades; this is consistent with a regenerative medicine strategy which seeks to avoid the need to 

micromanage morphogenesis of complex structures but rather rely on calling up patterning subroutines 

already present in the host. 

 Moreover, bioelectric signals can reprogram the identity of whole somatic regions toward 

different organs. The morphogenesis of new regeneration blastemas in planaria can be redirected to 

form heads or tails by imposition of appropriate bioelectric state 36a, 59a. In vertebrates, whole eye 

formation can be induced ectopically, far outside the head, even within mesoderm or endoderm tissue 

(Figure 2C) by misexpression of specific ion channels in vivo 33. This process is mediated by a feedback 

loop between hyperpolarization and eye genes such as Rx1, but importantly, “master eye inducer” genes 

such as Pax6 cannot recapitulate this effect (do not induce eyes outside the head in vertebrates), 

illustrating the benefits of including bioelectric signaling to enhance control over pattern formation. These 

data reveal that simple stimuli can trigger much more complex, coherent responses (a property that is 

very familiar to researchers working on memory and hierarchical representation of cognitive content in 

the brain). 

 Bioelectric signaling is often not cell-autonomous: cells with unique voltage characteristics serve 

as organizers, recruiting un-manipulated host tissues to participate in the ectopic morphogenesis (Figure 

2D). Bioelectric signaling in normal development, and also in cancer induction 36c and suppression 37c, is 

inherently non-local – another property it shares with the way information is distributed within neural 

networks. For example, during formation of the vertebrate brain, the size of the resulting structure is 

regulated by bioelectrical information collected from distant regions of the embryo 32c, 59c, implementing a 

kind of distributed processing also observed during brain function. Much as in the nervous system, 

electrical circuits in non-spiking somatic cells can coordinate long-range physiological decision-making 

during pattern regulation. 

These examples illustrate the fact that bioelectric signaling provides instructive information to 

patterning processes by integrating state information across considerable distances, and reveals that 

morphogenesis can be programmed at the level of complex multi-cellular shape (organs), not only by 

specifying individual cell types. We suggest that the transformative advances in this field will come not 

only from ever more-detailed studies of bioelectric signal transduction cascade within individual cells, but 

will require understanding the bioelectric code: the mapping between dynamics of spatially-distributed 
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(tissue-scale) bioelectric states and the resulting anatomical outcomes. This parallels neuroscientists’ 

efforts to understand the way that memories and cognitive content are physically represented by the 

electrical states of brain tissue 65. The output of somatic bioelectric networks is cellular patterning activity 

(proliferation, differentiation, migration, and gene expression), much as the output of neural bioelectric 

networks is muscle contraction and glandular activity.  

 

2.4. Bioelectricity and non-genetic storage of morphogenetic signals 

 The information-bearing signal (the necessary and sufficient trigger) for events such as eye 

induction, head determination, brain formation, or tail regeneration via Vmem change is a spatially-

distributed physiological state, not a gene product 16. In many contexts, the exact channel or pump used 

to trigger such morphological changes is often irrelevant – many sodium, potassium, chloride, or proton 

conductances can be used to achieve the same morphogenetic outcome as long as the appropriate Vmem 

distribution is enforced 33, 36c, 57. This means that the actual cause of the given morphological change can 

be a bioelectrical property not necessarily in 1:1 correspondence with any mRNA or protein. Because 

channels and pumps can open and close post-translationally, two cells expressing precisely the same 

mRNA and protein can be in very different bioelectrical states. The cautionary message of these data 

are that tracking gene expression, and even protein levels, is insufficient – efficient control in 

regenerative and bioengineering outcomes will necessarily require incorporating sensors and modulators 

of in vivo physiological state. Rich patterns of bioelectrical gradients can exist in a transcriptionally 

homogenous tissue and be completely invisible to protein and mRNA profiling, precisely in the way that 

the specific memories of a neural network are not directly visible from a simple survey of which proteins 

and genes are present. This makes a clear link to the general concept of memory in the information 

sciences, since engineering models of memory, like electric flip-flop circuits or classic magnetic coil core 

memory systems, store data in stable energy flow patterns.  Indeed, non-neural cells are now known to 

express ion channel types that implement stable memory elements for discrete voltage states 66, and 

synthetic bioengineering may exploit as an entirely new kind of memory medium.  

One recent set of findings provides an illustration of how bioelectric circuits during regeneration 

can stably store pattern memory. Planarian flatworms have the remarkable ability to regenerate 

completely from partial body fragments 67, and the construction of a head or a tail at the correct location 

in each cut fragment by stem cells is guided in part by an endogenous bioelectric circuit 36a. Our neural 

analogy suggests that this information may be stored in the stable modes of the real-time dynamics of a 

bioelectric circuit implemented by the somatic tissues; if so, then it should be configurable at this same 

level – our model predicts that it should be possible to stably (permanently) reprogram the basic 

architecture of the planarian without altering its normal genomic sequence, much as new memories can 
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be added to a brain without requiring genomic changes specific to each mental state. Indeed, we 

showed that interfering with the “short term memory”, by directly modifying the pattern of resting 

potentials in the tissue, does indeed allow us to change the tail end of a fragment into a normal head 

during one round of regeneration 36a, 59a.  

Remarkably however, interfering with “long term memory”, by altering network connectivity in the 

planarian fragment (targeting electrical synapses known as gap junctions 20a, 68), results in fragments 

developing heads at both ends and this state is permanent across future rounds of cutting 27. Weeks 

after the initial gap junction-modifying treatment, (Figure 4A-E), when these 2-headed animals have their 

heads and tails amputated again (in just water, with no further perturbation), the same 2-headed 

phenotype results, and this is repeated upon subsequent amputations. Thus, a transient perturbation of 

physiological cell:cell connectivity stably changes the pattern to which the animal regenerates upon 

damage, despite normal genomic sequence! This phenotype is stable across the animal’s usual 

reproductive mode (fission) – genome sequencing of 2- and 1-headed planaria would reveal no 

differences, illustrating how patterning information can be stored at the level of a bioelectric circuit. While 

epigenetic processes may be involved, note that chromatin modification mechanisms alone are not a 

sufficient explanation since the ectopic heads (tissue which might be suggested to have been 

epigenetically reprogrammed into a head state from its original tail identity) are thrown away at each 

generation of cutting. What remains is a gut fragment, which somehow knows that it is to form 2 heads, 

not 1, upon further cutting; what has been changed in such worms is not only the anatomy of one region 

of the animal, but the encoded pattern that any fragment must rebuild if removed from the body. Such 

permanent reprogramming of the planarian bodyplan has not been demonstrated using any other 

method. 

The current challenge in this field is to integrate molecular-genetic 69 and anatomical 70 datasets 

with emerging biophysical models of memory encoded in the bioelectric states of cells 71. While much 

remains to be investigated (including tracing the specific patterns of GJ connectivity in living fragments to 

understand network topology), the planarian example illustrates several important points. First, 

information functionally determining the large-scale anatomical state of the post-regeneration organism 

is encoded in the bioelectric signaling among somatic cells. Second, alterations of the bioelectric pattern 

result in long term, stable changes in the shape memory (similar to synaptic plasticity), while maintaining 

the organism’s same genomic sequence. Third, the information about basic anatomical polarity and body 

organization must be stored in a distributed form throughout the animal since the altered tissue is 

discarded at each round of cutting.  

These important features of developmental bioelectricity suggest intriguing parallels with 

information processing in the brain 72 (Table 1). We hypothesize that the basic components of bioelectric 
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signaling enable neural-like networks in non-neural tissues (Figure 4F-I, Supplemental Fig. 2-3). For 

example, the distributed storage of information in bodies could parallel the way information is distributed 

within neural networks 73. From an evolutionary point of view, this is unsurprising, as neurons evolved by 

specializing for speed those bioelectrical processes that were already present in far more ancient cell 

types and being used for morphogenesis 74. We propose the hypothesis that not only key molecular 

components of ionic signaling are conserved between neurons and non-excitable cells, but also the 

algorithms by which they process information. We conjecture that the tricks that brains exploit to guide 

adaptive behavior evolved from similar computational memory processes that were first evolved to 

control body patterning, both using some of the same biochemical, electrical, and physiological 

mechanisms 75. 

These parallels with neural information processing are of more than theoretical interest, because 

in computational neuroscience and cybernetics, practical methods have been developed for pursuing a 

top-down approach to the control of complex hierarchical systems. These data are not only germane to 

philosophical discussions of levels of control in biology 76, but suggest an empirical, tractable research 

program for programming shape at a level of organization beyond individual cells. Certainly bioelectric 

cues do not determine morphogenesis on their own: they represent just one layer of a complex 

morphogenetic field, which guides patterning through interplay with biochemical gradients, transcriptional 

networks, and materials properties. While a number of these modalities offer cross-scale emergence and 

long-range control 77, we believe that the available state-of-the-art tools (both technical and conceptual) 

for understanding electrical networks offer the most tractable approach toward understanding and control 

of large-scale pattern regulation in vivo. Below we discuss in detail a possible top-down approach to 

pattern formation, using tools from computational neuroscience that are more fully described in the 

Appendix. 

 

3. A top-down perspective on pattern control 

 

3.1 Target morphology, error-correction mechanisms, and bioelectrical signals 

 Could cell behavior be guided by an algorithm that minimizes - in the cybernetic sense of error-

correction - the deviation from a specific Target Morphology? We hypothesize that developmental 

bioelectricity implements true pattern memory. A target morphology could be encoded within tissues 

using the same kind of mechanisms and algorithms that (learn and) store cognitive memories of shapes 

and patterns within the brain’s bioelectrical network, and underlie directed behavior that seeks to 

recapitulate encoded goal states. 
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 We propose that models should be explored in which the goal state of anatomical repair is encoded 

as a true memory of shape, and in which the processes of regeneration make use of recall and decision-

making algorithms that parallel those known to occur in neuronal networks. Taking the shape memory 

analogy seriously immediately leads to two important and testable consequences. First, it suggests that 

the many tools available to modify memories (from training and behavior shaping to optogenetic 

inception of memories directly into brains 78) or to induce plastic changes in somatosensory 

representations (e.g., extensions of the "body schema" due to training and tool use 79) could be adapted 

to developmental bioelectricity to program morphogenesis by re-writing the target states (as in the 

planarian example above). Second, it suggests that the existing body of knowledge about goal-seeking 

behavior (from addiction to goal-directed choice circuits) can be mined to create mechanistic but high-

level models of how bodies adjust their shape to the same final outcome despite external perturbation. It 

should be noted that in modeling pattern formation as a primitive cognitive agent, we posit no conscious 

awareness – merely the same kinds of mechanistic, non-controversial processes that for example allow 

genetically-specified instincts to guide the spatially-patterned activities of insect behavior.  

 

3.2 What might a top-down model of target morphology look like?  

We provide an example of a top-down approach to target morphology and morphogenetic fields 

80 by using a specific framework developed in computational neuroscience, the Free Energy principle 

(which is fully described in the Appendix). Note that "free energy" as used here is a mathematical 

quantity, not to be confused with, say, an animal's metabolic resources or physical properties of its body. 

Here, minimizing free energy corresponds for an organism to restricting itself to a limited number of  

"states" that it can occupy, and which are valuable - hence, minimizing free energy roughly corresponds 

to maximize value. The notions of "state" and "value" are abstract; for example, although an animal 

might occupy many states (including e.g., being in proximity of a predator) it can enhance its fitness if it 

restricts itself to valuable states (e.g., being in proximity of food) and roughly correspond to its ecological 

niche. The free energy principle is thus an attempt to formalize how biological entities maintain their 

order, and it is now widely adopted in neuroscience, see the Appendix and 81”. 

In a Free Energy perspective we cast the growth (or regeneration) of a body part as an action - in 

the sense that it changes the state of the system and can in principle change (lower) its free energy 82: in 

other words, an organism can tend to minimize free energy by growing and/or by regenerating body 

parts. The meat of such a project would be to specify hypotheses for how the system knows the 

consequences of actions (i.e., acquiring internal generative models), what counts as a state having low 

free energy (i.e., be a close match of the target morphology), and how are these states coded and 

memorized (e.g. as priors). Here, models and target morphology could be in part genetically determined 

but also can be acquired during development through self-modeling 83 or somatic surveillance. 
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 To tentatively analyze embryonic development according to the Free Energy rules, suppose that 

genes predefine some initial priors, which describe "good" states of the system (like ‘being close to food’ 

in animals); here, equivalently, the "good" states would correspond to some aspects of the target 

morphology (possibly, without the need to fully specify it), much like the center-boundary structure of the 

aforementioned primordial soup is not prespecified. The system needs also to specify some initial 

actions that are available (e.g., chemical messages) to be potentially exploited to achieve "better" states 

(i.e. with lower free energy). In this context, growing or regenerating a specific body part is considered as 

an action (or a subroutine); such developmental modules are well-known from early experiments with 

homeotic transformations (HOX genes) and more recent bioelectrical inductions of whole organs 11a, 16a, 

84. Let’s assume that initially the free energy of the system is non-zero. Thus according to the usual rule 

of Active Inference the organism can act to diminish it: growing. Although this process is bootstrapped in 

a genetically pre-specified way, then it is regulated by the usual rules of free energy minimization. 

 As the body grows, it also implicitly learns the equivalent of generative models (i.e., the effects 

of specific actions and how they change the free energy) or in other terms it models its own growth 

process (and acquire models that can be potentially reused later on). These models take the form of 

electrochemical states and they include new priors that encode for example the good "target 

morphologies" (that is, those having low free energy) that are discovered during growth. In other words, 

while the initial (genetically encoded) priors include some constraints and pre-specify good (adaptive) 

morphological states for the organism, specific target morphologies are learned or discovered, through 

self-modeling, during growth. The growth of a healthy body represents a stable solution to the problem of 

minimizing free energy - in the sense that, when the body is fully grown, it is in a state of low free energy. 

Any change (damage or aging) actually increases free energy; thus the system tries to counteract this by 

‘coming back’ to its (learned) target morphology. 

 This speculative model is a framework, one example that entails an answer to the problem of 

how target morphologies are acquired and then reused as targets (e.g. for regeneration). During 

embryonic development, free energy minimization guides morphogenesis without a fully specified “stored 

template” because the template itself has to be created (in the form of priors and generative models). 

Learning a template might correspond to acquiring new "prior" knowledge on which are "good states" for 

a system to minimize free energy, and which function as set points within the hierarchical generative 
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models supporting active inference. However, once a “template” or target morphology has been created 

that represents a stable solution to the problem of free energy minimization, it can be used to guide 

remodeling, morphostasis, and regeneration in a top-down manner1.  

 In this perspective, the problem of shape regulation is understood as a kind of memory/recall 

process, where generative models (learn to) encode a pattern or target morphology and error-correction 

mechanisms trigger actions that restore the pattern. Both the acquisition and the restoration of the target 

morphology are active processes - where specific actions that involve body changes (e.g., growth) obey 

to the imperative of free energy minimization.  

 A detailed implementation of this idea is described in Figure 5 and 85. Here, cell groups self-

organize to produce - and successively re-build - a target morphology (a simple form with head, body 

and tail) under a free energy minimization scheme. In this simplified example, the target morphology 

itself is not learned  - although it could be with some extensions of the model - but assumed to be pre-

specified (e.g., genetically). However, there is one aspect of the target morphology that is not genetically 

encoded but emerges during growth: the cells are initially identical and do not a priori belong to (say) 

head, both or tail (they all have an identical generative model) see Figure 5A. This means that cells are 

not "pre-destined" to a unique place but they must undergo a complex epigenetic process and "find their 

own place" in the morphology - thus, essentially, migrate and differentiate until the whole cell group 

achieves the target morphology, see Figure 5B. This situation is similar to the dramatic remodeling 

occurring during planarian regeneration 4, 59a or the repair of craniofacial defects during frog 

metamorphosis 6.  

The complexity of this epigenetic process emerges when one considers that each cell that tries to 

find its place influences every other cell by emitting gradients that those other cell sense - thus the 

population of cells has to find a "collective" solution to the problem 86. In other words, while a cell 

"searches" its place in the morphology, it is guided by chemotactic signals continuously emitted by the 

other (surrounding) cells; but during the "search", it simultaneously emits chemotactic signals that guide 

                                                             

 

 

 

 

 

1
 An open research question is how much of the target morphology - and in which form - is genetically specified. Here, there 

seems to be a significant difference between animals and plants, in the sense that the latter do not generally have a fixed 

target morphology. This fact leaves open the possibility that, in animals, the (genetic) constraints on the target morphology 

(or possible morphologies) are stricter; but assessing this possibility deserves future studies. In the simulations presented 

above, we assume that large portions of the target morphology are prespecified. 
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the other cells, too. Importantly, the cell's generative model encodes (genetic) beliefs about the 

chemotactic signals it will (should) express and sense if it occupied a particular place in the target 

morphology. But even with this information, the cell does not have the guarantee to receive (initially) the 

"right" signals, or the signals it expects. If all the (other) cells were initially in the right place, and thus 

emitted the right signals, a cell could find "its" place by simply moving over concentration gradients until 

it sensed the right signals emitted by the other cells. However, at the beginning of the morphogenesis all 

the cells are simultaneously trying to find a place. This introduces a sort of circular causality where the 

cells as a whole concurrently emit and sense signals that influence (and are influenced by) the 

movements of the other cells; the population has to collectively establish a "chemotactic reference 

frame" permitting each cell to find its place. A solution to this problem complex (in AI, one would say 

"multi-agent") problem if one casts the process as the minimization of the free energy of the cell 

population - because the free energy is minimized when, and only when, every cell occupies a unique 

target location (see the free energy dynamics in Figure 5B).  

 

 It is important to note that engaging in a continuous, dynamical exchange with the environment 

is essential for the system to maintain its structural and functional integrity and ultimately to guarantee its 

survival. In the pattern regulation example of Figure 5, "lesioning" the system - that is, preventing cell-cell 

signaling - leads to various forms of dysmorphogenesis (not shown), consistent with the known 

patterning changes induced by inhibition of cell communication and movement. Rather, "milder" 

simulated interventions such as cutting a well-formed animal into two parts induces a dynamic 

reorganization and regeneration of the target morphology, see Figure 5C.  

 These examples illustrate how a top-down strategy can tackle an important open problem in 

biology: how to develop and re-build a "target morphology" and how this produces testable hypotheses, 

given that all the components can be given a quantitative mathematical specification (see 87 for another 

example of use of free energy principles to explain shape generation during limb regeneration). The 

example also illustrates that this top-down perspective is not at odds with useful concepts from (a useful 

more bottom-up) dynamical systems tradition, such as the notion of emergent self-organization; rather, 

here self-organization dynamics are contextualized within a general optimization scheme that also 

makes apparent and permits to predict - for example - under which conditions the perturbations lead to 

regeneration or dysmorphogenesis. 

 Some of the tools and modeling approaches for the top-down analysis of pattern formation are 

already available - often, in other research fields such as computational neuroscience. As a concrete 

step in the direction of making these tools useful for bioengineers, Figure 6 introduces a formal scheme 

for the formulation, mathematical analysis and simulation of pattern formation, using the free energy 

scheme elucidated so far. It emerges from this example that the formal and mathematical methods are in 

place but at the same time this research agenda requires developing novel quantitative tools; for 
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example, to quantitatively assess the free energy of a biological system and how the states it can occupy 

change during growth and regeneration. It is important to note that this is now a very tractable task at the 

intersection of computational modeling and molecular biology – an area that is now ripe for research.  

 The free energy principle is just one of the methods that can be used, and several others 

originating from cybernetics, artificial intelligence, computer science, and control engineering are 

potentially applicable (see the Appendix). Another example of mathematical approach and top-down 

methodology (which has not yet been applied to pattern formation, but could be extended to do so) is 

flux balance analysis 88.  

 

4. Broader implications: homologies between neural information processing and pattern 

regulation 

 The example we have discussed is consistent with the broader possibility that deep underlying 

parallels exist between the way information and cellular control are organized in the CNS and in 

morphogenesis; this motivates a cross fertilization of methods between these heretofore-disparate 

disciplines. Below we discuss cognitive-like processes in non-neural structures that underlie pattern 

regulation. 

 

4.1 Information processing beyond the CNS 

 Concepts formally used to understand cognitive processes in neural tissue may be appropriate 

to understand regulation of pattern formation. The first requirement is that non-neural cells be able to 

support basic information processing as occurs in neural assemblies.  Indeed, neural-like computation, 

decision-making, and memory have been reported in sperm 89, amoebae 90, yeast 91, and plants 92, using 

ubiquitous mechanisms that appear to be also involved in neural information processing, such as 

cytoskeleton 93 and electrical networks 94. It is clear that neural networks have no monopoly on such 

functions, and indeed fascinating examples of memory and neural-like dynamics have been found in 

bone 95 and heart 96. 

 

4.2 Neural inputs to pattern formation 

Non-neural tissues perform neural-like functions, while neurons compute using basic 

mechanisms appropriated from basic cell:cell signaling events. The role of electrical activity in shaping 

CNS structure is well-established 97.  Not surprisingly, neural outputs impinge on pattern formation in 

other tissues as well, as the two information-processing systems interface extensively.  Examples 
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include the control of proliferation and differentiation by the signaling dynamics of neural networks 98, the 

induction of spinal cord regenerative rewiring by electrical activity 99, the mispatterning of deer antler 

regeneration by neural inputs 100, and the known dependence of regenerating salamander limbs on 101, 

and addiction to 102, nerves. Importantly, the role of neural inputs in regeneration pattern is not merely 

permissive, but rather carries instructive information, as revealed by the determination of head vs. tail 

morphogenesis by the directionality of a transplanted nerve cord 103, the induction of distinct shapes in a 

regenerated tadpole tail from different locations of damage to the spinal cord very far away from the 

wound site 104, or the control of seashell patterning by specific neural net output 105. 

 

4.3 Cognitive concepts in developmental biology 

 While a concerted effort to apply neuroscience paradigms in developmental biology has not yet 

been made, a number of authors have independently used such concepts to help explain pattern 

regulation. One of the earliest applications explored the extensive parallels between chemical gradients 

during development and signal processing in the visual system 106, and indeed early quantitative models 

of patterning (explaining self-regulatory features like proportion regulation) were based on visual system 

function 107. More recent efforts include the notion of memory for position during regeneration 108 and 

development 109, learning models of diabetic electrophysiology in pancreas 110, excitable cortex memory 

models of pseudopod dynamics 111, and neural network models of chemical signaling 112 (which showed 

formal isomorphisms between gene regulation networks and Hebbian learning in neural nets) 113. In 

addition to classical neuroscience concepts, more exotic group cognition models have been applied to 

patterning 114, while a few recent studies investigated the decision-making and formal computational 

capabilities of reaction-diffusion systems – a chemical signaling modality often used to model 

morphogenesis 115, which is now known to be Turing-complete 116 and to support semantic 

interpretations 117.  

Crucially, cognitive neuroscience research has clearly shown that even high-level mental 

processes can affect cell growth and differentiation in the brain 118, providing a proof-of-principle 

roadmap for understanding more broadly how encoded information can have causal power in regulating 

the kinds of cell behaviors that make up morphogenesis. 

 

4.4 Similarities between morphogenesis and cognition 

 In this section, we highlight some of the deep similarities that erode the artificial boundary 

between brain and body. Importantly, numerous mechanisms are utilized by both – memory/learning and 
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morphogenesis including connexins, ion channels, neurotransmitters, cAMP, CREB, HDAC, PKA, PKC, 

mTOR, and many more. Overall it should be noted that many cell types, not just neurons, utilize voltage 

potentials, calcium dynamics, neurotransmitters, and highly dynamic cell:cell connection patterns to 

process signals during pattern formation 75a, 119. Significant recent advances exploiting this overlap 

include the investigation of neural-like dynamics to explain information processing in plants 120, and the 

use of non-spiking, slowly changing voltage gradients to model memory 121 in animal systems. This latter 

effort becomes especially relevant given our proposal, developed below, that non-excitable cells support 

memory during pattern regulation. It is not often noted that many molecular components of memory, 

learning, and behavior are also critically involved in morphogenesis. However, nerve cells evolved by 

specializing much more primitive cell signaling functions first used for development 74a, 122. Thus, it is 

likely a true homology - evolution predicts exactly this overlap of mechanisms, making more plausible the 

idea that undoubtedly-cognitive systems, brains, adapted (and improved) processes that were already 

being used for primitive cognitive functions during development. 

 Conservation of molecular mechanisms aside, how are we to understand the encoding of 

geometric shapes (target morphology for regeneration or development) within biophysical cell 

properties? This is a fundamental issue that requires integrating very different levels of organization and 

explanation. An example of this problem in developmental biology is revealed by the fact that depending 

on cell size, identical kidney tubules can be made of many cells via cell-cell communication or just one 

cell bending around itself (via intracellular cytoskeletal dynamics) 123. The requirement of a “3D tube of a 

specific size” activates very distinct molecular mechanisms to achieve this goal depending on available 

material (cell size). Understanding such implementation independence requires that we understand how 

the goal of making a 3D tube of a given size and orientation, which cannot be defined as a single cell or 

molecular state, is represented as an initiating signal (and later recognized as a stop condition) in vivo. A 

key aspect of modern cognitive neuroscience is that it provides a roadmap for functionally linking high-

level information (e.g., topological shape representations) to molecular level mechanisms occurring in 

cell networks. Salient examples (Figure 7C-E), with many lessons for bioengineering, include: the 

alterations of brain cell growth and differentiation by mental practices or spatial learning 124, the insertion 

of specific (false) memories into the brain by optogenetic modulation of neural cells 78a, and the read-out 

of mental imagery by processing of brain electrical states 125. Developmental bioelectricity is a crucial 

nexus between cognitive science and regenerative biology, which provides an empirically-tractable set of 

pathways linking higher-order, top-down control and complex system representation and regulation of 

patterning by cell-level events. 

 

5. Conclusions 
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5.1. Summary of new hypothesis: information processing in non-neural bioelectric networks 

 We propose that the apparent similarities between concepts in memory/decision-making and 

regenerative patterning are not merely anthropomorphic ways of speaking about the remarkable 

robustness of shape control, but underlie real homologies of molecular mechanisms and underlying 

control logic. Some possible mappings between major concepts in these fields are shown in Table 1. At 

a mechanistic level, cellular communication models using concepts from neuroscience (synaptic 

plasticity, long-term potentiation, Hebbian learning, etc.) may be applicable to understanding 

regenerative control. At a higher conceptual level, we propose that morphogenetic homeostasis may be 

best manipulated at the level of information processing. By improving cellular recall, and editing 

memories (specifically changing the stored encoding of a target morphology), as is already being 

addressed in neuroscience, we may be able to achieve far better control over regenerative processes 

than we have been able to achieve by micromanaging molecular pathways directly. 

Currently, the ability to specify large-scale patterning outcomes is hampered by the difficulty of 

controlling emergent form by manipulating solely bottom-level molecular events. We propose a 

complementary strategy, to consider models in which cellular decisions are guided by a process that 

works to minimize the difference between the current configuration and a “target morphology”. Our 

specific hypothesis concerns one set of tractable molecular mechanisms for implementing top-down 

control of shape: the encoding of somatic pattern as the semantics of electrical activity outside the brain. 

Much as developmental modularity greatly enhances the efficiency of evolution 84, 126, subgoaling is a key 

ingredient of effective real-time cognitive processes 127; bioelectrical communication and encoding of 

“subroutine” modules by simpler representations (signals) underlies both, and is thus ripe to be exploited 

by bioengineering and synthetic morphology applications. 

 The parallels between neural information processing and regenerative patterning are strong, 

both at the level of molecular mechanism and of higher-order functions (Table 1). We propose to 

capitalize on the extensive experience of neuroscience in crossing the level between information (e.g., 

memories formed during learning or inborn as behavioral instincts) and its physical implementation 

(synaptic mechanisms and neural circuit dynamics) to address the single biggest question in the field of 

regeneration: how does an amputated blastema know what shape to make, and how does it know when 

to stop growing? Recent data implicate bioelectrical signaling in non-neural cells as a major regulator or 

large-scale anatomy, and show that the differences between neural and non-neural cells are not 

fundamental: all cells make networks with highly tunable electric synapses, and propagate signals via 

voltage dynamics and neurotransmitter signaling. It is likely that processing in the brain is a highly-

accelerated version of basic cell mechanisms that existed long before a fast CNS was evolved for motile 
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behavior; indeed, the computational abilities of astrocytes may be an intermediate case 128; the role of 

non-spiking cells such as astrocytes and glia in memory and cognition 129 reveal that the brain already 

knows how to process information in non-excitable cells. Developmental bioelectricity is thus the most 

likely physical mechanism for implementing top-down, goal-driven processes that might regulate pattern 

formation. More specifically, we propose that representation of anatomical goal states within bioelectric 

circuits of somatic tissue is a true kind of memory, both in terms of its conserved molecular mechanisms 

and in the algorithms through which it operates. Importantly, boelectricity is not the only signalling 

modality consistent with this approach; for example, Hox gene expression patterns “constitute a form of 

positional memory – an internal representation by a cell of where it is located within a multicellular 

organism” 130.  

 In a sense, the current state of bioengineering is a kind of behaviorism, which ignores internal 

information representation and goal states and speaks only of cellular or molecular behaviors. Much as 

behaviorism was supplanted by a more powerful and empirically-successful theory of cognitive 

neuroscience (which exploits the reality of multi-level semantics, goal states, and information processing 

in the CNS), we argue that the next steps of biological control will involve taming the representation of 

patterning states within tissues. In this new strategy, bioengineers will seek to exert control by hijacking 

these bioelectrical pathways to rewrite the shape descriptor to which cells are working, and thus program 

pattern to an organ-level specification. Paralleling the development of cognitive science, we propose a 

kind of Intentional Stance towards models in this field, which focuses on extent of empirical control of 

shape, over a priori commitments to the form that such models must have (e.g., molecular pathways). 

 

5.2. Next steps and transformative opportunities 

 There is little doubt that current approaches will continue to reveal molecular details of 

bioelectric signaling within cells. What will require out-of-the-box (interdisciplinary) thinking is the 

understanding of the bioelectric code: the mapping of distributed Vmem states to specific anatomical 

outcomes. How best to quantitatively model the circuit dynamics and resulting stable attractor states that 

orchestrate individual cell activity into maintenance of specific large-scale states? We have at least one 

example of a successful research program in which high-level semantics are being merged with 

molecular-level mechanisms: computational neuroscience; consideration of its deep insights could 

strongly enrich understanding of developmental biology. 

Our hypothesis is testable, and suggests a rich research program. Specifically: (1) the 

development of improved methods for reading/writing bioelectrical state information into somatic tissues 

and sculpting non-neural bioelectric circuits (advances in optogenetics beyond excitable cells and in the 
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synthetic biology of gap junction and neurotransmitter signaling) 32d, (2) continued work on cracking the 

bioelectric code (understanding how bioelectric state information maps onto the topology of various 

patterning outcomes in tractable model systems such as planaria) 16a, (3) formulation and testing of 

quantitative, molecular models of LTP, habituation, sensitization, and synaptic plasticity applied to slow 

bioelectric signaling in non-neural cell groups regulating regenerative growth 96b, (4) use of reagents that 

impact cognition (hallucinogens, anesthetics 131, stimulants, nootropics/cognitive enhancers, etc.) in 

developmental and regenerative patterning assays to probe conservation of pathways between 

neuroscience and morphogenesis, (5) in silico study and synthetic implementation of biophysics models 

of circuits which can stably store bioelectric state information as attractor states of ion channel activity in 

arbitrary cell types 132, (6) creation of larger-scale computational models of regeneration and functional 

experiments in morphogenesis based on goal-seeking and error minimization algorithms with 

molecularly-specified metrics 133, (7) exploration of molecular models of cognitive concepts (attention, 

autism spectrum, sleep, visual illusions/hallucinations, addiction) in specific patterning and mispatterning 

contexts, (8) experimental examination of learning and complex behavior 134 in non-neural in vitro 

constructs to understand the cognitive powers of non-excitable cell networks 135, (9) bioengineering 

platforms that reward and punish in vitro patterning systems for specific changes in growth and 

morphogenesis (seeking to demonstrate instrumental learning and top-down control of shape in 

developmental or regenerative contexts), and (10) a mechanistic investigation of the mechanism of 

persistence of memories through massive brain regeneration, which is likely to reveal the interface 

between somatic and neural memories 136. 

 

5.3. Broader outlook 

 We propose taking seriously the idea that patterning systems may be, in a mechanistic and 

algorithmic sense, primitive cognitive agents that remember specific shape configurations. One 

immediately tractable way to test these ideas is through mapping the bioelectric code; this way of 

tackling pattern regulation could provide empirically efficient control of biological shape for regenerative 

biologists and bioengineers. Top-down models may facilitate altering encoded goal states (e.g., target 

morphologies), bypassing the complexity explosion currently facing regenerative medicine’s attempts to 

control complex shape by tweaking molecules. It may be possible to efficiently “train” morphogenetic 

systems to desired outcomes, by providing rewards (or “objective functions”) for specific outcomes 

instead of micromanaging the underlying signaling. Likewise, a better understanding of the bioelectric 

code may allow optogenetic or similar methods to rewrite the target morphology in vivo, inducing cells to 

build desired patterns as a kind of universal constructor. Interestingly, this effort may also pay off in the 

reverse direction, shedding light on the semantics of bioelectric states in the brain. However, cybernetic 

Page 22 of 60Integrative Biology



ARTICLE Journal Name 

22 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

strategies are applicable to top-down regulation via any mechanism, not only bioelectricity, and can 

readily be explored in the context of biomechanical forces, gene regulatory networks, etc. For example, 

an area to be investigated is the application of active inference models to gene-regulatory networks and 

protein interaction networks 137, attempting to analyze their dynamics as an information-processing 

structure. 

There is no doubt that for some systems, bottom-up emergence is a powerful framework 138. We 

think it is also essential systematically explore the other side of the coin for those areas where 

complexity limits the efficiency of explanations at purely the molecular level 7. Computer engineering and 

neuroscience serve as proofs-of-principle that efficient control of complex systems can be pursued with 

top-down models of goal-directed activity. Concepts such as feedback control and goal-seeking 

algorithms must also be included in training courses that nowadays focus principally on differential 

equations for gradients and network analysis, omitting complementary perspectives from computer 

science and engineering despite the ubiquitous calls for a deeper integration across disciplines. 

Ultimately, it is an empirical question whether a given biological phenomenon is better addressed from a 

bottom-up, top-down, or combined perspective. Training young scientists in both approaches will permit 

them to exploit the remarkable opportunities revealed by the dynamic capabilities of pattern regulation, 

and reap the benefits of achieving complete control over growth and form. 
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Appendix 1 (Supplement). Harnessing top-down controls in cognitive systems 

 Bioengineering must explore not only the molecular tools and cell-level models of computational 

neuroscience (Section 3 below), but also the conceptual frameworks for analyzing top-down controls in 

biological systems. This section introduces the bioengineer to a few such paradigms, successfully used 

in other sciences, which may find application in understanding and controlling the high-level robustness 

of pattern regulation. The subsequent section presents a specific detailed proposal for cracking the 

bioelectric code, based on the insights of neuroscience, in which bioelectric states of somatic tissues 

encode memory patterns to which growth and morphogenesis operate. 

 

A1.1 Beyond teleology: goal-seeking mechanisms 

 Teleology is the claim that some biological process is proceeding towards a pre-specified goal, 

and is an obvious first thought for any student encountering embryogenesis or regeneration. However, 

goal-directed processes do not imply magic: they are widely accepted in cybernetics, computer science 

and computational neuroscience, which are replete with systems that try to achieve a state somehow 

encoded, stored, or remembered. A brain (or other physical control structure) represents future goal 

states and triggers behaviors (or inferential processes) that minimize the distance between the current 

and goal states 139. Goal states can be explicit such as “reaching location X” or more implicit such as in 

homeostatic systems that seek to maintain interoceptive variables (linked e.g. to thirst or hunger) within a 

safe range. 

The importance of control mechanisms and of error-correction mechanisms can be traced back 

to evolutionary demands. For all organisms - simple or complex - to remain living, certain conditions 

required for their proper operations must be met. The teleological strategy assumes that organisms are 

not passive but take an active part in ensuring that these conditions are met via control of variables such 

as temperature or nutrient levels to acceptable (homeostatic) ranges using monitoring, error-correction 

mechanisms and actions such as locomotion and ingestion. Homeostatic control has been often 

described in terms of negative feedback-based mechanisms that continuously monitor internal variables 

and trigger actions (e.g. food seeking) to keep them within acceptable ranges. Error-correction 

mechanisms in higher animals such as primates can be much more sophisticated; one example is the 

control of human reaching movements in which action is controlled towards some specific goal location 

(e.g., a food location) rather than being random, and internal forward models support feedback 

mechanisms and permit compensating for sensory delays and uncertainty 140. Another example is goal-

directed rodent navigation and planning. Neural recordings in the hippocampus show that during pauses 

at decision points the animals can “mentally simulate” future spatial trajectories to select among them 

and plan how to reach a given goal location 141. These are examples of deliberative forms of decision-
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making, where an animal "fills the gap" between its current and the desired locations (e.g., a food 

location) firstly in its own brain, and only successively takes action. These examples illustrate a 

continuum of goal-oriented or goal-seeking cybernetic mechanisms, from those permitting to follow 

temperature or sugar gradients to those permitting to achieve distal goal states in humans or other 

animals. These goal-oriented mechanisms, carried out by cellular networks in the brain, implement 

progressively simpler-to-more-complex teleological mechanisms.  

 A prototype of teleological mechanism in cognitive science is the test-operate-test-exit (TOTE) 

cybernetic model 142 (Figure 7A). In a TOTE unit the first operation (test) is testing if a goal state has 

been achieved (a form of feedback control). If not an operation is executed and the test is performed 

again; this sequence can be repeated until the test on the goal achievement is successful (and then the 

TOTE unit exits). Consider for example the task of hammering a nail. The test consists of verifying 

whether the nail’s head touches the surface; the operation consists of hammering the nail until the test 

condition holds. This simple goal-seeking mechanism can be extended to more sophisticated aspects of 

teleology and goal achievement such as the ability to predict action consequences and to plan multiple 

steps in advance 141 if one also includes in the scheme internal generative models - a point to which we 

will return later. Furthermore, goal states need not to be static but can be dynamically set by higher 

levels in hierarchical control systems 143.  

 Engineering routinely uses feedback controllers (e.g., a car's cruise control). The desired value 

of a reference variable (e.g., a certain position or speed) is compared with the actual variable value; the 

discrepancy serves as an "error signal" that is used to adjust the system's position or speed. Given its 

robustness and reliability, in several practical circumstances (e.g., in control engineering set-ups) this 

simple feedback-control mechanism (with various extensions) is preferred to alternative controllers that 

only use local rules, e.g., encode responses to environmental stimuli, and it is reasonable to expect that 

evolution exploited this strategy. When severe craniofacial mispatterning is induced in tadpoles, correct 

final facial pattern in froglets is nevertheless achieved by dynamic reconfiguration of organs: the resulting 

adult frogs exhibit normal faces, showing that their genome specifies not invariant movements for the 

various facial components but a complex and flexible process that is applicable to many starting 

configurations and can achieve a correct target morphology via one of many different paths 6. This can 

readily be modeled using a TOTE-like concept (Figure 7B). What is encoded is not a hardwired set of 

movements for turning a normal tadpole face into a normal frog face, but rather may be the target state 

of the final product (the correct frog face shape) and a mechanism enabling cells to move to minimize 

the difference between their current configuration and the target morphology. Such a model explains the 

remarkably plastic ability of the tissues to carry out the necessary movements and then stop when the 

pattern has been achieved, despite an experimental perturbation that could not have been predicted in 

detail by evolution. Indeed, in any example of regenerative repair, this type of model focuses on 

representation of correct state and deviations from that state (high-level properties), while current models 
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exclusively focus on molecular events in the hope that anatomical repair appears as an emergent 

property. Note that no goal is being ascribed to evolutionary processes, but rather to cellular 

reconfigurations within an organism. 

To make use of a top-down model in regenerative medicine (activate error-correction 

mechanisms and “repair towards correct target morphology” in any desired organ), we must ask how cell 

groups store specific patterns (memories of the correct state, internal generative models) and how they 

ascertain current state as deviations from the target morphology (monitoring mechanisms). In keeping 

with the evolutionary conservation of major pathways, it is reasonable to look for such mechanisms 

within the brain – a system optimized for storing pattern information and detecting differences between 

global features, at multiple levels and timescales. The discussion of generative models and deep 

networks below will clarify how such learning mechanisms work, and hopefully spur novel efforts to build 

testable models of this type for developmental patterning. 

 

A1.2 Control theory and internal models 

 Several scientific disciplines study (and also build) teleological systems, including control and 

systems engineering, Artificial Intelligence, cybernetics, and computational neuroscience. Already von 

Neumann in the 50’s asked what are the requirements for a machine that self-replicates and answered in 

terms of control-theoretic and information principles, highlighting the importance of instructions (e.g., in 

the DNA), a duplicator, and a controller 144. More recently these disciplines have developed formal 

concepts and computational systems that can be potentially used to study morphogenesis from a top-

down perspective.  

 The notion of "control" is central in the cybernetic study of systems including living organisms. A 

controlled system is one that regulates a given variable (say its position) based on a set point or 

reference value (say a desired position corresponding to e.g., a food place). The "control loops" include 

sensors and actuators, but also control algorithms that can vary in their complexity. Simpler control 

systems use only (negative) feedback for regulation, while more complex controllers also include internal 

models 145. In cybernetics, the Good Regulator theorem 146 states that "Every Good Regulator of a 

system must be a model of that system" (which has interesting implications for pathways that regulate 

morphogenesis). In computational motor control, internal models have (at least) two prominent roles: 

computing the necessary actions or motor commands to achieve a certain goal given a starting condition 

(inverse modeling), and predicting the sensory consequences of those actions (forward modeling) 147. 

For this, the models themselves encode (probabilistic and possibly hierarchical) information on how 

sensations change over time, and particularly under the influences of actions. These concepts set the 

stage for thinking about developing and regenerating structures as agents that represent (model) their 

current and/or target shapes in some physical encoding as they make decisions that guide 

differentiation, movement, and physiological signaling. 
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 Internal models encode the dynamics of a given system and can be used to reproduce the 

same dynamics when fed with the appropriate input. The input needs not to come from perception but 

can also be self-generated. In this vein, it has been hypothesized that internal models can be used for 

imagery and for mentally simulating or planning a given action sequence; the imagined actions provide 

fake feedback that is used to continue the mental simulation without overt perception and action 148. A 

recent trend in computational and systems neuroscience is that of unifying several constructs of control 

theory and internal modeling in terms of probabilistic (Bayesian) inference. Here the general idea is that 

any control problem can be equivalently cast as a (probabilistic) inference problem 149, where usually the 

variables to be inferred are the control states that permit a transition from the current state to a goal state 

81, 150. For example, one can see a control problem in terms of the reduction of the discrepancy between 

(probabilistic representations of) a start and a goal state, and use probabilistic computations to infer the 

best sequence of actions minimizing this discrepancy (as in for example KL control 151 or Active 

Inference 152). In turn, this requires the agent to possess internal (generative) models of sensations and 

actions of the kind described earlier, and to encode the desired (goal) state as a target remembered 

state (e.g., a prior probability) within the models.  

One example that suggests such internal models and priors is the phenomenon of trophic 

memory in some kinds of deer (reviewed in 7). Each year, these animals shed their antlers and 

regenerate a rack of the same morphology.  Remarkably, if a wound is made at one point within this 

branched structure, for the next ~5 years, an ectopic tine will be formed at the same location in the new 

rack. Since the whole structure is replaced each year, this requires that the cells in the scalp remember 

the location of the damage (in 3D space or within some other more compact encoding of the branch 

points) and use it to guide the behavior of cells as they recreate the antler pattern each year to include 

an extra branch at the correct location. This phenomenon suggests that the structure of the antlers is 

represented in some way within the remaining scalp cells; this data structure can be modified (e.g., by 

wounding) and guides next year’s cell proliferation and differentiation to form a distinct shape 7. 

 In principle, internal models can be used in any application. Internal modeling methods can also be 

used for self-modeling: to model and infer one's own structure (e.g., body morphology) and to correct 

structural changes (e.g., recover from body changes). For example, robots can build models of their own 

structure that permit predicting the sensory consequences of its movements and use it to maintain its 

integrity despite injuries 83. It is a testable hypothesis that known examples of adaptive behavior following 

significant body reconfiguration 153 likewise rely on a period of self-exploration.  

 

A1.3 Generative models and Deep Learning 

 One key aspect of the control and internal generative models introduced so far is how they are 

acquired or learned in the first place. In developmental biology, the target morphology can be hardwired 

(e.g., genetically specified), or derived from dynamic surveillance of current shape (e.g., in regenerative 
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systems that display trophic memory, such as deer antlers, crab claws, and planaria 7). A traditional 

distinction in machine learning is between supervised and unsupervised learning methods; the former 

abstracts patterns from observing pre-sorted or "labelled" examples of a given class, while the latter 

automatically finds pattern in data (builds representations that reflect statistical structure within the 

inputs).  

 A particular class of connectionist unsupervised methods, called deep networks, are especially 

successful in current machine learning 154. Some deep nets - the deep belief networks (DBNs) - are 

generative neural networks that have two or more layers of neurons, with connections between the 

layers but not between units within each layer. Usually, within DBNs one layer serves both as input and 

output, and one or more internal (hidden) layers acquires increasingly more abstract models of the input 

data 155. These systems encode a (usually probabilistic) model of how the data are generated (i.e., a joint 

probability distribution over data and hypotheses or models). When trained using sets of examples, 

DBNs can learn to probabilistically reconstruct their inputs. During such unsupervised training, inputs 

(e.g., figures of animals) are fed to the input layer. The network's task is simply reproducing (or 

"generating" or "hallucinating") the same figure as in the input layer using the joint probability distribution. 

Learning consists of iteratively reducing prediction errors: the discrepancy between the "generated" and 

"sensed" inputs by adjusting the bidirectional weights linking the input and hidden layers. Eventually 

several hidden layers can be "stacked" that encode increasingly more profound and abstract regularities; 

for the visual task we have described, this mechanism could mimic the brain's visual hierarchy which 

extracts key anatomical features. (In machine learning, usually the top layer of DBNs is also trained in a 

supervised way to perform classification of the input categories, e.g., of animal types.) 

 

A1.5 Predictive Coding, Active Inference and the Free Energy principle 

 Another, related class of generative models that is gaining prominence in computational 

neuroscience is that of "Predictive Coding" architectures, which use the minimization of prediction errors 

between internally generated and sensed inputs for perceptual inference - an idea that dates back to 

Helmholtz 156. A predictive coding architecture consisting of two (or more) layers encodes a probabilistic 

model of the causal dependencies between "perceptual hypotheses" expressed at the higher layers and 

sensory data expressed at the lowest layer. Inference consists of reconstructing the hidden causes of 

the observed data (e.g., is the object I see in front of me a cube or a sphere?). During perceptual 

inference, the higher layer encodes perceptual hypotheses on the possible causes of the inputs (e.g., the 

cube or the sphere). It tries to predict the input encoded in the lower layer (e.g., the visual appearance of 

the object in front of me). In turn, the lower layer sends back prediction errors that permit revising the 

initial hypothesis (say, pass from the cube hypothesis to the sphere hypothesis). By iterating this process 

of top-down and bottom-up message passing, an "agreement" is formed so that the hypothesis which 

explains better the inputs wins - where, importantly, the impact of both predictions and prediction errors 
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in the inference is modulated by their respective precision (or inverse variance). In this situation 

prediction error is minimized because the higher level does very accurate predictions 157. This model of 

perception consists thus in predicting the causes of sensory inputs so as to minimize prediction errors. 

 The Free Energy principle 81 is a general theory of brain organization and processing that 

generalizes the predictive coding idea in several ways. It proposes the minimization of free energy as a 

generalization of prediction error that can be extended to multiple hierarchical layers. It also proposes 

that free energy (or prediction error) can be minimized in two ways: by revising perceptual hypotheses, 

and by acting. In the cube vs. sphere example, another way to minimize prediction error generated by 

the cube hypothesis is presenting or putting a cube in front of the subject - this extension of predictive 

coding to action is called Active Inference 81. Importantly, in the Active Inference scheme the 

representations at the higher levels play the role of goal states (e.g. I want to see a cube in front of me) 

rather than just perceptual hypotheses. Using Active Inference, the architecture can achieve its goals in 

an open-ended way just minimizing free energy and the discrepancy between current and goal states 

through action (Figure 8). Of note, here the internal generative models can be hierarchical (or deep) and 

encode regularities at multiple time scales (e.g., short- and long-term predictions of how sensory states 

evolve over time as an effect of actions or action sequences). By "inverting" the models, the Active 

Inference schemes can plan, that is, compute the action sequence that leads to distal (goal) outcomes, 

which are the states that minimize the free energy of the system. Here, a circular causality is evident in 

the system because the goal states are both priors (and thus causes) and consequences of action - 

where the apparent contradiction is resolved by noticing that goal states play these two distinct roles at 

two different moments in time, before and after an action takes place. The Active Inference view is 

related to the TOTE idea and cybernetic models more generally 142, 158 and has a clear neuronal 

implementation in the brain 81.  

 The Free Energy framework addresses learning processes in a manner that is similar to deep 

learning. Briefly, the brain progressively acquires generative models that encode the statistical structure 

of (or “maximize evidence about") the environment in which they are immersed (e.g., encoding 

regularities in the sensorium, the rules that regulate body movements and their consequences) - this can 

be considered as a form of Bayesian model selection of the kind adopted in many data analyses. From a 

more biological perspective, during this learning process, new priors and high-level hypotheses are 

formed that encode potentially high-value goals (e.g., earning money) that correspond to states where 

free energy can be minimized. These complex goals derive from simpler, genetically specified goals 

(e.g., find shelter and food) but afford more sophisticated adaptive behaviors; the novel priors go hand-

in-hand with the newly acquired generative models that describe how to use actions to earn money 159. 

The Free Energy framework extends beyond the domain of computational neuroscience. Friston 

160 provides a description of generative models in biological systems at large; for example, in a 

"primordial soup" of elements (e.g., cells): dynamical subsystems that are characterized by their own 
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structural and functional states but are also coupled through short-range interactions (Figure 8B). In this 

context, a "generative model" can correspond for example to electrochemical states (e.g., concentrations 

of specific signaling molecules in a cell) and the "actions" correspond for example to chemical 

messages, which determine changes in electrochemical states of e.g., other cells, and the whole 

process is guided by the imperative of free energy minimization. The appeal of this formulation is that it 

becomes possible to study in a top-down manner the ensemble dynamics of the system, such as the 

self-organization of a center-boundary structure or the way a "primordial soup" models its environment 

and acts on it to preserve its structural integrity and resist the second law of thermodynamics. This 

example shows how top-down concepts (from hierarchical probabilistic inference) and bottom-up 

concepts (dynamical systems and emergent properties) can be combined to study information flow and 

pattern self-organization in biological systems 137b. 

The concepts of control, generative models and goal states constitute a toolbox for building 

biological theories and generating empirically-testable hypotheses. The use of top-down methods and 

concepts can have benefits both when they are used alone and synergistically with bottom-up analyses 

such as cellular automata models 161. For example, the Free Energy principle retains essential benefits 

of "emergentist" theories (e.g., diffusion mechanisms or cellular automata experiments 161) in that it 

emphasizes self-organization and only requires local information transmissions (‘message passing’ 

between neurons or cells). At the same time it is a normative theory and specifies a global objective 

function (minimizing free energy) that prescribes the system dynamics, rather than only describing local 

rules; and it provides a mathematical characterization of learning processes that can be used to study 

growth (and regeneration) processes - and also in principle to influence them causally.  

In the main text, we have sketched an initial illustrative proposal of Free Energy that could be 

adapted to study how a biological system can first “discover” a target morphology during epigenesis, and 

then use it as a "set point" for regeneration. Other applications, such as to immune system function or 

inflammatory cascade signaling networks, are certainly possible and remain to be investigated. 

 

A1.4 Examples of additional concepts in the top-down toolbox  

 In focusing on top-down mechanisms, we are not saying that the molecular details are 

unimportant, but only that we cannot take for granted that the best model in bioengineering must be at 

the level of protein interaction (vs. atomic forces, or anatomical topology). In physics and engineering 

there are many successful examples of concepts described using a coarse-grained approach, which 

purposely abandons the tracking of individual components in favor of ensemble properties that take 

center stage for manipulation and system analysis. One example is the Boltzmann definition of entropy 

that captures the statistical properties of a system composed of myriads of elements, rather than tracking 

the behavior of the individual elements. In thermodynamics, not only entropy but also several other 

macroscopic variables such as temperature or pressure describe the average behavior of a large 
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number of microscopic elements. Statistical methods permit linking macro- and the micro-levels and 

characterizing causal relations between them, in both a bottom-up (i.e., a given temperature results from 

specific kinds of microscopic dynamics) and top-down way (i.e., raising the temperature of an object has 

cascading effects on its micro-constituents).  In this latter example, one can establish rules that govern 

the system but depend on concepts and "control parameters" that exist at levels higher than the micro-

components 76g. This idea meshes well with the concept of an emergent property of a system. Note that 

here emergent properties are not just by-products to be measured (outputs), but they can actually be 

controlled to change the behavior of the system (inputs). 

 Attractors dynamics have been widely studied in physics and since the pioneering work of 

Hopfield 162, there is a flourishing literature that uses this concept to model semantics and computation 

implemented by neuronal dynamics. The benefit of attractors is that they illustrate how a mechanistic 

system can evolve toward a stable state or set of states. Furthermore, the concept of an attractor is a 

general high-level descriptor of bottom-up self-organization processes; if the system reaches an attractor 

basin, certain specific details are not required to understand its behavior (e.g., it goes towards the basin 

of attraction regardless of its initial state). The concept of attractors as causal factors in networks is 

currently being explored in cancer and synthetic biology applications 163. Moreover, hybrid approaches 

have been developed that combine control engineering and dynamical systems; for example, by 

designing individual components (e.g. cells or their components) as controllers having a specifically 

designed function, but letting their interactions emerge through self-organization and distributed 

computation 164. Finally, attractor dynamics can be used within the active inference scheme introduced 

earlier, where for example sequences of attractors (forming a stable heteroclinic channel) become part of 

the agent's generative model and guide sequential behavior and the transitions between motor acts 165.  

Another key concept in the top-down toolbox of many sciences is that of information. Models in 

which information transfer plays a central role have been developed - for example - in artificial life and 

cognitive science 166. Robotic control systems have been realized that are able to autonomously learn an 

increasingly sophisticated repertoire of skills by iteratively maximizing information measures, such as for 

example their empowerment: roughly, the number of actions an agent can do in the environment or its 

"potential for control", as measured by considering how much Shannon information actions "inject" into 

the environment and the sensors 167. Empowerment or related information measures such as predictive 

information, homeokinesis, and others 168 can provide universal metrics of progress of agents' 

perceptual-motor capabilities and permit them to learn new skills without pre-specified learning goals 

(e.g., learn this or that). Furthermore, informational measures can be used to realize algorithms that plan 

and control behaviour using less information resources, thus yielding parsimony in inference and control 

127. Information-theoretic analyses have been used to model how animals restore their homeostasis in a 

teleonomic way from both metabolic and informational points of view 169. Measures of information 

integration and entropy have been also adopted to study brain networks and even to develop a measure 
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of consciousness by casting it in terms of highly integrated information processing in the brain 170. Along 

with other methodologies to study complex brain networks 171, these measures can be potentially used to 

study networks of non-neural cells. 
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Figure Legends 

 

Figure 1: Examples of dynamic pattern regulation 

Large-scale patterning during regeneration and embryogenesis often exhibits flexible growth 

programs that work to achieve a specific target morphology. (A) Embryos of many species can be split in 

half but result in two perfectly normal individuals – monozygotic twins (photo by Oudeschool via 

Wikimedia Commons). (B) Similarly, mouse embryos can be joined together and yet re-pattern to give 

rise to a normal animal. (C) Salamander limbs can regenerate perfectly following amputation, and the 

process stops when a correct limb is rebuilt. (D) A tail grafted onto a flank of an amphibian slowly 

remodels into a limb – a structure more appropriate to its new anatomical position; this includes re-

specification of the distal-most tip into fingers, showing that the process is non-local (because the 

immediate environment of the tail tip is its expected “tail” context, and it should have no reason to 

change unless it received long-range signals). (E) In some species of deer, damage at a particular spot 

on the invariant branched structure will result in an ectopic tine appearing in that same location next year 

after the antlers are shed and re-grow (used with permission 172). (F) A tadpole modified during 

development such that its craniofacial organs are in the wrong positions nevertheless develops into a 

normal frog, showing the ability of morphogenesis to flexibly correct unexpected initial states towards the 

same anatomical outcome (frog image courtesy of Erin Switzer; tadpole image used with permission 6). 

These examples illustrate the ability of biological systems to robustly pursue or maintain a goal state 

specified at the level of topological arrangement of organs – a capability we must learn to exploit, for 

transformative applications in synthetic bioengineering. We do not discuss plants, because though they 

often possess impressive powers of regeneration 173, they generally have no fixed target morphology at 

the level of the entire organism. Images in panel F are courtesy of Douglas Blackiston and Erin Switzer. 

 

Figure 2: Non-neural cells use bioelectrical signaling for pattern formation 

 (A) Voltage-reporting fluorescent dyes reveal a rich pattern of bioelectrical communication among 

early frog embryo cells. (B) During later development in the frog embryo, a prepattern of 

hyperpolarization is seen (lighter cells) which establishes the prospective boundaries of craniofacial gene 

expression and the location of anatomical organs: in this way, bioelectric state information directly and 

functionally encodes the anatomy and structure of the face (used with permission 57). If this bioelectric 

pattern is artificially perturbed, predictable changes in face morphology result. (C) Targeted changes of 

bioelectric state, by misexpression of ion channel mRNA in frog embryos in vivo, reprogram body 

regions at the level of organs: without having to specify the details, a portion of the gut can be re-
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specified to form a complete eye (red arrowhead; used with permission from 33). (D) The process 

involves not only the cells whose voltage properties were changed (marked with blue lineage dye) but 

also recruits some of the host’s unaltered cells toward making a complete circular lens, revealing a non-

local property of bioelectric organ induction. 

 

Figure 3: Tools for perturbing bioelectrical networks 

 Much as in the nervous system, there are 2 basic options for experimentally modulating the activity of 

bioelectric networks in developmental contexts. Analogous to synaptic plasticity, the connectivity of the 

network can be modified, by blocking endogenous gap junctions (electrical synapses), either 

pharmacologically or via misexpression of a dominant negative connexin subunit, or introducing novel 

gap junctional connections by driving expression of wild-type connexins or connexin mutants with 

desired gating/permeability properties. Analogous to intrinsic plasticity, one can instead modify directly 

the bioelectrical state of specific cells. Pharmacological, genetically-encoded, or optogenetic strategies 

can be used to modify which channels are expressed in cells, or which are open/closed. Guided by the 

Goldman equation, these interventions can be designed to result in desired changes of resting potential 

in the targeted cells. Images in this figure were created by Jeremy Guay of Peregrine Creative. 

 

Figure 4: Pattern memory encoded in bioelectric circuits 

 Planaria (A) can regenerate any body region, and their head-tail polarity is regulated in part by an 

endogenous voltage gradient. When the head and tail are removed and the middle fragment is treated 

with reagents that alter the topology of the bioelectric network (gene-specific RNAi targeting innexin 

proteins, or gap junction-targeting drugs that wash out in 24 hours, B), a 2-headed planarian results (C). 

Remarkably, weeks later, when these animals are cut and re-cut in plain water, 2-head worms continue 

to result (D,E) despite the animal’s normal genome and the fact that “epigenetically reprogrammed” 

tissues are removed at each round of cutting. This illustrates the distributed encoding of target 

morphology among all body regions, the storage of pattern information in bioelectrical properties distinct 

from genomic information, and the ability to alter the shape to which this animal repairs upon damage by 

changing network connectivity among cells long-term memory (all ideally mirrored by the known 

properties of long-term memory).  Bioelectric circuits that could stably store such state information 

consist, much like neurons, of voltage potentials driven by ion channels (F, transcriptional changes in the 

expression of which are analogous to intrinsic plasticity in neuroscience) and of connectivity via highly 

tunable electric synapses – gap junctions (G, changes in which are analogous to synaptic plasticity). (H) 

Positive feedback loops between voltage states (an aggregate, systems property) and voltage-sensitive 

ion channel states allow stable attractors of distinct bioelectrical states. Together with known 
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mechanisms of synaptic plasticity implemented by gap junctions, calcium, and neurotransmitters (I), 

these components should allow the creation of mechanistic models of pattern memory and the 

construction of synthetic bioengineered devices with memory and self-repair capabilities. Panels A-E 

used with permission 18. Images in panels F and G were created by Jeremy Guay of Peregrine Creative. 

Images in panel H used with permission 75b. 

 

Figure 5: Pattern formation and regeneration using the free energy principle (FEP) 

(A) A sample computational model 85, in which undifferentiated cells self-organize to reach a 

target morphology, corresponding to a (simple) multicellular animal with head, body, and tail (e.g., a 

planarian). The target morphology is specified in such a way that, when it is achieved, all cells essentially 

sense the “right” electrochemical signals – a state in which no further remodeling (cellular activity) is 

necessary. However, the problem for the cells is  "finding their place" in this target morphology; because 

cells are initially undifferentiated, each can (in principle) become part of the head, body, or tail. This 

morphogenetic process is formulated as an inferential, FEP problem (B), where essentially the whole 

system undergoes a series of changes (e.g., in cellular position) until the target morphology is achieved. 

While changing their place, cells emit signals (chemical and/or physiological) that in turn guide the other 

cells, until a collective solution is found that corresponds to the state where the free energy of the whole 

system is minimized. Once the system has reached a stable solution, it can be perturbed, e.g., cut into 

two parts, (C) and this can lead to a new morphogenetic process with the regeneration of two organisms. 

Perturbing the system in more severe ways can lead to various forms of dysmorphogenesis (not shown, 

see 85). Note that this self-organizing process is guided by an objective function (free energy 

minimization) and lends itself to top-down analysis, while able to accommodate known details of cellular 

signaling. Images reused according to the Creative Commons license from references 85, 160. 

 

Figure 6: Formulating and solving a patterning problem via the free energy principle (FEP) 

The figure schematizes a "methodological recipe" for formulating and solving a patterning problem using 

the free energy principle (FEP); see 85 for one recent example where this approach has been 

successfully used. The methodology is composed of three steps. The first step (A) requires specifying 

mathematically the so-called generative model of the cells, or in other words their "internal states", 

"active states", "sensory states" and "external states", along with their probabilistic dependencies and the 

prior knowledge (e.g., a previous, correct target morphology). The second step (B) requires specifying 

mathematically the exchanges (intercellular signalling) between the cells. Because the approach 

assumes that, for each cell, the behavior of (some or all) the other cells constitutes the "external state", 
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specifying the interactions between cells corresponds to specifying how the "active states" of one cell 

changes the "sensory states" or (some or all) the other cells. Intuitively, the active state of one cell might 

correspond to emitting chemical and/or physiological signals which can be sensed by other cells (the 

model requires specifying for example the gradients and concentrations that underlie this sort of 

intercellular signaling. The third and final step (C) corresponds to simulating the dynamics of the problem 

to find the solution that minimizes the free energy of the (collective) system. A MATLAB toolbox 

implementing a variational message passing scheme for free energy minimization is the SPM academic 

freeware ( http://www.fil.ion.ucl.ac.uk/spm/ ); see also 81. Images reused according to the Creative 

Commons license from references 85, 160. 

 

Figure 7: Cognitive neuroscience paradigms and their application to models of pattern formation 

(A) The TOTE model of a cybernetic goal-directed process. Figure adapted from 174. Words in 

Italics represent the main processes composing the principle. Thin arrows represent information flows. 

The double-headed arrow represents a process of comparison between the desired and the actual state 

value. The process starts from a Test. If the Test fails (i.e. a mismatch is detected between desired and 

actual state) an action is triggered (dashed arrow) that causes a cascade of effects such as a change in 

the actual state that are sensed and used in the next Tests. When the Test succeeds, the process ends.  

(B) The same model applied to a regenerative context, in which comparison of current anatomical state 

to a stored target morphology generates signals for cell growth, differentiation, and movement that 

progressively restore pattern.  Cognitive neuroscience is also an example of a field in which high-level 

information has causal power and is mechanistically integrated with low-level (molecular) details of its 

encoding and manipulation. (C) Changes of mental state (learning specific patterns for example) alters 

cell behaviour in the brain (taken with permission from 124b). (D) Manipulation of bioelectric states in the 

brain using optogenetic tools is able to insert specific cognitive content (false memories) 78a. Credit: 

Collective Next. (E) Conversely, mental imagery can be read out by appropriate decoding of bioelectric 

state information from living brains (taken with permission from 125a). In complement to today’s models 

(formulated entirely bottom-up, in terms of molecular pathways), we suggest that successful top-down 

models of regeneration (in which organ-level topological pattern is represented within somatic cells and 

guides cell behavior) could be formulated by borrowing insights from cognitive neuroscience. 

 

Figure 8: Applying free energy models to understanding cognition, a "primordial soup", and dynamic 

morphogenesis.  

(A) A dynamical exchange between an agent and its environment as modeled in the active 
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inference framework 81. Here, a discrepancy between the current sensory state and a goal state encoded 

in the internal state (reflecting some desired event or the homeostatic level of some variable) gives rise 

to interoceptive, proprioceptive, and exteroceptive prediction errors (red arrows). This produces a 

cascade of processes that ultimately enacts a sequence of actions (say, grasping and eating an apple). 

This process ceases when the interoceptive, proprioceptive, and/or exteroceptive feedback (e.g., the 

right gustatory sensations) matches the descending predictions (blue arrows) meaning that the organism 

has restored homeostasis through action. (B) A simulation of a “primordial soup” and the emergence of 

self-organization that is coherent with principles of active Bayesian inference; example from 160. Left part: 

This “soup” comprises an ensemble of dynamical subsystems (the dots) that represent macromolecules. 

The macromolecules have a physical state (representing e.g. their position) and an electrochemical state 

(representing e.g. concentrations) that change according to simplified Newtonian dynamics and 

electrochemical dynamics (modeled in 160 using a Lorenz attractor). Crucially, the states have short-

range interactions: they are coupled within and between the subsystems comprising an ensemble. 

Center part: as the system evolves over time, a structure self-organizes that separates subsystems that 

are conditionally dependent (called internal states) and independent (called external states). Formally, 

this structure is called a Markov blanket: a kind of “statistical boundary” (more formally the set of node's 

parents, children, and its children’s other parents in a Bayesian network). Note the clear separations - 

after evolution - in the location of subsystems (macromolecules) with internal states (blue), their Markov 

blanket (magenta and red), and external or hidden states (azure). States in the Markov blanket can be 

further subdivided into two sets: those that depend on internal states (red) and those that do not 

(magenta), called active states and sensory states, respectively. As noticed in 160 in this spatial 

configuration “the active subsystems support the sensory subsystems that are exposed to hidden 

environmental states. This is reminiscent of a biological cell with a cytoskeleton that supports some 

sensory epithelia or receptors within its membrane.” Importantly, active states change external states 

(but are not affected by them) and so they maintain the structural and functional integrity of the Markov 

blanket. Indeed, “lesioning” internal, sensory or active states (by decoupling them from the rest of the 

system) quickly leads to the disruption of the Markov blanket - not shown here, but see 160. Right part: 

These arguments suggest that a formal analogy can be established between active and sensory states 

and action and perception systems in living organisms, respectively. This speaks to an even more 

general interpretation of the self-organization process (shown in the Center part) in Bayesian terms, 

where the internal states are Bayesian models that infer/represent the hidden (azure) causes of sensory 

(magenta) states and cause these states through action (red). This can be verified if one considers that 

sensory states permit predicting external / hidden states - as shown in 160. (C) The same scheme can be 

applied now to regeneration, where the "internal" (biochemical) states essentially encode a target 

morphology that can be acquired through a learning process that obeys to free energy minimization 

processes (e.g., as shown in B) or using unsupervised learning in generative architectures as explained 
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in the main text. Once the target morphology is acquired, the same error-correction mechanism 

explained in (A) permit to trigger (regenerative) actions that restore it when it is disrupted. Images reused 

according to the Creative Commons license from references 85, 160. 

 

  

Page 39 of 60 Integrative Biology



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 39  

Please do not adjust margins 

Please do not adjust margins 

Tables: 

Table 1: conceptual mapping between cognition and pattern formation 

Cognitive concept Patterning concept 

Action potential movement 

within an axon 
Differential patterns of Vmem across single cells’ surface 

Local field potential (EEG) Vmem distribution of cell group 

Intrinsic plasticity Change of ion channel expression based on Vmem levels 

Synaptic plasticity 
Change of cell:cell connectivity via Vmem’s regulation of gap 

junctional connectivity 

Activity-dependent 

transcriptional changes 

Bioelectric signals’ regulating gene expression during 

patterning 

Neuromodulation 

Developmental (pre-nervous) signaling via neurotransmitters 

such as serotonin moving under control of bioelectrical 

gradients 

Direct transmission Cell:cell sharing of voltage via nanotubes or gap junctions 

Volume transmission 
Cell:cell communication via ion levels outside the membrane or 

voltage-dependent neurotransmitter release 

Synaptic Vesicles Exosomes 

Sensitization 
Cells become sensitized to BMP antagonists to stabilize 

neurogenesis 

Functional lateralization Left-right asymmetry of body organs 

Taste and olfactory 

perception 
Morphogenetic signaling by diffusible biochemical ligands 

Activity-dependent 

modification of CNS 

Control of anatomy by bioelectric signaling within those same 

cells 

Critical plasticity periods Competency windows for developmental induction events 

Autonomic reflexes Wound healing 

Voluntary movement Remodeling, regeneration, metamorphosis 

Memory 

Shorter term: Regeneration of specific body organs. Longer 

term: Morphological homeostasis over decades as individual 

cells senesce; altering basic body anatomy in planaria by direct 

manipulation of bioelectric circuit 

Pattern completion ability of 

neural networks (e.g., 

Regeneration of missing parts in partial fragments (e.g., 

planaria) 
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attractor nets) 

Forgetting Cancer, loss of regenerative ability 

Addiction 
Limb becomes unable to regenerate without nerve once 

exposed to nerve 

Encoding 
Representation of patterning goal states by bioelectric 

properties of tissue 

Visual system feature 

detection 
Organ-level decision making during morphogenesis 

Holographic (distributed) 

storage 

Any small piece of a planarian remembers the correct pattern 

(even if it has been re-written) 

Instinct Hardwired patterning programs (mosaic development) 

Behavioral plasticity Regulative developmental programs and regenerative capacity 

Self-modeling Surveillance of anatomical state by brain 

Goal-seeking 
Embryogenesis and regeneration work towards a specific 

target configuration despite perturbations 

Sub-goaling in problem 

solving tasks 
Developmental modularity 

Adaptivity and Intelligence 

Morphological rearrangements carry out novel, not hardwired, 

movements to reach the same anatomical configuration despite 

unpredictable initial starting state 

Tabula rasa 
Cells could be a (semi) universal constructor, able to build any 

shape that can be specified via the pattern memory code 

Age-dependent cognitive 

decline 
Age-dependent loss of regenerative ability 

Optogenetic insertion of 

false memories 
Optogenetic induction of regeneration or ectopic organs 

Reading of semantic content 

from brain scans 

Detecting differences in target morphology from fluorescent 

voltage dye data 

 

 Legend: possible mapping of concepts in cognitive neuroscience to examples in pattern formation 
(listed in rough order of level of organization, from low to high descending). 
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