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Insight, Innovation and Integration 

Collective cell migration is crucial in multiple biological processes and disease; biochemical, 

mechanical and physical factors combined can lead to diverse physical behaviors. 2D model 

systems for collective cell migration yield promising insights into the link between cell-dynamics 

and biological function, but are unable to capture the in vivo complexity. In order to address the 

inherent challenges of 2D system, we present a 3-dimensional experimental model for the motion 

of cellular cohorts in native like environments. We show that cell cohorts have spatiotemporal 

heterogeneity that can be mapped and quantified. We have devised quantitative algorithms that 

treat each cohort as unique, and isolate ‘motility events’ that occur over the period of 

observation. These techniques allow for systematic processing of large amounts of data, and to 

probe heterogeneity between and within cellular cohorts.  
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Abstract 

Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of 

heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding 

how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease 

progression. While current two-dimensional model systems recapitulate the dynamic properties of collective cell 

migration, quantitative three-dimensional equivalent model systems have proved elusive. To establish such a model 

system, we study cell collectives by tracking individuals within cell cohorts embedded in three dimensional collagen 

scaffolding. We develop a custom algorithm to quantify the temporal and spatial heterogeneity of motion in cell cohorts 

during motility events. In the absence of external driving agents, we show that these cohorts rotate in short bursts, <2 

hours, and translate for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts 

composed of 3-31 cells, and pave a path toward understanding cell collectives in 3D as a complex emergent system. 

Introduction 

From early development to morphogenesis, wound healing, and even in cancer pathologies, biological function hinges on 

collective cell migration. Currently, studies of the inter-cellular dynamics of collective cell motion are primarily conducted 

via two dimensional (2D) monolayer experiments. Here we present a 3-dimensional study of cell collectives.  

Cells must coordinate adherence and motility to maintain organized coherent motion1; extensive work continues to probe 

how cells establish such communication and organization2,3. Cells migrate collectively to build and vascularize tissues, heal 

wounds, and occasionally in tumor metastases. A comprehensive review of collective cell motility establishes the  many 

modes of migration available to cell collectives as well as the forces that drive motility4. A broad classification for 3D 

collective migration modes can comprise of two categories― in the first, cells never dissociate from their original tissue, 

as in the case of branching morphogenesis, angiogenesis, and multicellular strand invasion of cancers; and in the second, 

a detached cluster moves through ECM and other non-motile cells as observed in cancer metastases and drosophila border 

cells5,6.  

From a mechanical and physical standpoint, time-lapse imaging and immunohistochemistry reveal relevant characteristics 

of collective cell migration (CCM) 1,7,8. For example, in Drosophila, E-cadherin is essential for collective direction sensing9, 

and tissue rotation is essential for building an extracellular-matrix (ECM) to control egg shape10. In a 3D example, human 

mammary cells embedded in 3D gels reveal that rotation is essential to the formation of breast acini- it does not occur for 

cancerous breast cells, and when disrupted within normal cells, acini do not form11. Tracking assays on monolayers reveal 

density-dependent phase transitions12, substrate dependence13, and the forces driving CCM14,15. A comprehensive study 

of the mechanical properties of epithelial monolayers identified E-cadherin and P-cadherin as key proteins contributing 

to intercellular forces16. Heterogeneity emerges within groups of cells exhibiting collective behavior- functionally distinct 

populations of cells are termed leader and follower cells4. Leader cells are located at the front of a moving collective; they 

are responsible for receiving cues and directing the collective. Well-defined leader cells are found in cases of sprouting 

morphogenesis and angiogenesis17. In sheet migration, key molecules are upregulated to form leader cells at the leading 

edge; removal of these leader cells disrupts migration18.  
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Cancer pathologies are not amenable to direct observations of coherent translation due to diagnostic limitations; 

however, indirect evidence from in vivo measurements demonstrates that cancer metastases can migrate through tissue 

layers as collective masses5,6,19. Clinically, patients with epithelial-originating cancers or carcinomas present with 

circulating tumor microemboli, or clusters of circulating tumor cells up to 8 cells large20,21. Typical 3D studies of cell 

collectives involve immunohistochemistry assays and invasion assays of immortalized cancerous and non-cancerous cell 

lines. Immunohistochemistry has elucidated biochemical markers crucial to the emergence of leader-follower 

heterogeneity22 in cancer cell lines. Invasion assays involve seeding a large spheroid (>200 µm in diameter) of cancerous 

or non-cancerous cells into a 3D matrix; the subsequent invasion of the spheroid into the matrix can take the form of 

single cell invasion or multicellular strand invasion. Time-lapse microscopy conducted on invasion assays highlights cell 

dynamics, leader-cell formation23, and cell jamming24; together these data suggest that cancer cells have inherent 

plasticity of migration modes and the ability to transition between these modes25.  

The dynamics of collective cell motility are essential to understanding collective processes and function. In 2D 

environments, epithelial cells and fish keratocytes26 have been used as model systems to study the dynamic aspects of 

collective cell migration. Here, we present a model system for quantifying 3D collective migration using mammalian cell 

cohorts comprised of three to thirty-one cells. This can serve as a tool for understanding the motility of detached cellular 

clusters that have been observed in cancer metastases in vitro and found as circulating tumor microemboli in vivo. We 

track individual cells within cohorts embedded in a 3D scaffold and identify events of emergent collective behavior in the 

absence of external driving agents. Our system serves as a 3D experimental model for collective motility of cells that is 

able to analyze each cell cohort as an individual entity. It is a first step toward a physical understanding of collective cell 

motility in 3D, including cancer cell invasion and the critical conditions that lead toward collective metastasis.  

Materials and Methods 

Cell Culture 

MDCK Type II epithelial cells are propagated in monolayers at 37°C, 5% CO2, and ~ 70% humidity; monolayers are cultured 
in DMEM media supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells are stably transfected 
to express Nuclear Localization Signal (NLS) bound to Green Fluorescent Protein (GFP). Transfection is accomplished by a 
GFP-NLS plasmid (Clontech, Takara Bio, Japan) of Lipofectamine 2000 (Invitrogen, Life Technologies, Grand Island, NY). To 
maintain fluorescence 0.5 mg/ml G418 is added to the media; Fluorescence Activated Cell Sorting (FACS) selects for the 
brightest 1% of cells. Identical procedures are followed on MDCK GFP-Ecad cell lines27.  

3D Cluster protocol 

Single cell suspensions are formed by immersing cells in media after trypsinization; cells are passed through a 40 µm cell 
strainer (BD Biosciences, San Jose, CA); cells are then seeded onto a 10 cm diameter Ultra Low Attachment Dish (Corning, 
Corning NY) with 10 ml media. After 48 hours, clusters are extracted by passing the solution through a 100 µm cell strainer 
followed by a 40 µm cell strainer, retaining clusters of 10-20 cells. These are resuspended and centrifuged at 800 rcf, and 
then immersed in a collagen solution for 3D culture and imaging.  

A 2 mg/ml collagen dilution is obtained by mixing equal volumes of collagen Type 1 stock (BD Biosciences, San Jose, CA) 
solution and neutralizing buffer (100mM Hepes in 2x PBS, pH 7.3) with PBS. Cell clusters are added to the 2 mg/ml collagen 
solution; this cluster-collagen suspension is seeded onto several wells of a 24-well plate or 96 well-plate (MatTek, Ashland 
MA). The plates are incubated at 37°C, 5% CO2 and ~ 70% humidity for 2 hours until the collagen has polymerized, after 
which ~1-2 ml of growth media is added to each well. FluoSpheres® Carboxylate-Modified Microspheres in 1.0 µm 
(Invitrogen) with red fluorescence (580/605) are diluted to ~ 108 beads/ml collagen when used. 

Imaging and Tracking 

Images are acquired with a DMI600B Microscope (Leica, Solms, Germany) and ImagEM EM-CCD Camera (Hamamatsu 
Photonics, Hamamatsu, Japan) using a Spinning Disk Confocal setup (Yokogawa, Tokyo, Japan). Micro-Manager 1.4 
Software (http://www.micro-manager.org) employs a 10X 0.3 NA objective lens to image ~560 X 560 X 100 µm3 fields of 
view. 3D stacks are acquired in the XY plane with a Z-step of 4 µm, every 10 minutes, for ~48 hours over a 100-200 µm 
depth. For the experiment with GFP-Ecad a 20X 0.4 NA objective lens was used with a Z-step of 2 µm over a 42 µm depth. 
Cells can sense the substrate beneath the 3D matrix from inside the collagen gel28, and cells that are closer to the glass 
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bottom show very high proliferation along with sheet-like dynamics. Since the scope of this work pertains to 3D cell 
morphology, acquisition and analysis is restricted to cells clusters located >100 µm from the glass bottom. 3D morphology 
is further verified before tracking and analysis.  

ImageJ (NIH) is used to estimate the average nuclear diameter (~8 µm). This diameter is input into a Matlab (MathWorks, 
Natick, MA) spot-tracking algorithm designed by the Kilfoil group29; the algorithm is modified for 3D nucleus detection and 
tracking. Parameters such as nucleus diameter, mask, minimum track time, and maximum displacement between 
consecutive time points, are optimized until varying each parameter independently has a minimal effect on the output. 
This metric is optimized until on average, 93% of all nuclei identified are assigned to a track. New cell identifiers are 
assigned when tracking is lost after 3 consecutive time points or after cell division. For a single track, if a cell is missing for 
up to two time points, its position is interpolated by assuming a straight path. A de-drifting algorithm designed by the 
Kilfoil group30 eliminates net motion that is common to all cells in the 3-dimensional field of view to account for stage 
drift, which is ~25-40 µm every 24 hours.  

Clustering Algorithm 

A custom hierarchical clustering algorithm is written in Matlab to sort cells into cohorts, or groups of cells that are 
physically attached to each other. The algorithm is agglomerative- each cell is initially assigned a unique cluster identifier. 
For the first cell considered, all cells positioned within 35 µm are assigned to its cluster; all cells positioned within 35 µm 
of those cells are then assigned the same cluster. The process repeats until there are no cells that could be grouped into 
the same cluster; then the next cell with a unique cluster ID is considered.  For these cells, a cutoff distance of 35 µm is 
empirically determined to be ~1.5 3D cell lengths; thus minimizing the likelihood of skipping an adherent neighbor. Cutoff 
distances ranging between 25-45 µm do not affect the output data. A custom function auto-correlates cluster IDs between 
consecutive time-points to ensure that each cluster has a unique ID for the duration of the experiment. A cluster is 
reassigned the same ID if it retains a majority of cell IDs from the previous time point, such that if two cohorts merge, the 
new cluster is labeled as the larger of the two.  

Displacement Squared Quartiles and Order 

Displacements of each cell in a cohort between time t+ 0.5*Tint and t-(0.5*Tint +∆T) are calculated across the entire 
timespan of the experiment, where Tint = 1 h and ∆T  = 10 min (gap between consecutive time points). This results in a 
distribution with as many values as number of cells in the cohort at each time point. Displacements are squared, and the 
median, upper-quartiles, and lower-quartiles of this distribution are evaluated for all time points of the experiment. To 
calculate order parameter31, a smoothing function is run on XYZ position data between consecutive time points according 
to Equation 1 where x represents position and t represents time; the interval between consecutive data points is 10 
minutes.  

�⃑�𝑡 = 
𝑥𝑡−∆𝑇+ �⃑�𝑡+ �⃑�𝑡+∆𝑇

3
 (1) 

The Tint order parameter is calculated for the cohort between time t+ 0.5*Tint and t-(0.5*Tint +∆T) as shown in Equation 2 
where v is velocity and N is the number of cells in the cohort.  

𝜑(𝑡) =  
|∑ �⃗� 𝑖 𝑇𝑖𝑛𝑡

𝑁
𝑖=1 |

∑ |�⃗� 𝑖 𝑇𝑖𝑛𝑡
 |𝑁

𝑖=1

 (2) 

Tint is selected by studying Mean Squared Displacement (MSD) vs. time interval plots (data not shown) for all cells in the 
experiment. MSD plots suggest that the cells in these experiments have high heterogeneity of behavior over intervals as 
low as 30 minutes. In order to account for bias induced by tracking, de-drifting, and noise, we doubled this number to set 
Tint = 1 h.  

Automated Event Selection 

To analyze individual cohorts, a custom algorithm is written in Matlab to detect motility events from median displacement 
squared data. Initially, Matlab’s built-in peak finding algorithm is used to find all peaks in the data. Peaks are merged if 
the valley between them > 0.5*Pmin and the time gap between them <1.5*Tint. Then peaks with width < Tint or height >Pmin 
are eliminated. Pmin, or the minimum peak height for a motility event, is conservatively set at 60 µm2, in order to track 
motion of ~1 3D nucleus diameter and minimize the loss of relevant information.  

Pairwise Correlations 
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Once an event is identified, smoothed positions of cells for that event inform correlation functions between all possible 

cell pairs within a cohort. This correlation function is represented by Equation 3 where i and j are the cell pair, τ is time 

difference, t is time, and v is the velocity32.  

 

𝐶𝑖,𝑗(𝜏) =   ⟨(
�⃗� 𝑖

|𝑣𝑖⃗⃗  ⃗|
)
𝑡
∙ (

�⃗� 𝑗

|𝑣𝑗⃗⃗⃗⃗ |
)
𝑡+𝜏

⟩ (3) 

This correlation function reaches a maximum peak value at a lag time τc; when a peak has a height > 0.5, a correlation is 

considered significant and τc is retained. For positive τc, cell i lags cell j with duration τc; conversely, for negative τc, cell j 

lags cell i with duration τc. 

Results  
To investigate long term behavior and heterogeneity of motion in time, 3D cell tracking is performed on representative 

cell cohorts comprising 3-31 cells every 10 minutes over a duration of 48 hours. Positions, cell IDs, and cluster IDs for 

twelve cell cohorts are obtained from two different 2mg/ml collagen gels and five independent fields of view. Cohorts are 

dynamic and exhibit spatial and temporal heterogeneity; behavior may include seemingly random movement, collective 

rotation, or collective translation. Planar projections and renderings of nuclear tracking at 0 h, 24 h and 48 h are 

represented in red, green and blue, respectively, in Figure 1.  Two of the cohorts merge between 24 and 48 h, as visible in 

Figure 1 C and D. For this merging event, one cohort changes direction of motion in the second half of the experiment. 

Data for the other 3 fields of view is represented in Supplementary Figure 1; planar projection time-lapse videos and 

renderings of nuclear tracking are presented in Supplementary Videos 1-5.  The videos qualitatively demonstrate rotation 

and translation of individual cohorts at various time-points; individual cohorts within a field of view may or may not be 

correlated to each other. To verify that motion is not caused by external ECM deformation, an experiment is performed 

using 1 µm fluorescent beads embedded alongside the cells in the collagen matrix (Supplementary Video 6). This video 

suggested that the matrix is relatively stable except for perturbations caused in the vicinity of cohorts, likely due to pulling 

of the gel. GFP-Ecad planar projections are in Supplementary Video 7, illustrating that E-cadherin is membrane bound in 

the cohorts.  

The heterogeneity of cohorts in time is determined by studying the individual cell displacements for each cohort. For the 

48 hour experiment, 1-hour displacements for all cells in a cohort are calculated; these displacements are squared (|d2|), 

and the median of the resulting distribution is plotted corresponding to the left y-axis of Figure 2. The upper and lower 

quartiles for the same distributions are plotted in the gray regions around the lines representing the median. The motility 

events isolated are depicted in shaded vertical strips in Figure 2. Upon isolating motility events for each individual cohort, 

we find evidence of coherent rotation and translation within intervals ranging from 1 to 6 hours. For these 12 cohorts, a 

total of 61 motility events are obtained; five cohorts have 1-3 events, whereas those depicted in Figure 2 are motile for 

almost the entire duration of the experiment. Displacements and events for ten other cohorts are displayed in 

Supplementary Figure 2.   

Order parameters provide a quantitative metric to measure the collectivity of systems. Establishing an order parameter 

for this system identifies the presence of translation, and also distinguishes between rotation and translation. For cells 

translating collectively, the order parameter is ~1, and for cells rotating collectively this parameter is low, between 0 - 0.5. 

For a cohort rotating about an axis in the center of the cohort, the order parameter is 0. For cohorts rotating about an off-

center or external axis the order parameter is higher. This is because when the axis of rotation is in the middle of the 

cohort there is an average velocity of 0 within the cohort.  

For the 48 h experiment, 1-hour order parameters are plotted corresponding to the right y-axis in Figure 2. All motility 

events are identified via peaks in displacement; translation events are accompanied by peaks in the order parameter; 

rotation events are accompanied by fluctuations or valleys in the order parameter (Figures 2 and Table 1). While 

translation occurs over durations of 1 to 6 hours, rotation only occurs in bursts of 1 to 2 hours (Figure 2, Table 1 and Figure 

3). For selected motility events, metrics such as total displacement of the cohort, average order, and average number of 

cells are depicted in Table 1; metrics for all 61 events are in Supplementary Tables.  
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The highest observed translation event has a duration of 6 hours and measures ~90 µm, corresponding to ~8 3D cell 

diameters. To visualize a few motility events, cell trajectories derived from raw data with events from four different 

cohorts are mapped in Figure 3. Panels A and B show rotation, Panels C and D show translation. Spots are colored to 

indicate the initial and final time point of cell tracks within the event. 

Directional correlation functions, defined in Equation 3, probe the inter-cellular dynamics within each cohort during a 

motility event. For the four representative events depicted in Figure 3, leading and lagging times are calculated using 

pairwise correlation functions; normalized occurrence frequencies of these times are displayed in Figure 4. For all cohorts 

in motility events, most cell pairs have 0 time lag between trajectories. For the two translating events in panels C and D, 

some cell-pairs have lags up to 200 minutes. For the shorter rotating events, the range of lag times is relatively smaller. 

There is no clear correlation between the magnitude of this time lag and the distance between cells.  

Discussion and Conclusion 

Conventional cell tracking research assumes that the behavior of cells in 2D and 3D is homogenous in time; information 
from all time points is averaged to deduce the timescales for various cellular behavior33. This is typically achieved by fitting 
cell trajectories to a stochastic random walk model34 to evaluate speed and persistence of cells in 2D or 3D; however the 
basic assumptions of a persistent random walk fail in a system of cell collectives. Simplified versions of this analysis have 
been used on cell collectives in 3D to evaluate diffusion coefficients and angular velocity of human mammary cells11, 
however these techniques are inapplicable to data presented here, since the first assumption to evaluating Mean Squared 
Displacement vs. time-lag is temporal homogeneity. As evident in Figure 2 and Supplementary Figure 2, for cell cohorts in 
this study, temporal heterogeneity is observable in patterns of motion. These systems are not correlated within a single 
field of view over the duration of observation― there are intervals in which clusters move away (Supplementary Video 1, 
4-7 s) and intervals in which the same clusters move toward each other and merge (Supplementary Video 1, 33-40 s).  Not 
all cohorts are alike; some exhibit higher translation, rotation, and fluctuation than others. For example, Gel I View i Cohort 
#3 has fourteen high motility events of both translation and rotation, while Gel II View ii Cohort #1 has only one motility 
event of translation (Figure 2, and Supplementary Tables). Cells in 3D are smaller than their 2D counterparts- our average 
cohort diameter is on the order of 2D single cell lengths35, but in 3D, it spans ~6 -15 cells (Figure 1, and Supplementary 
Figure 1). Thus, displacements on the order of tens of microns, which would not be relevant for 2D studies, mark coherent 
collective motility in these 3D studies (Figure 1 and 2). 

Cell collective studies of epithelial monolayers typically calculate the velocity correlation length13,36,37 of monolayers. This 
correlation length is the length at which a radius-dependent velocity-correlation function equals zero on average for the 
monolayer. These analyses are effective at characterizing properties and differences between 2D cellular systems; 
however the underlying assumption is constant cellular density. Constant density is neither feasible nor interesting for 
3D-collectives, since it does not pertain to any known 3D collective motility modes and cannot account for the ECM. 
Therefore analysis techniques from the field of collective motion31 are adapted here, specifically order parameters1 and 
directional correlation functions, which have successfully been used to characterize heterogeneity in pigeon flocks32. 
Order parameters are easily adapted for this study― instead of calculating the order for the entire field of view, order 
parameters can be calculated on a cohort-by-cohort basis. The larger trajectory lags between cell-pairs that occur within 
a translating cohort as observed in our system may represent information transfer and polarity along the cohort. The order 
parameter of cohorts is seldom lower than 0.2, and the quartiles follow the same trends as the median (Figure 2); thus 
there is a tendency for cells to stay within cohorts instead of splitting apart and invading the matrix. These results imply 
that cell-cell junctions contribute largely to cohort integrity and function. Indeed, GFP E-cadherin MDCK cell cohort 
experiments displayed E-cadherin localized at cell boundaries in 3D (Supplementary Video 6).  

Many modes of collective cell motility have been observed in the presence of an external driving agent4. The results 
presented here suggest that the system of cell-matrix interactions is complicated and diverse enough to drive collective 
motion. Emergent motility events arise in the absence of external or forced driving agents, and are stochastic, as in the 
case of the two clusters that merged (Figure 1C and D). There are examples of other similarly sized clusters that do not 
merge and in fact move in opposite directions (Supplementary Figure 1E and F). The transient nature of these events 
suggests that this system displays stochasticity and plasticity, both suspected to occur in cancer pathologies.38 Our setup 
provides a model system that allows for characterization of inter-cohort and intra-cohort dynamics as well as identification 
and analysis of emergent motility events. The techniques presented here could be applied to cancer explants, which are 
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known to show coordinated collective motion in vitro5,6. As opposed to visually searching for motility, our work presents 
quantitative algorithms to isolate, observe, and characterize it. Since the methods operate on a cohort-by-cohort basis, 
they can be applied to a large amount of data and automated to extract motility events and compare different cellular 
cohorts.   

Considering the balance of adherence and motility required for collective motion, translation over a few cell lengths in the 
absence of an external agent provides a promising model for the study of emergent phenomena and collective dynamics. 
Our results suggest that in the absence of external driving agents, interactions between cohorts and a collagen matrix are 
sufficient to drive collective cell motility. We show, for the first time, that cells spontaneously rotate in short bursts and 
translate for several hours; our analyses lay the foundation for quantitatively identifying supracellular polarity. The short 
bursts of rotation and comparatively larger spans of translation suggest that an internal stimulus arises within the dynamic 
cell-matrix system that attempts to drive collective translation. This work presents a quantitative approach to 3D cell 
collectives that have dynamic spatiotemporal heterogeneity– each cellular cohort is unique, and the algorithm finds 
motility events on a cohort-by-cohort basis. We built our custom algorithm using empirical data; however, it can be used 
for other cell types and experimental set-ups in order to probe questions of 3D collective mechanics, function, and 
efficiency. Our approaches can be expanded to study a range of phenomena in 3D, including collective cancer migration, 
density-dependent phase transitions, cell jamming, and emergent systems.  
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Tables 

 
Table 1: Parameters of four motility events. C is Cohort ID, Ti is the initial time, Tf is the final time, |d| is the displacement 
of the cohort, <ϕ> is the average order, and Nc is the average number of cells in the cohort 

Gel View C  T
i 
(h)  T

f 
(h) |d| (µm) <ϕ> N

c
 

I i 3 17:10 18:50 3.35 0.39 7 

I ii 1 3:20 9:30 89.06 0.92 10 

II i 1 1:30 5:50 53.09 0.84 19 

I ii 3 32:30 33:50 6.33 0.72 23 
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Figures 
 

 
Figure 1: Panels A and C show Z-projections of 2 fields of view from the same 3D collagen gel with MDCK GFP-NLS cell 
cohorts at 0 h (red), 24 h (green) and 48 h (blue). The numbers in white indicate cohort number as determined by a 
clustering algorithm. Panels B and D are 3D renderings of nuclear tracking corresponding to Panel A and C respectively. 
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Figure 2: Panel A has temporal analysis for Gel I View i Cohort #3, and Panel B has the same for Gel I View ii Cohort #1. 
The left y-axis corresponds to the 1h squared displacement distribution: black line is the median, grey shaded regions 
are upper and lower quartiles. Vertical shaded regions represent motility events. The right y-axis and the red line 
correspond to 1h order parameter of the cohort. 
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Figure 3: Cell trajectories extracted from raw data for four different events and cohorts. Each cell track is represented by 
a single black line. Colors of spots mark initial and final time for each track. Panels A and B depict rotation, panels C and 
D depict translation. 

 

A  B  

C  D 

Page 12 of 14Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



 
Figure 4: For four events, these histograms show the normalized occurrence frequency of leading and lagging times τc. 
τc is obtained from pair-wise correlation functions, and it represents the time lag at which the function has a peak above 
0.5, indicating the delay between cell trajectories. 
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Cell clusters embedded in 3D collagen matrices have spatial and temporal heterogeneity of motion.  
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