
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Integrative
Biology

www.rsc.org/ibiology

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


The current submission reports characterization of double-gene deletion mutants of Escherichia coli in sub-

optimal growth phase, and the impact of gene deletion order in these mutants. We show that the order of gene 

deletions leads to different sub-optimal phenotypes, thus potentially affecting the outcome of adaptive 

evolution. We use constraint-based modeling and RNAseq to investigate the mechanism involved in the 

differential phenotypes. RNAseq identifies a differentially expressed gene with potential role in the phenotypic 

differences. Modeling studies consolidate the RNAseq results by predicting the outcome of the proposed 

mechanism. This study demonstrates the integration of phenotypic characterization, metabolic modeling, and 

transcriptomics to study a fundamental phenomenon that has implications in microbial genetics and applied 

fields such as metabolic engineering. 
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The sub-optimal phenotypes of double-knockout mutants of Es-
cherichia coli depend on the order of gene deletions.†
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Metabolic networks are characterized by multiple redundant reactions that do not have a clear biological function. The redun-
dancies in the metabolic networks are implicated in adaptation to random mutations and survival under different environmental
conditions. Reactions that are not active under wild-type growth conditions, but get transiently activated after a mutation event
such as gene deletion are known as latent reactions. Characterization of multiple-gene knockout mutants can identify the physio-
logical roles of latent reactions. In this study, we characterized double-gene deletion mutants of E. coli with an aim to investigate
the sub-optimal physiology of the mutants and the plausible roles of latent reactions. Specifically, we investigated the effects
of deletion of the glyoxylate-shunt gene aceA (encoding a latent reaction enzyme, isocitrate lyase) on the growth characteristics
of the mutant E. coli ∆pgi. The deletion of aceA reduced the growth rate of E. coli ∆pgi, indicating that the activation of the
glyoxylate shunt plays an important role in adaptation of the mutant E. coli ∆pgi. We also investigated the effect of the order
of the gene deletions on the growth rates and substrate uptake rates of the double-gene deletion mutants. The results indicate
that the order in which genes are deleted determines the phenotype of the mutants during the sub-optimal growth phase. To
elucidate the mechanism behind the difference between the observed phenotypes, we carried out transcriptomic analysis and
constraint-based modeling of the mutants. Transcriptomic analysis showed differential expression of the gene aceK (encoding
the protein isocitrate dehydrogenase kinase) involved in controlling the isocitrate flux through the TCA cycle and the glyoxylate
shunt. Higher acetate production in the E. coli ∆aceA1 ∆pgi2 mutant was consistent with the increased aceK expression, which
limits the TCA cycle flux and causes acetate production via overflow metabolism.

1 Introduction

Effects of deletion of non-lethal genes have been studied in
great details in the model organism E. coli.1–4 Fewer stud-
ies, however, have focused on systematic characterization of
multiple-gene knockout mutants (higher-order mutants) of E.
coli.5,6 Characterization of higher-order mutants can uncover
metabolic phenomena such as synthetic lethality,7 synthetic
rescues,8 and conditional lethality,9 that cannot be observed in
single-gene knockout mutants. Simple phenotypic characteri-
zation of higher-order mutants has lead to the discovery of un-
known metabolic pathways in the central carbon metabolism
of E. coli.5 Systematic genetic perturbations and character-
ization of higher-order mutants can help in in-depth under-
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standing of metabolic responses, and possibly, roles of re-
dundancies in the metabolic networks. The data from high-
throughput characterization of such mutants can be integrated
into genome-scale metabolic models, leading to increased ac-
curacy of their predictions.

Given the size of the metabolic network of E. coli (the
current genome-scale model accounts for 2251 metabolic re-
actions and 1136 metabolites),10 it is extremely difficult to
construct and characterize its complete set of double-gene
knockout mutants. One of the approaches to study higher-
order mutants is to systematically design and characterize mu-
tants from important metabolic nodes. Important nodes in
metabolism can be identified by analyzing the organization of
the metabolic network. The topology of metabolic networks
is well-characterized, and some metabolites are known to be
highly connected compared to others.11,12 Such highly con-
nected metabolites are known as hub-metabolites, and these
metabolites generally have important physiological roles.11,12

One of the hub-metabolites in the metabolic network of E.
coli is glucose-6-phosphate (G6P), which is the first branch-
ing point of the carbon flux between glycolysis (the Embden-
Meyerhof-Parnas pathway), the pentose phosphate pathway
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Fig. 1 Metabolic pathways of E. coli a) under normal growth conditions and b) after deletion of the gene pgi. The major flux during normal
growth is through the glycolysis pathway, with no flux through either the Entner-Doudoroff pathway or the glyoxylate shunt. Both of these
pathways get activated immediately after the deletion of pgi, and major flux diversion from glycolysis to the PPP takes place.2 The thickness
of the arrows indicating fluxes is for illustrative purpose only, and not to scale.

(PPP), and the Entner-Doudoroff pathway. Additionally, the
uptake of glucose in E. coli, and hence the cellular concentra-
tion of G6P, depends on the ratio of concentrations of pyruvate
and phosphoenolpyruvate (PEP), which are hub metabolites
themselves. Therefore, gene deletion mutants around the G6P
node show pronounced altered physiologies, and can provide
insights into the glucose metabolism of E. coli. One of the
most important genes in G6P metabolism is pgi which encodes
for phosphoglucose isomerase. The pgi knockout mutant of E.
coli has been intensively studied.2,13 We use higher-order mu-
tants of E. coli with pgi knockout to investigate two fundamen-
tal questions: 1) Can the growth rate of E. coli ∆pgi mutant be
improved by deleting any additional genes? 2) Does the order
in which genes are deleted in higher-order mutants affect the
growth phenotype of the final mutants constructed?

The first question investigates the phenomenon known as
synthetic recovery, in which the deletion of a gene improves
the growth rate of a pre-constructed gene deletion mutant.8,14

It is well known that the deletion of a major metabolic gene
in microorganisms is immediately followed by a sub-optimal
growth phase, where the growth rate of the mutant is lower
than that of the wild-type.2,15 The sub-optimal growth rate
of the mutants can be gradually improved by adaptive evo-
lution.16 Additionally, it is also known that during the sub-
optimal growth phase, the mutant activates a number of path-
ways that are otherwise latent during the normal growth
phase.2 Activation of pathways during the sub-optimal growth
phase is considered to be a metabolic response that helps the
mutants to cope with the sudden loss of an important gene.
The Entner-Doudoroff pathway and the glyoxylate shunt are
known to be activated in response to deletion of pgi in E. coli
(Fig. 1).2 The reason behind activation of the glyoxylate shunt
in E. coli ∆pgi mutant is the excess NADPH production in the
mutant due to diversion of flux through the PPP. By activating
the glyoxylate shunt, the mutant balances the excess NADPH
by reducing the flux through the NADPH-producing reaction
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isocitrate dehydrogenase in the TCA cycle, and instead divert-
ing it through isocitrate lyase (encoded by aceA).2

Recently, modeling studies have shown that the activation
of latent reactions may not offer metabolic advantage to the
mutants growing in the sub-optimal growth phase.14 Rather,
deletion of latent reactions was predicted to improve the sub-
optimal growth rates of the mutants.14 A logical explanation
for this observation could be that the deletion of latent re-
actions eliminates non-optimal metabolic pathways, thereby
forcing the mutants to grow at higher (closer to optimal)
growth rates.14 It is to be noted that Cornelius et al.14 de-
fine latent reactions as those that are transiently active in the
sub-optimal growth phase, and are not active in the adaptively
evolved growth phase. We have adopted this definition of la-
tent reactions throughout the present study.

Due to the contradicting theories about the role of latent
reactions in the sub-optimal growth phase, their physiolog-
ical significance remains unclear. We investigated the role
of the glyoxylate shunt gene aceA, encoding isocitrate lyase
(ICL), by characterizing the double-gene knockout mutant E.
coli ∆pgi ∆aceA. The gene aceA is known to be transiently
activated in the E. coli ∆pgi mutant, and plays an important
role in its adaptation by balancing the increased NADPH con-
centration.2 Additionally, the deletion of aceA was compu-
tationally predicted to provide a growth advantage to E. coli
∆pgi mutant (Table 2). To address the effect of the pres-
ence versus absence of the latent reaction ICL in the event of
major gene (pgi) loss, we constructed and characterized two
versions of this double-gene knockout mutant, which differed
only by the order in which the genes were deleted. Finally, we
used three constraint-based modeling techniques to simulate
the observed phenotypes of the mutants and to gain insights
into their physiology.

2 Materials and methods

2.1 Strains and plasmids

All the strains and plasmids used in this study were obtained
from Coli Genetic Stock Center (CGSC), Yale University. E.
coli K-12 MG1655 was used as the wild-type control strain
and as the starting strain to construct the gene knockout mu-
tants. All mutants were constructed using sequential P1 trans-
duction method, by transferring the target gene deletion from
the respective E. coli BW25113 mutants from the KEIO col-
lection.4 The double mutants were also distinguished by the
order in which the two genes were deleted. For example, E.
coli ∆pgi1 ∆aceA2, and E. coli ∆aceA1 ∆pgi2 were two dis-
tinct mutants, where the subscripts denote the order in which
the genes were deleted. The mutant E. coli ∆pgi1 ∆aceA2 was
constructed by first deleting the gene pgi followed by dele-
tion of the gene aceA, and the mutant E. coli ∆aceA1 ∆pgi2

was constructed by deleting the gene aceA first followed by
the gene pgi. The mutants were isolated on selection medium
containing 25 µg/mL of kanamycin. The kanamycin cassettes
were removed sequentially after each deletion using the res-
cue plasmid pCP20. None of the final mutants tested had the
kanamycin resistance gene. All the gene deletions and the ab-
sence of the kanamycin cassette were confirmed using PCR.
Care was taken to avoid any significant delay between con-
secutive gene knockouts, or extended cultivation of the inter-
mediate mutants, thereby ensuring that the mutants were in
their unevolved state. To avoid any additional random mu-
tations, the mutants were stored at −80 ◦C immediately after
construction.

2.2 Mutant characterization

All the mutants were characterized for growth and for sugar
utilization and product formation in aerobic shake-flask cul-
tivations at 37◦C. The minimal medium described pre-
viously was used as the growth medium.17 The medium
contained per litre: 3.5 g of KH2PO4, 5.0 g of K2HPO4,
3.5 g of (NH4)2HPO4, 0.25 g of MgSO4·7H2O, 15 mg
of CaCl2·2H2O, 0.5 mg of thiamine, and 1 mL of trace
metal stock. The trace metal stock was prepared in 0.1 M
HCl and consisted of per litre: 1.6 g of FeCl3, 0.2 g of
CoCl2·6H2O, 0.1 g of CuCl2, 0.2 g of ZnCl2·4H2O, 0.2 g
of NaMoO4, and 0.05 g of H3BO3. Glucose at a concentra-
tion of 5 g/L was used as the only carbon source. Finally, 4-
Morpholinopropanesulfonic acid (MOPS) (0.1 M) was added
to control the pH.

Seed cultures were prepared by inoculating a fresh colony
in 10 mL Luria-Bertani broth. The overnight grown culture
was used to inoculate 150 mL minimal medium in 500 mL
baffled Erlenmeyer flasks to get an initial OD550 of 0.1. Sam-
ples were withdrawn every hour or every two hours, and were
analyzed for OD550, glucose, and acetate concentrations. Glu-
cose and acetate concentrations were measured using a Bio-
Rad HPX-87H cation-exchange column (5 mM H2SO4 mo-
bile phase, 0.4 mL/min flow rate, 42 ◦C column temperature,
20 µL injection volume). The batch was assumed to be com-
plete when the OD550 reached a constant value. All studies
were carried out in three biological replicates.

2.3 Constraint-based analysis

Three different constraint-based methods, FBA (Flux Balance
Analysis)18, MOMA (Minimization Of Metabolic Adjust-
ment)15, and RELATCH (RELATive CHange)19 were used
to predict the growth rates and acetate secretion rates of the
mutants. Experimentally calculated glucose uptake rates were
used to simulate the glucose exchange flux for FBA. For
MOMA and RELATCH, wild-type glucose uptake rate and
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acetate secretion rate were used as input for reference models.
As FBA is not capable of estimating the growth rate changes
with sequential gene deletions, MOMA and RELATCH were
used to calculate the growth rate changes with different order
of gene deletions. To avoid the problems with alternative op-
tima, MOMA was implemented using the reference FBA solu-
tion with minimum 1-norm. All the codes were implemented
in MATLAB (The Mathworks Inc., Natick, MA) using CO-
BRA Toolbox20, and CPLEX 11.2 (IBM ILOG) was used as
the LP and QP solver.

2.4 Transcriptomics sample preparation and analysis

RNA was extracted from biological duplicate samples at mid-
exponential growth phase (OD550 around 0.7). The withdrawn
samples were immediately cooled on ice and the cell pellet
was harvested by centrifugation at 4 ◦C, washed with cold wa-
ter, and the biomass was frozen in liquid nitrogen and stored
at −80 ◦C until further treatment. The total RNA was ex-
tracted from cells using the RNeasy kit (Qiagen, Hilden, Ger-
many). The quantity of RNA was assayed using NanoDrop
ND-1000 (Thermo Scientific, Wilmington, MD). The quality
of the RNA samples was assayed using BioAnalyzer (Agilent
Technologies, Palo Alto, CA). One microgram high-quality
total RNA was used for cDNA library preparation. First,
the ribosomal RNA was removed using Epicentre Ribo-Zero
rRNA removal Kit (Epicentre, Madison, WI). The enriched
poly-A RNA was then used to generate the cDNA library us-
ing the Illumina TruSeq RNA sample prep Kit v2 (Illumina,
San Diego, CA). The generated bar-coded cDNA library, with
an average fragment size of 350-400 bp, was quality checked
with BioAnalyzer (Agilent Technologies, Palo Alto, CA), and
quantified with qPCR using KAPA SYBR FAST Universal 2X
qPCR Master Mix (Kapa Biosystem, Wilmington, MD). The
quality checked libraries were then loaded on a flow cell for
cluster generation using Illumina c-Bot and TruSeq PE Clus-
ter Kit v3 (Illumina, San Diego, CA). Sequencing was done
on HiSeq2000 with TruSeq SBS Kit v3 (Illumina, San Diego,
CA). The real-time base call (.bcl) files were converted to fastq
files using CASAVA 1.8.2 (on CentOS 6.0 data storage and
computation linux servers).

The transcriptomics data was analyzed using Rockhopper
software for bacterial RNAseq analysis21. In brief, gene tran-
script abundance was determined as the total number of reads,
normalized using the upper quartile gene expression, after ex-
cluding the genes with no mapped reads. Biological dupli-
cates were analyzed for all samples, except for the wild-type,
in which case only one replicate was used. In this case, Rock-
hopper used surrogate replicates to determine differential gene
expression. P-values were computed for differential expres-
sion of each gene, from which q-values were computed using
the Benjamini-Hochberg correction.22

3 Results

3.1 Mutant characterization

Table 1 lists the mutants characterized in this study, and fig-
ure 2 shows the growth profiles of the double mutants with
different order of gene deletions. The gene pgi encodes the
enzyme phosphoglucose isomerase, which is the first enzyme
of glycolysis and converts G6P into fructose-6-phosphate. E.
coli ∆pgi mutant has been characterized in great detail for its
growth characteristics,16 metabolism,23 and genetic changes
over adaptive evolution.13 Major reported consequences of
pgi inactivation in E. coli are: 1) severely decreased growth
rate due to lowered glycolytic flux,2 2) accumulation of
NADPH pools due to increased flux through the PPP,23 3)
transient activation of the Entner-Doudoroff pathway and the
glyoxylate shunt,2 4) absence of overflow metabolism re-
sulting in no acetate production,13 and 5) slightly increased
biomass yield compared to the wild-type.23

Growth characteristics and glucose consumption character-
istics of the wild-type E. coli and E. coli ∆pgi are summa-
rized in Table 1. The characteristics of E. coli ∆pgi were
found to be largely in agreement with those reported in the
previous studies. The growth rate of E. coli ∆pgi was around
45% of the wild-type and the biomass yield was found to be
slightly higher than the wild-type (Table 1). The drop in the
growth rate of E. coli ∆pgi has been reported to be as low as
<20% of the wild-type.13 The comparatively higher growth
rate observed in our study could be a result of the elaborate
medium composition. As anticipated, no acetate production
was detected in E. coli ∆pgi, due to the absence of overflow
metabolism.2

Among the physiological changes in E. coli ∆pgi men-
tioned above, NADPH imbalance is a major consequence,
perturbing a significant portion of the metabolic network.13

The NADPH imbalance is caused due to high flux of glu-
cose through the PPP (which produces two moles of NADPH
per mole of glucose) in absence of pgi, causing accumulation
of NADPH. E. coli counters the NADPH imbalance by accu-
mulating mutations in NADH/NADPH transhydrogenases en-
coded by the genes udhA and pntAB,13 and activating the gly-
oxylate shunt.24 Activation of glyoxylate shunt alleviates the
NADPH imbalance by diverting the metabolic flux away from
NADPH producing isocitrate dehydrogenase.24 To investigate
whether activation of the glyoxylate shunt in the E. coli ∆pgi
mutant is a sub-optimal metabolic response, we constructed a
pair of mutants with deletion of aceA and pgi in different order
(E. coli ∆pgi1 ∆aceA2 and E. coli ∆aceA1 ∆pgi2). By charac-
terizing the growth rates and substrate uptake rates of these
mutants, we investigated the effect of the glyoxylate-shunt on
the sub-optimal growth phase of E. coli ∆pgi mutants. We
hypothesized that if the glyoxylate shunt was indeed a sub-
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a b

Fig. 2 Growth curves for the double mutants with different order of gene deletions a) E. coli ∆pgi1 ∆aceA2 and b) E. coli ∆aceA1 ∆pgi2. The
symbol l represents biomass, u represents glucose concentration, and n represents acetate concentration. The error bars
represent standard deviation for three replicates.

optimal metabolic response to pgi knockout, absence of gly-
oxylate shunt would improve the growth rate of the mutant E.
coli ∆pgi.

The properties of E. coli ∆pgi and the double mutants E.
coli ∆pgi1 ∆aceA2 and E. coli ∆aceA1 ∆pgi2 are summarized
in Table 1. Growth profiles of the two double mutants are
shown in figure 2. The growth rates of all the double mutants
were found to be lower than E. coli ∆pgi, suggesting that the
glyoxylate shunt plays an important role during the growth
of E. coli ∆pgi immediately after the gene deletion. As the
elimination of the glyoxylate shunt reduced the growth rate
of the E. coli ∆pgi mutant, the activation of the glyoxylate
shunt may not be considered as a sub-optimal response. How-
ever, of note is the fact that deletion of latent pathways was
shown to improve the sub-optimal growth rates of the mutants
(synthetic rescue) only when the entire set of the predicted
latent pathways were deleted.14 Thus, to investigate whether
elimination of latent pathways can indeed improve the sub-
optimal growth rates of the mutants, the entire set of latent
pathways for the E. coli ∆pgi mutant may have to be deleted.
At this stage, our study suggests that in presence of additional
latent pathways, the glyoxylate shunt is clearly beneficial to
the adaptation of the mutant E. coli ∆pgi. Or more gener-
ally, deletion of individual latent pathways may not improve
the sub-optimal growth rates of single gene deletion mutants,
although the deletion of multiple latent pathways might.

3.2 Effect of order of gene deletions

Characterization results clearly indicated that the order of gene
deletions affects the growth behaviour of the mutants in the
sub-optimal growth phase. Slight but consistent differences
were observed in the growth rates, glucose uptake rates, and
acetate secretion rates of the mutants with different orders of
gene deletions. As the metabolic network of both mutants was
exactly the same (both had the same genes deleted), the differ-
ences in the properties of the mutants were caused due to non-
stoichiometric differences. The most likely reason for E.coli
∆pgi1 ∆aceA2 to have a higher growth rate compared to E.coli
∆aceA1 ∆pgi2 was the difference in the glucose uptake rate.
As glucose uptake rate in E. coli is controlled by the intra-
cellular pyruvate and PEP pools, changes in the concentration
of these metabolites most likely caused the differences in the
phenotypes of E.coli ∆pgi1 ∆aceA2 and E.coli ∆aceA1 ∆pgi2.

Different order of gene deletions also caused differences in
acetate production rates. The mutant E. coli ∆aceA1 ∆pgi2 ac-
cumulated more acetate than the mutant E.coli ∆pgi1 ∆aceA2
(figure 2). The highest acetate titre for the mutant E. coli
∆aceA1 ∆pgi2 was 1.4 g/L at 24 h, and the highest acetate
titre for the mutant E.coli ∆pgi1 ∆aceA2 was 0.5 g/L at 21 h.
The flux of acetate secretion reactions in the two mutants was
also different with the mutant E. coli ∆aceA1 ∆pgi2 showing
23% higher acetate secretion rate than the mutant E.coli ∆pgi1
∆aceA2. Based on the characterization of the two mutants, it
was established that the mutant E. coli ∆pgi ∆aceA could exist

1–11 | 5

Page 6 of 12Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



in two distinct metabolic states during the sub-optimal growth
phase.

Implications of the order and timing of gene deletions in
multiple-gene knockout mutants have been previously sug-
gested.25 We show that the order of gene deletions certainly
affects the sub-optimal phenotypes of the double-gene dele-
tion mutants. The sub-optimal growth phenotype of gene-
deletion mutants is not permanent, and the mutants can adap-
tively evolve to a completely different phenotype.2 For exam-
ple, the single-gene deletion mutant E. coli ∆pgi was shown to
diverge to two completely different phenotypes.2 As a single
colony of mutant can evolve to different phenotypes on adap-
tive evolution, double-gene knockout mutants with different
sub-optimal phenotypes, are likely to evolve to different final
states. Thus, the order of gene deletions may play an important
role in deciding the final phenotypes of higher-order mutants.

3.3 Model simulations of the mutant phenotypes

FBA can be used to predict the maximum growth rates of the
gene knockout mutants at a given substrate uptake rate. To
compare the predicted growth rates with the experimentally
observed results, we set the glucose uptake rates as found in
the experiments. The growth rates predicted by FBA were
much higher than the experimentally observed growth rates for
the wild-type and all the mutants (the results are summarized
in Table 2). As FBA predicts the maximum possible growth
rate for a given substrate uptake rate, it can be used to estimate
the growth rates of fully evolved strains if enzyme availabil-
ity is not a limiting factor.16 As the mutants characterized in
our study were not adaptively evolved, the growth rates did
not match the FBA-predicted growth rates. Similar to the pre-
dictions for the mutants, FBA overestimated the growth rate
of the wild-type strain despite the fact that the wild-type did
not grow in the sub-optimal growth phase. This difference be-
tween the predicted and observed values was most likely due
to the non-ideal growth conditions under which the wild-type
was cultivated. All the mutants in our study were cultivated
in Erlenmeyer flasks with limited aeration and non-stringent
pH control. Additionally, FBA did not capture acetate pro-
duction due to overflow metabolism, which caused overesti-
mation of the growth rates. FBA cannot be used to simulate
the growth rate of the mutants with different order of gene
deletions. Hence, the growth rates calculated by FBA for the
mutants E. coli ∆pgi1 ∆aceA2 and E. coli ∆aceA1 ∆pgi2 were
exactly the same.

MOMA is a constraint-based method that can simulate
growth rates of gene deletion mutants in the sub-optimal
growth phase. As the objective function used for MOMA is
not biomass-maximization, rather, minimization of metabolic
adjustment,15 MOMA calculates the growth rate change af-
ter a gene deletion from a given reference state. MOMA can

thus be used to simulate sequential changes to the growth rate
with each gene deletion, and hence can conceptually distin-
guish between two mutants with different order of gene dele-
tions. We first used MOMA to find the flux distribution of
E. coli ∆pgi using the wild-type steady-state flux as the ref-
erence. However, MOMA could not predict the activation of
either the Entner-Doudoroff pathway or the glyoxylate shunt
in response to pgi knockout. To check whether MOMA could
predict growth rate differences between the two mutants E.
coli ∆pgi1 ∆aceA2 and E. coli ∆aceA1 ∆pgi2, we simulated
the growth of E. coli ∆pgi1 ∆aceA2 using E. coli ∆pgi as the
reference flux (predicted by MOMA), and the growth of E.
coli ∆aceA1 ∆pgi2 using E. coli ∆aceA as the reference flux
(predicted by MOMA). MOMA results obtained are shown in
Table 2. Though MOMA predicted reduction in the growth
rate of the mutant E. coli ∆pgi, it could not predict reduction
in the glucose uptake rate and absence of acetate secretion in
the mutant. Additionally, MOMA could also not distinguish
between the the mutants with different orders of gene dele-
tions predicting exactly the same growth rate, glucose uptake
rate, and acetate secretion rate for the two mutants. MOMA
thus showed no improvement over FBA predictions for the
mutants in this study.

Finally, we used RELATCH (RELATive CHange)19 to pre-
dict the differential phenotype of the double-gene deletion mu-
tants. RELATCH uses 13C metabolic flux analysis (MFA) data
and gene expression data to predict the relative flux distribu-
tion change due to genetic and environmental perturbations.19

Using the wild-type MFA and gene expression data, first the
flux distribution for E. coli ∆pgi and E. coli ∆aceA mutants
were calculated. The wild-type 13C MFA data was obtained
from a previous study.2 Though the wild-type was cultured in
a slightly different medium for obtaining the 13C MFA data
than the minimal medium used for strain characterization in
this study, no large differences were anticipated between the
internal flux distributions of the wild-type under these two me-
dia conditions. Using this predicted flux distribution and the
experimental gene-expression data for the single-gene knock-
out mutants, phenotype of the double-gene knockout mutants
was predicted. E. coli ∆pgi flux was used as the reference for
simulating the E. coli ∆pgi1 ∆aceA2 and E. coli ∆aceA was
used as a reference for simulating the E. coli ∆aceA1 ∆pgi2
phenotype. For all the simulations the parameter values cho-
sen were α = 10 and γ = 1.1, which gives the predictions
for unevolved (sub-optimal) state of the mutants. A summary
of the results obtained from RELATCH is provided in Table
2. RELATCH has been shown to predict sub-optimal growth
state of single knockout mutants, including pgi, with much
higher accuracy than other constraint-based methods such as
FBA and MOMA.19 In agreement with the previous observa-
tions, we found that RELATCH predicted the phenotype of E.
coli ∆pgi mutant with high accuracy, including reduction in
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Table 1 Growth characteristics of pgi and aceA mutants

Mutant
µ qs qa Yx/s

(h−1) (mmol/gDW/h) (mmol/gDW/h) (gDW/mmol)

E. coli wild-type 0.351 ± 0.004a 8.91 ± 1.80 3.78 ± 0.90 0.043

E. coli ∆pgi 0.159 ± 0.001 3.89 ± 0.24 0.00 ± 0.00 0.047

E. coli ∆pgi1 ∆aceA2 0.139 ± 0.000 2.73 ± 0.07 2.42 ± 0.04 0.051

E. coli ∆aceA1 ∆pgi2 0.128 ± 0.004 2.42 ± 0.19 3.16 ± 0.51 0.053
a The errors represent standard deviation between three experimental results.
µ = growth rate; qs = glucose uptake rate; qa = acetate secretion rate; Yx/s = biomass yield
The growth rates, glucose uptake rates, and acetate secretion rates were calculated for the exponential growth phase of the strains.

Table 2 FBA and MOMA simulations for the higher-order mutants

qs µ qa

Mutant (mmol/gDW/h) (h−1) (mmol/gDW/h)

exp MOMA RELATCH FBA a MOMA RELATCH FBA MOMA RELATCH

E. coli wild-type 8.91 8.91 8.56 0.82 n.a. 0.35 0 n.a. 4.48

E. coli ∆pgi 3.89 8.84 2.35 0.34 0.65 0.18 0 3.78 0

E. coli ∆pgi1 ∆aceA2 2.73 8.85 2.56 0.23 0.65 0.20 0 3.78 0

E. coli ∆aceA1 ∆pgi2 2.42 8.84 1.11 0.20 0.65 0.00 0 3.78 0
a Growth rates predicted by FBA were based on the experimentally observed glucose uptake rates.

growth rate and glucose uptake rate, and no acetate secretion.

RELATCH was finally used to test whether differential phe-
notypes of the double mutants could be explained using dif-
ferences in the flux distributions of the mutants. As shown
in Table 2, RELATCH predicted different phenotypes of the
double-gene knockout mutants. However, these phenotypes
were not in agreement with the experimentally observed phe-
notypes. Two observations that could not be predicted by RE-
LATCH were: 1) onset of acetate production by the mutant
E. coli ∆pgi1 ∆aceA2 after deletion of aceA , and 2) non-zero
sub-optimal growth of the mutant E. coli ∆aceA1 ∆pgi2.

By adding constraints based on experiments to the per-
turbed model, RELATCH was used to predict the differ-
ential flux distribution that could explain the differences in
the acetate production of the two double-gene deletion mu-
tants. Multiple different flux distributions were identified
that satisfied the observed phenotypes of the mutants. How-
ever, most flux distributions thus predicted were identified as
non-plausible given the limited capacity of the certain path-
ways involved in the flux distributions. For example, RE-
LATCH predicted acetate production in double mutants us-
ing the pyrimidine deoxyribonucleoside utilization pathway
enzyme, deoxyribose-phosphate aldolase (DRPA, EC number

4.1.2.4), that degrades deoxyribose 5-phosphate into glycer-
aldehyde 3-phosphate and acetaldehyde. Acetaldehyde was
converted into acetate using acetaldehyde dehydrogenase en-
zymes. This pathway though metabolically feasible could not
have supported the high flux of acetate formation observed in
the double mutants, as no significant changes were observed in
the expression levels of the genes encoding the corresponding
enzymes (deoC for DRPA and aldB, adhE, mhpF for aldehyde
dehydrogenases) between the two mutants and the wild-type
(File RNASeqdata.xlsx, ESI†).

By adding constraints to minimize the contribution of the
peripheral reactions towards acetate production, flux distri-
butions were identified that agreed with the experimentally
observed secretion rates of acetate. The experimentally ob-
served acetate secretion rates and growth rates of the mutants
could be achieved by redistribution of fluxes through the ac-
etate metabolism enzymes pyruvate oxidase (POX encoded
by poxB), phosphate acetyltransferase (PTAr encoded by pta),
and acetyl-CoA synthetase (ACS encoded by acsA) (figure 3).
Additionally, fluxes through acetyl-CoA metabolism enzymes
were also predicted to be different between the two mutants.
There are 34 different reactions involving cytoplasmic acetyl-
CoA in the model iAF1260.26 RELATCH predicted multi-
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Fig. 3 One plausible flux distribution obtained from RELATCH for the mutants a) E. coli ∆pgi, b) E. coli ∆pgi1 ∆aceA2, c) E. coli ∆aceA, and
d) E. coli ∆aceA1 ∆pgi2. The flux values are indicated beside the respective reactions and expressed in mmol/g dry cell weight/h. The
nomenclature used for the reactions is from the genome-scale model iAF1260.26 The arrows represent the directions of the fluxes rather than
the reversibility of the reactions.

ple different flux distributions among the acetate and acetyl-
CoA reactions that could explain the experimentally observed
phenotypes. It was, however, not possible to identify which
flux distributions represented the actual flux distributions in
the two mutants. One plausible flux distribution for each
strain predicted by RELATCH is shown in figure 3. To ob-
tain this flux distribution, additional constraints were added to

RELATCH by blocking the following reactions: XYLI2 (xy-
lose isomerase catalyzing the conversion of glucose to fruc-
tose), LDH D (D-lactate dehyrogenase), DRPA (deoxyribose
phosphate aldolase), PFL (pyruvate formate lyase), GLCDpp
(periplasmic glucose dehydrogenase with ubiquinone-8 as ac-
ceptor), and ACt4pp (sodium acetate symport periplasm).

Though it is very unlikely that the mutants could have used
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Fig. 4 Gene expression changes among five analyzed strains: E. coli wild-type, E. coli ∆pgi, E. coli ∆aceA, E. coli ∆pgi1 ∆aceA2, and E. coli
∆aceA1 ∆pgi2. Each panel compares the expression level for a gene across all five strains. The names of the corresponding genes are indicated
at the top of the panels.

peripheral pathways such as pyrimidine deoxyribonucleoside
utilization pathway for acetate production at the high rates ob-
served experimentally, we believe that transcript levels alone
cannot be used to draw the conclusion that uncommon path-
ways were not used for acetate production. However, based
on the RELATCH simulations and experimentally observed
acetate secretion rates, these phenotypes were most likely
achieved by reorganization of the fluxes through a few cen-
tral metabolism reactions. It is well known that the mutants
reorganize the flux distribution to cope with a loss of a ma-
jor function2, however, we show that reorganization of fluxes
in double-gene deletion mutants also depends on the order of
gene deletions. In other words, the phenotypes of double-gene
deletion mutants in sub-optimal growth phase are determined
by the trajectory of the genetic changes.

Based on the results obtained from FBA, MOMA, and RE-
LATCH, we found that the phenotypic differences between the
double gene deletion mutants could not be very well predicted
by the computational methods used. Even though RELATCH
was able to predict the rescue of the E. coli ∆pgi mutant upon
deletion of aceA, it could not predict the growth phenotype of
the E. coli ∆aceA1 ∆pgi2 mutant. RELATCH’s better predic-
tive power was due to the incorporation of the MFA and gene
expression data. Based on the model predictions, stoichiom-
etry and gene expression data alone could not explain the ob-
served differences in the phenotypes of the double mutants;
these differences could have been caused by metabolite con-
centration changes affecting the kinetics of the metabolic en-
zymes. Models incorporating metabolite concentrations and
enzyme kinetics may therefore be able to predict the differen-
tial phenotypes of the mutants more accurately.

3.4 Transcriptome Analysis

To identify the role of gene expression levels, if any, in the
phenotypic differences of the mutants, we carried out tran-
scriptome analysis.

RNAseq was used to quantify the transcriptome of five
strains: the wild-type, E. coli ∆aceA, E. coli ∆pgi, E. coli
∆aceA1 ∆pgi2, and E. coli ∆pgi1 ∆aceA2. The raw data for
gene expression and the list of differentially expressed genes
with q < 0.05 are provided in ESI† (RawData.xlsx, Table ??).
Few metabolic enzymes were shown to have significant dif-
ferential expression between any two strains; however, some
interesting differences in transcript abundance were observed.

There was no observable difference in gene expression level
for the glycolytic and the TCA cycle transcripts between E.
coli ∆aceA1 ∆pgi2 and E. coli ∆pgi1 ∆aceA2 strains, de-
spite increased acetate production in the E. coli ∆aceA1 ∆pgi2
strain. However, the gene aceK was shown to have 40-fold in-
creased expression in the E. coli ∆aceA1 ∆pgi2 strain as com-
pared to the E. coli ∆pgi1 ∆aceA2 strain (figure 4). The gene
aceK is a member of the aceBAK operon. The protein AceK
is responsible for partitioning isocitrate flux between the TCA
cycle and the glyoxylate shunt by changing the phosphoryla-
tion state of the enzyme isocitrate dehydrogenase (IcdH).27

It has been found that AceK can act as a kinase, inactivat-
ing IcdH and promoting flux towards the glyoxylate shunt, and
also as a phosphatase, activating IcdH and promoting flux to-
wards the TCA cycle.27 It has been proposed that the partition
between AceK kinase and phosphatase activities is dependent
on AMP levels in the cell, with AMP allosterically inhibiting
kinase activity.28

A previous study has shown that following the deletion
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of pgi, AMP and ADP levels decrease to 89% and 48% of
the wild-type concentration, respectively.3 Since the effect of
AMP on AceK activity has not been quantitatively character-
ized, it is difficult to specifically determine the behaviour of
AceK as a repressor or activator of IcdH, and it is unclear what
other system level effects may determine AceK function. Due
to the significantly decreased levels of AMP and ADP, previ-
ous studies would indicate that AceK maintains kinase activ-
ity and acts as an inhibitor of IcdH. In this case, AceK should
further inhibit IcdH and promote flux to the glyoxylate shunt.
However, since the first step of the glyoxylate shunt has been
deleted, there is a metabolic bottleneck due to all key isoc-
itrate consuming enzymes being either deleted or repressed.
Therefore, increased acetate levels can likely be attributed to
increased acetyl-CoA levels caused by elevated AceK levels
in the E. coli ∆pgi1 ∆aceA2 strain.

4 Conclusions

This study focused on the characterization of the effect of the
glyoxylate shunt gene aceA on the sub-optimal growth phase
of the mutant E. coli ∆pgi. Two phenomena were investi-
gated in the E. coli mutants of pgi and aceA: 1) the possi-
bility of synthetic recovery of the mutant E. coli ∆pgi, and
2) effects of order of gene deletion in the double-gene dele-
tion mutants E. coli ∆aceA1 ∆pgi2 and E. coli ∆pgi1 ∆aceA2.
First, we observed that the deletion of genes from the gly-
oxylate shunt could not recover the reduced growth rate in E.
coli ∆pgi mutant, suggesting that individual latent reactions
may be important for the sub-optimal growth phase of the E.
coli ∆pgi mutant when the other latent reactions are left ac-
tive. Second, we found differences in the physiologies of the
higher-order mutants with different orders of gene deletions,
suggesting that the higher order mutants are not agnostic to
the order in which their genes are deleted. The differences in
the phenotypes could not be explained using metabolic models
alone, suggesting a role of regulation and/or metabolite con-
centrations in determining the physiology of the higher-order
mutants. Based on the transcriptomics results the main cause
of different acetate production rates was most likely the differ-
ence in the expression level of the gene aceK.
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