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We designed a passive-flow microfluidic device to image HIV activation dynamics in live individ-
ual T cells. We show that drugs that activiate transcription factors stimulate latent HIV with 
distinct noise profiles from drugs that inhibit chromatin remodeling proteins. 

Graphical Abstract
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Insight, Innovation, Integration 

 

Noisy viral reactivation in response to drug stimulation presents an obstacle to purging 

latent HIV from infected T cells in a clinical setting. To measure variability in latent HIV 

activation, we designed a passive-flow microfluidic device to image viral activation 

dynamics in single T cells. We observed that the onset of viral expression and rate of 

HIV production are independently regulated in single cells. We further found that histone 

deacetylase inhibitors stimulated more uniform onset times, while drugs activating the 

nuclear factor-κB transcription factor (TF) via protein kinase C exhibited more variation 

in activation rates. Our results suggest that variation in viral activation should be 

considered when optimizing therapeutic anti-latency strategies. Overall, our device 

presents a useful tool for implementing live-cell imaging protocols in suspension cells. 
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Abstract 

Quantifying cell-to-cell variability in drug response dynamics is important when 

evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) 

for use in a clinical “activate-and-kill” strategy to purge the latent HIV reservoir in 

patients requires minimizing heterogeneous viral activation dynamics. To evaluate how 

heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-

induced response dynamics in single cells via live-cell imaging using a latent HIV–GFP 

reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, 

we designed a simple method to capture an array of single Jurkat T cells using a passive-

flow microfluidic device. Our device, which does not require external pumps or tubing, 

can trap hundreds of cells within minutes with a high retention rate over 12 hours of 

imaging. Using this device, we quantified heterogeneity in viral activation stimulated by 

transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. 

Generally, TF activators resulted in both faster onset of viral activation and faster rates of 

production, while HDAC inhibitors resulted in more uniform onset times, but more 

heterogeneous rates of production. Finally, we demonstrated that while onset time of viral 

gene expression and rate of viral production together predict total HIV activation, rate 

and onset time were not correlated within the same individual cell, suggesting that these 

features are regulated independently. Overall, our results reveal drug-specific patterns of 

noisy HIV activation dynamics not previously identified in static single-cell assays, 

which may require consideration for the most effective activate-and-kill regime. 
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Introduction 

Genetically identical cells often exhibit heterogeneous behaviors in response to 

homogeneous stimuli due to variable concentrations of intracellular factors and 

fluctuations in biochemical reactions. In some cases, this biological noise is advantageous 

for the survival and propagation of an organism. For example, diversity in protein levels 

across a clonal population of E. coli can ensure rapid adaptability to a changing 

environment [1, 2]. However, non-genetic variability in response to drug treatment 

undermines therapeutic efficacy. Biological noise gives rise to bacterial “persister” cells 

that can survive antibiotic treatment [3] and “fractional killing” by chemotherapeutics can 

limit the effectiveness of cancer therapy [4]. 

Recently, heterogeneous reactivation of latent HIV proviruses in response to 

latency reversing agents (LRAs) has emerged as a challenge to the “activate-and-kill” 

strategy to purge the latent reservoir from infected patients [5, 6]. Latent HIV infections 

are transcriptionally silent and therefore invisible to antiretroviral therapies and the host 

immune system. One promising therapeutic strategy is to purge the latent cellular 

reservoir by systematically reactivating latent HIV with LRAs [7-9]. However, both entry 

and exit from viral latency is largely a probabilistic process that depends on heterogeneity 

in host factors, as well as stochasticity inherent to the HIV promoter [10-13]. Although 

the molecular basis of stochasticity in HIV latency was originally established in T cell 

lines, recent findings suggest that reactivation of latent HIV proviruses in resting CD4+ T 

cells isolated from patients is also intrinsically stochastic [5]. Together, these 

observations suggest that understanding the dynamics and sources of noise in HIV 

reactivation will be necessary to optimize an LRA stimulation strategy that will 

completely clear the viral reservoir [14, 15].  

The preclinical efficacy of LRAs is generally determined by stimulating latent 

virus reactivation in either Jurkat T cell lines or primary T cell latency models containing 

HIV reporters, and then assessing the final fraction and/or expression level of activated 

virus. However, this traditional method of drug screening does not capture cell-to-cell 

variability in the dynamics of activation that may be important for evaluating drug 

efficacy. Long-term time-lapse imaging is the best way to collect dynamic activation 

data; however, the non-adherent nature of T cells makes this approach difficult in tissue 

culture plates unless cells are immobilized with a surface modification such as poly-

lysine, which may affect cell response. Therefore, we sought to develop an easy and 

efficient method to immobilize and stimulate suspension cells over long durations, while 

maintaining the simplicity of plate-based approaches. Such a device would enable 

quantitative measurements of LRA-stimulated HIV reactivation over time in single cells. 

Microwell-based cell docking procedures have been reported for yeast and 

mammalian cells [16-18], but most of these methods rely on gravity to capture cells and 

therefore cells are easily dislodged when changing chemical or biological solutions 

because cells are not actively held in the wells [19]. Methods that use hydrodynamic flow 

focusing work better in terms of sequential and deterministic trapping of cells, while also 
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permitting delivery of various chemical or biological stimuli with minimal shear [20, 21]. 

For example, a microfluidic device that uses hydrodynamic flow to capture single cells in 

a high density array was used to monitor calcium oscillatory behavior in Jurkat T cells 

[13, 19]. Such hydrodynamic flow focusing methods require pressure-based pumping, in 

which syringe pumps or tubing placed at different heights control the rate of fluid flow 

within the channel. However, connecting tubing can change the pressure inside the device 

and is not compatible with some environmental chambers or microscope stage incubators 

used for live-cell imaging. 

To simplify cell loading and on-chip stimulations, we designed a microfluidic 

device that operates based on passive flow (i.e., without tubing) in order to dock cells in 

an array within a few minutes and retain them over many hours, while also permitting 

fast exchange of solutions during stimulation. We used our device to carry out time-lapse 

HIV reactivation assays on a Jurkat T cell HIV latency model [22] using two classes of 

LRAs: transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. By 

quantifying activation dynamics at a single-cell level, we were able to measure 

heterogeneity in dynamic responses to drugs that could not be quantified using a 

conventional flow cytometry-based assay. In general, TF activators stimulated a faster 

onset of activation time and greater rate of HIV production, while HDAC inhibitors were 

more heterogeneous in terms of expression but with more uniform onset times. Our data 

suggest that separate mechanisms underlie the onset time of activation and the rate of 

HIV production in single cells, and that individual LRAs differentially affect these 

mechanisms to achieve HIV activation. Overall, our study demonstrates that targeting 

unique latency regulatory pathways results in significant differences in reactivation noise 

and reveals a potential limitation to the effectiveness of the activate-and-kill strategy. 

 

Results 

Design and optimization of a passive-flow microfluidic device for cell trapping and 

live-cell imaging 

Time-lapse imaging of Jurkat T cells is usually achieved by immobilizing cells 

via a cell surface modification. In addition to possibly perturbing the physiology of the 

cells, in some cases these modifications are not enough to fully restrict cell movement 

over multiple hours. For example, phorbol 12-myristate 13-acetate (PMA) is a potent 

activator of HIV transcription in both cell line HIV latency models and patient samples, 

and is therefore considered a benchmark for evaluating LRA efficacy [23, 24]. However, 

PMA stimulation makes Jurkat T cells highly motile even in the presence of poly-lysine, 

making it difficult to image activation in live cells (Movie S1). In addition to long-term 

immobilization of cells, we also required a device that 1) could be placed inside a 

microscope stage incubator without external tubing; 2) would allow fast exchange of 

solutions to rapidly stimulate the cells without displacing them; and 3) would permit 

screening of multiple drugs across several parallel experiments. 

Page 5 of 29 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



 4

To address our needs, we designed a microfluidic device that can capture single 

cells in an array without using pumps or tubing to aid in fluid flow within the device. The 

passive-flow microfluidic device consists of physical traps embedded in a center channel, 

connecting an inlet and an outlet reservoir (Fig. 1A). Fluid flow through the channel is 

achieved by altering the surface wettability of the channel. Treating the glass surface and 

the inner walls of the PDMS microchannel with oxygen plasma introduces polar 

functional groups on PDMS, thus rendering the surface hydrophilic [25]. This step not 

only produces irreversible bonding of PDMS to glass but also reduces the contact angle 

of water to the PDMS surface, thereby allowing easy flow of fluid through the channel. 

By maintaining the channel with deionized water following plasma treatment, the channel 

will retain its hydrophilicity prior to cell loading. Cells are loaded into the inlet reservoir 

with a standard pipet, and cells are trapped as they passively flow from the inlet to the 

outlet. Cells that are not positioned in the traps can be washed away by replacing the cell 

solution at the inlet with plain media (Fig. 1B) thus capturing an array of single cells 

within the device. 

To optimize capture of single suspension T cells with diameters ranging from 9-

16 µm, we varied both trap design and trap density (Fig. 2A). The basic trap shapes 

included S-shaped square pillars (10 µm x 10 µm; S traps) and V-shaped rectangular 

pillars (10 µm x 7 µm; V traps), both with sides inclined at 30˚ and separated by a 5 µm 

gap (Fig. S1). We also tested two different trap densities by varying the column spacing 

between the traps. For the low-density traps, the horizontal spacing between traps for the 

S and V traps was 130 µm, while it was approximately 65 µm for the high-density traps 

(referred to as Hd-S and Hd-V traps). The vertical spacing between traps was 

approximately 55 µm for all four designs. The center channel connecting inlet and outlet 

reservoirs was 5.97 mm x 0.53 mm (length x width), resulting in 486 and 408 traps (S 

and V traps, respectively) for the low-density design, and 765 traps per device for the 

HD-S and HD-V designs.  

Flow profiles for these four designs were simulated by solving a stationary 

Navier-Stokes equation with a shallow channel approximation. The surface and 

streamline plots demonstrate that the more closely packed Hd traps have a higher fluidic 

resistance between traps than the more widely spaced S and V trap designs (Fig. 2B). 

This analysis suggested that more densely packed traps would enable more efficient cell 

capture since the fluidic streamlines are compressed in a compact configuration in front 

of the high density traps, while for the low density traps, cells might be more easily 

diverted around the traps. Because a higher cell density is generally more favorable for 

imaging, we proceeded to optimize our protocol for the Hd traps. 

To test the efficiency of capturing and retaining suspension cells directly using the 

passive-flow device, Jurkat T cells stained with calceinAM dye were perfused at different 

cell densities and flow volumes to measure the cell trapping efficiency. The overall 

trapping efficiency was calculated by counting all traps that contained at least one cell, 

while the single-cell trapping efficiency was calculated by counting only those traps that 
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contained exactly one cell (Fig. 2C).  Overall, we did not find significant differences 

between the Hd-S and Hd-V traps for capturing Jurkat T cells. Below we summarize the 

results for the Hd-V traps, which is the design we chose to use to conduct our stimulation 

experiments. 

To test how cell density affected trapping efficiency, the volume of the cell 

solution at the inlet was fixed at 50 µL (i.e., fixed flow velocity) while the cell density 

was varied between 1, 2.5 and 5 million cells/ml. As cell density increased, the overall 

trapping efficiency for the Hd-V traps increased from 22% to 98% and the single-cell 

trapping efficiency increased from 20% to 80% (Fig. 3A). There was no significant 

difference in trapping efficiencies for any of the trap designs across all cell-loading 

densities, with 5 million cells/ml being the optimal loading density for all trap 

configurations (Fig. S2A-B). We also tested the effect of flow velocity on the trapping 

efficiency. Specifically, we increased the flow velocity by increasing the volume of cell 

solution at the inlet from 50 µL to 100 µL. Cell density was kept fixed at 5 million 

cells/ml. The overall trapping efficiency for the Hd-V traps was approximately 98% for 

both loading volumes, but the single-cell trapping efficiency dropped from 82% to 52% 

when the loading volume was increased (indicating that more traps contained two or 

more cells). We also measured a drop in single-cell trapping efficiency at the higher flow 

rate for the Hd-S traps but not for the S and V traps (Fig. S2E-G). Thus, a lower flow 

velocity is optimal for obtaining a single-cell array. We further note that we never 

observed any cell deformation using our optimized experimental conditions, suggesting 

that minimal shear forces act on the cells while in the traps. Overall, we were able to 

achieve a very high cell trapping efficiency with any trap configuration after optimizing 

cell-density and flow volumes. 

Finally, we characterized aspects of the device that are critical for performing our 

experimental assays. We performed several wash steps on the cells and demonstrated that 

this results in little to no loss of trapped cells (Fig. 3C and Fig. S2). We also measured 

cell retention in the trap for up to ~24 hours. Although captured cells are gradually 

dislodged from the traps over time, approximately 70% of the cells remained in traps at 

12 hours (Fig. 3D). In addition to cell division, specific characteristics of Jurkat cells, 

including drug-induced motility and a tendency to form cell clusters, contributed to cell 

displacement; therefore we expect that retention efficiency might be different for another 

cell type. To calculate the lag in drug exposure time between the inlet and outlet, we 

added a colored dye solution at the inlet and measured the velocity at which this 

travelled. All cells in the channel are exposed to a drug solution added at the inlet within 

26-30 seconds (Fig. 3E and Movie S2). The cell loading time–or time it takes to fill all 

the traps in the channel using the optimized loading protocol–ranged from 2-3 minutes 

(Fig. 3F and Movie S3). In summary, our simple passive-flow microfluidic device design 

enabled rapid single-cell trapping, rapid cell stimulations on chip, and cell retention over 

long incubation periods (at least 12 hours), making it an ideal device to screen for 

heterogeneous activation dynamics in Jurkat models of HIV latency.  
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Passive-flow microfluidic device facilitates quantification of heterogeneous HIV 

activation dynamics in response to drug stimulation  

Having optimized the passive-flow device for long-term imaging of suspension 

cells, we used the device to measure single-cell heterogeneity in activation of HIV gene 

expression in a Jurkat T cell line model of HIV latency. Jurkat T cell line models of HIV 

latency have been critical for the discovery of many molecular mechanisms that underlie 

the establishment and maintenance of latency [22, 26-30]. Several latent HIV-infected 

clonal Jurkat cell lines have been established that contain the provirus integrated at the 

same genetic location in every cell in order to control for the effect of integration site on 

viral activation [22]. These stable clonal cell lines provide an ideal experimental model in 

which to study transcriptional noise and variability in the reactivation of latent HIV, 

because even after controlling for integration position, activation is highly heterogeneous 

and occurs on the time scale of hours [11, 28, 31].  

We compared two classes of LRAs that activate latent HIV proviruses through 

different mechanisms: 1) activators of the transcription factor NF-κB, which binds to κB 

sites at the HIV promoter to initiate transcription, and 2) HDAC inhibitors that reverse 

repressive chromatin at the HIV promoter. TF activators included PMA and prostratin 

(both phorbol esters), and tumor necrosis factor (TNF). TNF acts primarily via inhibitor 

of κB kinase (IKK) to activate NF-κB, while PMA and prostratin are potent activators of 

the protein kinase C (PKC) pathway. PMA in particular has been shown to strongly 

induce HIV transcription in cell line models of latency and infected patient samples [23, 

24]. HDAC inhibitors included trichostatin A (TSA) and suberanilohydroxamic 

acid (SAHA). Inhibition of HDACs leads to hyperacetylation of nucleosomes at the HIV 

promoter and transcriptional initiation. Importantly, SAHA (also known as vorinostat) 

has been tested in a translational clinical study for its effectiveness as an LRA [32]. 

To measure dynamic activation of latent HIV in response to LRAs in the passive-

flow device, cells were first trapped and washed as described (see Methods). Six regions 

of interest were identified to cover the entire length of each channel, allowing us to image 

a total of 2520 traps across 4 such micro-devices (bonded to a single glass slide) within 

2.5 minutes. Wash buffers were then removed and treatments were added to the inlet. For 

each region of interest, a phase contrast and fluorescent image was taken every 5 minutes 

for up to 24 hours (Fig. 4A). We report our live-cell tracking results at 12 hours, by 

which time a substantial majority of cells remain in the traps (Fig. 3D) and have started to 

express HIV–GFP.  

Visually, it is immediately apparent that LRA perturbation results in highly 

heterogeneous activation kinetics, with some cells activating as early as 3 hours post 

stimulation while others remain silent even after 12 hours (Fig. 4A-B). The TF activators 

acting via PKC activated the largest percentage of cells of any single-agent treatment: 

PMA activated 54% of cells after 12 hours, while prostratin activated 43% (Fig. 4B and 

Fig. S3A). TNF and TSA had similar levels of activation after 12 hours (28% and 30%, 

respectively). Interestingly, a larger percentage of TNF-treated cells activated after 6 
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hours of stimulation than TSA-treated cells (7% versus 3%; Fig. 4B and Fig. S3A). 

SAHA exhibited the weakest activation (10% at 12 hours). Co-drugging the cells with a 

TF activator and an HDAC inhibitor resulted in an additive increase in the fraction of 

cells responding (52% for TNF+TSA and 66% for prostratin+SAHA), similar to previous 

reports for this latency model [33]. To ensure that the constant flow in the device did not 

change cell response compared to a plate-based experiment, we validated our results by 

flow cytometry (Fig S3B). The percentage of cells activated in the passive-flow device 

was very similar to the percentage activated in a plate at 6, 12 and even ~24 hours, 

although the sample size at the ~24-hour time point in the passive flow device was 

relatively small (R=0.92; Fig. 4C). 

Activation of the NF-κB transcription factor stimulates more heterogeneous activation 

onset times in latent HIV than inhibition of HDACs 

Our motivation for conducting dynamic single-cell assays was to determine if 

there was information contained in these measurements that cannot be inferred from 

static single-cell distributions such as those measured by flow cytometry. In order to 

quantify differences in the activation dynamics of the latent provirus across different drug 

perturbations, we extracted features from the single-cell trajectories (Fig. 4B) to obtain 

five metrics of comparison (Fig. 4D): 1) onset time (ton), 2) maximum fluorescence 

observed (FmaxO), 3) final fluorescence at 12 hours (Ffinal), 4) the area under the curve of 

the fluorescence trajectory (AUC), and 5) the slope of each trajectory. We hypothesized 

that these dynamic metrics might provide useful information about the mechanism of 

action of the different classes of LRAs, because in most cases, the single-cell 

distributions of these metrics across treatments were significantly different (Table S1). 

We first compared the activation onset times for each cell that expressed virus in 

response to treatment. Variability in onset times is a challenge for purging the latent 

reservoir with LRAs since drug exposure may be limited in vivo [32, 34]. The distribution 

of ton across treatments was visualized with violin plots, and the heterogeneity was 

measured by calculating the coefficient of variation (CV) (Fig. 5A-B). In general, the 

onset of HIV activation occurred faster but with more variability in cells that were 

stimulated with TF activators as compared to HDAC inhibitors. As expected, all TF 

activators had faster average ton than the HDAC inhibitors (< 8 hours versus 9+ hours). 

PMA and prostratin, the TF activators that act via the PKC pathway, elicited the least 

uniform ton (CV=0.42 and 0.46, respectively), while cells treated with TNF were slightly 

less noisy (CV=0.36). In contrast, cells treated with HDAC inhibitors activated more 

uniformly than cells treated with TF activators (CV=0.22 and 0.18, respectively). To 

confirm that a more uniform ton was not an artifact of collecting data at 12 hours rather 

than 24 hours (during which time activation by HDAC inhibitors substantially increased), 

we tracked cells up to ~24 hours by quantifying all cells that remained in the frame of 

view within the passive-flow device (to offset cell loss, Fig. 3D). We observed increased 

noise in ton for all drugs, but the HDAC inhibitors still had more uniform ton than the TF 
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activators (Fig. S4), suggesting that a coordinated onset of activation is characteristic of 

the shared mechanism of action. 

In other experimental systems, the transcription of some genes exhibits 

dependence on cell cycle [35, 36]. To preclude the possibility that heterogeneity in cell 

cycle stage contributes to the heterogeneity we observe in ton, we synchronized cells via 

serum starvation for 24 hours and then quantified cell-to-cell variability in activation 

dynamics after 12 hours of PMA stimulation (Fig. S5). We observed similar CVs for ton 

for cells synchronized prior to treatment versus cells that were not synchronized (Fig. 

S5A), suggesting that differences in cell cycle state are not substantially contributing to 

variability in the timing of reactivation.  

Notably, dynamic cell responses revealed differences in drug classes that were not 

apparent by static assays. For example, TNF alone or TSA alone both activated a similar 

fraction of cells by 12 hours as measured in the device or by flow cytometry (Fig. S3). 

However, the dynamic single-cell activation data demonstrated that TSA produced a later 

but more uniform ton that is consistent with a distinct mechanism of activation for TNF 

versus TSA.  

Many studies of HIV latency activation, including results from patient cells, have 

suggested that co-drugging may be necessary to maximally purge the latent reservoir [33, 

37-39]. Therefore, we next compared how co-drugging with HDAC inhibitors would 

affect variability in ton for TF activators. When co-drugged with TNF and TSA, HIV 

activated with an earlier ton more similar to PMA, but also reduced variability in ton 

relative to stimulating with TNF or PMA alone (Fig. 5B). Co-drugging cells with 

prostratin and SAHA had little effect on mean ton but resulted in less noise than treating 

with prostratin alone (Fig. 5B). These data suggest that co-drugging cells with a TF 

activator and HDAC inhibitor results in an earlier ton while also lowering noise the onset 

of activation. Importantly, dynamic information about activation, such as variability in 

onset time, goes undetected in endpoint assays like flow cytometry but can provide 

critical information for the development of an effective LRA regime.  

The rate of HIV production and the maximum level of HIV expression are less variable 

in response to TF activation versus inhibition of HDACs 

The overall therapeutic objective of reactivating latent HIV via LRAs is to purge 

the latent reservoir by initiating replicative gene expression in the infected cells that 

results in cell death by cytotoxicity and/or clearance by the host immune system [40]. 

Recent observations suggest that there is a threshold of HIV particles that must be 

reached before active replication can be achieved [39] along with full potential for 

recognition by host cytotoxic T cells [40]. Therefore, in addition to measuring the onset 

of activation, quantifying cell-to-cell variability in gene expression levels is also 

important. We approximated abundance of gene expression by measuring the 

fluorescence intensity expressed by cells. We identified three metrics from the activation 

trajectories that represent HIV expression levels (FmaxO, Ffinal, and AUC; Fig. 4D). The 
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values for these metrics were highly correlated across all treatments (compare Fig. 5C-D 

and Fig. S6), and therefore we chose FmaxO to approximate maximum HIV expression. By 

quantifying the change in expression over time, we were also able to determine the rate of 

HIV production (i.e., slope; Fig. 5E-F). 

On average, TF activators stimulated greater mean HIV expression than HDAC 

inhibitors (Fig. 5C). PMA resulted in the largest FmaxO, followed by prostratin and TNF. 

While TSA-treated cells exhibited only slightly weaker HIV expression than TNF, 

SAHA-treated cells stimulated significantly lower levels of HIV. Treatments resulting in 

greater FmaxO also demonstrated more uniform levels of activation over 12 hours (Fig. 

5D). Interestingly, PMA and prostratin had relatively low noise in FmaxO compared to 

TNF (CV=1.2 and 1.5 versus CV=2.2). TSA exhibited variability similar to TNF, while 

activation by SAHA was considerably more heterogeneous (Fig. 5D). The greater noise 

in FmaxO in response to HDAC inhibitors was in contrast to the lower noise in ton 

(compare Fig. 5B and D).  

Rates of HIV production showed identical trends. PMA and prostratin, which 

produced the strongest and most uniform HIV expression levels, also elicited the most 

rapid and uniform rates of HIV production (Fig. 5E-F; CV = 1.1-1.3). TNF and TSA 

stimulated similar variability in slope (CV=1.8-1.9) while SAHA had the highest 

variability (CV=3.4). As with onset time, variability between cell cycle synchronized and 

unsynchronized cells for FmaxO and slope were nearly identical after PMA treatment (Fig. 

S5B-C). Overall, we observed more uniform rates and levels of HIV activation in 

response to TF activators as compared to HDAC inhibitors in this T cell line model of 

latency. 

Co-drugging with a TF activator and an HDAC inhibitor significantly decreased 

noise in both FmaxO and slope. For both cases of co-drugging, cells exhibited FmaxO 

distributions more similar to PMA-treated cells. These data again suggest that co-

drugging may be beneficial in the clinic both by increasing the fraction of the reservoir 

that is activated and by decreasing the variability in the rate of HIV production, a result 

not previously identified in static assays. 

Comparing the onset time of activation and the rate of HIV production in the same 

single cells suggests independent control mechanisms 

The difference in noise between the ton and noise in slope suggested that these two 

metrics may be differentially regulated (i.e. the onset of activation is not related to the 

rate of HIV production and vice versa). To examine this possibility, we calculated the 

correlation between ton versus slope for all individual cells that reactivated in response to 

each treatment (Fig. 6A-B). Indeed, the correlation (R) between ton and slope ranged from 

almost no correlation in the case of prostratin to a weak correlation in the case of SAHA 

(Fig. 6B). These data suggest that the onset of activation and the rate of HIV production 

are controlled by different biological mechanisms that are generally independent even 

within the same cell. 
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Although ton and slope are uncorrelated, each individual metric is correlated to 

total HIV abundance after 12 hours of stimulation (FmaxO; Fig. 6C). Multiple linear 

regression analysis confirmed that these two metrics are predictive of FmaxO, but that the 

extent to which ton and slope contributed to FmaxO changed depending on the perturbation 

(Fig. 6D). Specifically, we calculated the regression coefficients for ton and slope in 

predicting FmaxO separately for each LRA treatment in order to determine the amount of 

variation in FmaxO that can be explained by either the ton or slope in a regression model. In 

all single-agent treatments except for prostratin, ton and slope equally contributed to the 

variability in FmaxO. Under prostratin treatment, ton was more predictive of FmaxO. 

Interestingly, however, when TF activators and HDAC inhibitors were combined, slope 

was slightly more predictive of FmaxO. These data suggest that co-drugging the latent 

virus with a TF activator and an HDAC inhibitor coordinates the mechanisms regulating 

ton more than the mechanisms regulating slope. Consequently, the variability in slope is a 

greater determinant of the variability in FmaxO. To further reduce variability and improve 

treatment efficacy, a drug that preferentially affects the rate of HIV activation (e.g., a 

higher dose of prostratin) may be required. 

 

Discussion 

Understanding drug response dynamics and how they vary cell to cell is an 

important component to therapeutic efficacy, including the efficacy of LRAs in reversing 

HIV latency. An effective approach to investigate cell-to-cell response heterogeneity is to 

perform time-lapse imaging with a live-cell phenotypic reporter. To study activation of 

latent HIV, we used Jurkat CD4+ T cells that were clonally infected with an HIV reporter 

in order to control for integration site, while studying activation in a physiologically 

relevant cell type. By quantifying latent HIV activation in response to TF activators and 

HDAC inhibitors in live, single cells, we identified informative dynamic metrics that 

cannot be measured in static assays (Fig. 4). Specifically, in addition to quantifying the 

maximum activation of HIV in response to 12 hours of LRA stimulation, we also 

quantified the onset time of activation and the rate of HIV production. We detected 

significant cell-to-cell variability in these dynamic metrics, and we further demonstrated 

that perturbations have a differential effect on heterogeneity of these two metrics (Fig. 5). 

In general, HDAC inhibitors elicited slower, but less heterogeneous, onset time of 

activation than TF activators, while the TF activators stimulated greater and more 

uniform rates of production and maximum HIV expression levels.   

Key to our study was the development of a novel, user-friendly microfluidic 

device to dock single suspension cells for long-term imaging analysis. Imaging 

suspension cells, such as Jurkat cells, is difficult because they do not adhere to cell 

surfaces without perturbing their biology through the use of a surface modification. 

Existing microfluidic cell-trapping methods designed to immobilize suspension cells 

require syringe pumps and tubing to alter flow within the microchannel. In contrast, our 

device uses passive flow by altering the surface hydrophilicity and volume differences 
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across the device. Cells in suspension are loaded using a standard pipette into the inlet 

reservoir of the device, and cells are trapped by an array of microstructures in the center 

channel (Fig. 1). We specifically designed these traps to immobilize Jurkat T cells (9-

16µm in diameter), but the traps can be resized to accommodate other cell diameters. Our 

device enables rapid cell loading (2-3 minutes), high trapping efficiency, and rapid on-

chip stimulation (Fig. 3). The lack of pumps and tubing simplifies operation of the device 

by making it easy to place it into an environmental chamber for live-cell imaging, and to 

perform multiple experiments at the same. We anticipate that this device could be useful 

for imaging other suspension cells, including other immune cells and yeast.  

Our results provide new information that may be relevant to evaluating the 

efficacy of clinical LRAs. For example, SAHA treatment, which presented promising 

results in vivo as a potentially effective LRA [32] resulted in both the lowest and most 

variable rate of HIV production and maximum expression. Because the bioavailability of 

any compound is limited in vivo, variability in activation presents an additional barrier to 

completely purging the latent HIV pool. The stochastic activation of latent HIV observed 

in patient samples suggests that LRAs that do not stimulate a rapid, uniform response will 

reactivate only a fraction of the latent reservoir, sparing enough cells to re-establish an 

active infection after the cessation of antiretroviral therapy. Due to the significant 

activation noise we observed in response to SAHA (Fig. 5C), we conclude that SAHA on 

its own is unlikely to elicit a response that is uniformly strong enough to effectively 

purge the latent reservoir. In contrast to SAHA, PMA is a potent activator of latent HIV 

across many latency models and in patient samples [23, 24], although it is not a viable 

option for therapy. We also observed that PMA was the strongest activator of HIV, and 

further observed that it produced relatively low noise in rate of HIV production. 

Interestingly, however, the onset times were more heterogeneous than for other 

treatments (Fig. 5B), demonstrating that even potent LRAs may be limited by variable 

response dynamics.  

Several HIV latency studies have concluded that co-drugging cells with a TF 

activator and an HDAC inhibitor may be an effective way to improve LRA efficacy [37, 

41]. We demonstrated that co-drugging cells increases overall activation by enhancing 

both onset time of activation and the rate of HIV production (Fig. 5). Additionally, we 

observed that co-drugging cells decreases heterogeneity in the rate and maximum level of 

HIV production. Previous observations based on static measurements have suggested that 

single treatments are sufficient to effectively reactivate HIV integrated into permissive 

chromatin environments [33]. However, our dynamic single-cell data suggest that co-

drugging will always be more effective in activating latent HIV, because it stimulates not 

only a stronger and more rapid response, but also lowers response variability. Our results 

are consistent with recent findings that combinations of cancer therapeutics can be used 

to tune cell-to-cell variability in the timing and probability of cell death [42], suggesting 

that co-drugging may be a more general approach to reduce therapeutic response 

variability. Unequivocally  

Page 13 of 29 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



 12

Importantly, our study demonstrated that dynamic single-cell measurements 

provide information about underlying regulatory mechanisms. By comparing two 

dynamic metrics that contribute to total activation–onset time and the rate of HIV 

activation–in the same single cell, we demonstrated that these two features are generally 

not correlated within cells in response to most drug stimulations (Fig. 6C). This suggests 

that the biological mechanisms that regulate onset time and rate of HIV production are 

independent. Nucleosomes positioned at the HIV promoter contribute to latency 

maintenance [26, 27, 43, 44] by effectively setting a threshold for HIV activation that 

must be exceeded before viral expression can proceed [28]. Before the activation 

threshold is reached, the fluorescence marker for HIV production is undetectable, and 

therefore the onset of activation approximates this activation threshold that is regulated 

by nucleosomes and chromatin. In contrast, the rate of HIV production is regulated by the 

recruitment of the transcriptional machinery responsible for initiation and elongation and 

by the viral transactivator protein Tat [39, 45].  

The poor correlation between the onset time of activation and the rate of HIV 

production in cells treated with TF activators is surprising given the dual role the NF-κB 

RelA:p50 heterodimer plays in the recruitment of both transcriptional machinery and 

histone acetyltransferases (HATs) to the HIV promoter. One possible explanation for this 

observation may be that the Tat protein decouples these roles by dramatically increasing 

elongation efficiency without significantly affecting chromatin structure. Another 

possibility is that there exists sufficient cell-to-cell heterogeneity in nucleosome 

occupancy [46, 47] and chromatin marks [48] such that the contribution NF-κB makes to 

activation onset time (via nucleosome/chromatin remodeling) and rate of HIV production 

appears to be uncorrelated from one cell to another. The observation that a weak 

correlation exists between onset time and production rate upon treatment with TSA and 

SAHA, which specifically target chromatin via HDACs, lend some support to the latter 

hypothesis.     

The observation that the threshold of transcriptional activation and the rate of 

transcription are independently regulated within the same cell provides a different way to 

think about maximizing therapeutic efficacy, since both mechanisms influence maximum 

HIV expression. Multiple linear regression analysis demonstrates that while both the 

onset time of activation and the rate of HIV production contribute equally to the 

variability seen in maximum HIV expression for most single-agent treatments, they do 

not contribute equally when TF activators and HDAC inhibitors are combined. In this 

latency model, co-drugging resulted in a stronger correlation between the slope and 

maximum HIV expression, indicating that variability in maximum HIV expression is 

more dependent on the variability in rate of HIV production after co-drugging. This can 

be explained by considering the mechanisms of action of these drug classes. HDAC 

inhibitors primarily affect nucleosome stability, which reduces the variability in onset 

time by lowering the activation threshold across a population of cells. However, NF-κB 

RelA:p50 plays a role in transcriptional activation by recruiting transcriptional machinery 

and also recruiting HATs to the HIV promoter that target nucleosomes. NF-κB activation 
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therefore creates an additive effect when combined with HDAC inhibitors, which further 

decreases the variability of onset time relative to the maximum HIV expression.  

Given the growing observations that cell-to-cell variability affects biological 

responses in the immune system [49, 50], methods to facilitate live-cell imaging of 

suspension cells are critical. The passive-flow microfluidic device presented here enables 

a fast, simple, and effective means to capture suspension cells without changing their 

biology. For example, significant cell-to-cell variability is observed following 

chemotherapeutic treatments in adherent cancer cell lines [42, 51], but extended live-cell 

imaging has been limited in T cells and other immune cells because of the technical 

issues associated with immobilizing suspension cells. Therefore, this device would also 

be very useful in studying the kinetics of chemotherapeutic treatments for some 

lymphoma cells. In summary, we anticipate that the microfluidic device described here 

and the dynamic response data collected will be useful for studying biology in many 

types of suspension cells.  

 

Experimental methods 

Si Master Fabrication 

The Si master containing different trap designs was etched using Oxford Plasmalab 100 

Reactive ion etching system. Briefly, S1813 Microposit photoresist (Shipley) was spin 

coated at 900 rpm for 5 seconds and increased to 3000 rpm for 1 minute on a Si wafer. 

The photoresist coated wafer was baked on a hotplate at 100˚C for 3 minutes. The wafer 

was then removed from the hotplate and gradually cooled to room temperature while 

avoiding cooling blocks. The wafer was then exposed to 150 mJ/cm
2
 UV light using 

EVG 620 contact/proximity mask aligner. A post exposure bake was carried out for 3 

minutes at 120˚C. After this step, the wafer was cooled down to room temperature and 

developed in a Microposit MF-319 developer for 1 minute.  

The developed master mold was then etched following a Bosch etch process resulting in a 

20 µm feature height measured using a KLA-Tencor ASIQ profiler.   

Microfluidic Device Fabrication 

The etched master was silanized for 30 minutes inside a desiccator with 

Tricholoro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma Aldrich) to prevent PDMS from 

sticking to it. Following this a mixture of PDMS (Sylgard 184 Elastomer kit, Dow 

Corning) base and curing agent 10:1 by weight, was mixed well and poured over the 

master placed on a plastic petri dish. This was degassed and cured for 2 hours at 75 ˚C. 

The cured PDMS mold was peeled from the master and cut to an appropriate size to fit 

the glass slide. A 7mm Harris Uni-Core puch (Ted Pella Inc.) was used to punch holes at 

the inlet and outlet ports to serve as reservoirs. The mold was then rinsed with Iso-

propanol, blow dried with filtered air and scotch taped before plasma treatment. A 

standard 25 mm x 75 mm microscope glass slide cleaned in a similar way and placed 
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inside a PE-25 benchtop plasma cleaner (Plasma Etch) along with PDMS molds. The 

glass slide and PDMS mold were exposed to O2 plasma at 150W, 200 mTorr for 2 

minutes and sandwiched immediately once removed from the plasma chamber. De-

ionized water was used to fill the channels, the inlet and the outlet reservoirs in order to 

maintain the inner surface of the channels hydrophilic. This is an important step in 

making the device as there would be higher resistance for fluid flow when the inner walls 

of the microchannel are exposed to air leading to a hydrophobic recovery. Hence, it is 

recommended that the device is freshly prepared few hours before experiment while 

making sure that the device is filled with de-ionized water. 

Cell line and culture conditions 

Jurkat T cell clone J-Lat 10.6 obtained from NIH AIDS Research and Reference Reagent 

Program, Division of AIDS, NIAID, NIH was used for the HIV activation assays [22]. 

These cells were cultured in RPMI media 1640 supplemented with 10% fetal bovine 

serum, penicillin, streptomycin, L-glutamine and stored in an incubator at 37 ˚C and 5% 

CO2. Cells were maintained at 2x10
5
 cells/mL and grown to log phase (1x10

6
 cells/mL) 

before being loaded into microfluidic device for capture and activation. To synchronize 

the cells in the G0 phase, cells were serum starved in RPMI media 1640 supplemented 

with penicillin, streptomycin, L-glutamine for 24 hours prior to stimulation with PMA.  

Cell loading protocol 

The cells were pelleted by centrifugation and re-suspended in fresh RPMI media 1640 

while preparing them to be loaded into the microfluidic device. Cell clumps were 

dispersed immediately before loading by pipetting the cell suspension vigorously and 

filtering cells through a 35 µm nylon mesh strainer cap tube (BD Falcon). Cells were 

loaded into the inlet at volumes described in the results section and allowed to flow 

through the channel for 10 minutes. The cell suspension was then removed from the inlet 

by scrapping the bottom of the inlet reservoir with a pipette. Additional care should be 

taken to place the pipette tip opposite to the channel opening within the reservoir in order 

to avoid suction of trapped cells. Following this, 100 µL of wash liquid i.e. either RPMI 

media 1640 or Dulbecco’s Phosphate-Buffered Saline (DPBS) was added to the inlet to 

wash the cells. Wash liquid was allowed to flow through the channel for 3 minutes which 

the liquid was again removed from outlet and inlet respectively. This wash procedure was 

repeated twice to remove any free floating cells from the main channel, inlet and outlet 

reservoirs and immediately followed by addition of either cell stimulants to the conduct 

the activation assay or RPMI media 1640 to perform further imaging and quantification 

of trapping efficiencies. 

Cell stimulation 

Prior to the addition of pharmacological agents, the microfluidic device was placed on the 

microscope stage and checked for optimal trapping efficiency. The wash liquid was then 

removed and replaced with a pharmacological agent by adding 150 µL of the solution to 

the inlet and 75 µL to the outlet, while the device remained on the microscope stage. The 
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live-cell chamber was then sealed and imaging commenced (described below). The 

following treatments were used alone or in combination as described in the results 

section: 10 ng/mL tumor necrosis factor alpha (TNF) (Peprotech); 200 nM trichostatin A 

(TSA) and 10 nM phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich); 4 µM 

prostratin and 4 µM SAHA (Santa Cruz Biotechnology). 

Flow cytometry 

Cells were plated at 5x10
5
 cells/mL in RPMI media 1640 and the previously listed 

pharmacological treatments were applied directly to the cells. Cells were fixed 0, 6, 12, 

and 24 hours after treatment in 4% formaldehyde. Cells were analyzed for HIV-GFP 

expression on an Accuri
TM

 C6 Flow Cytometer (BD Biosciences). 

Imaging  

Images for the flow optimization experiments were captured using an EVOS FL Auto 

microscope. Both brightfield and fluorescent live cell stain Calcein-AM (Life 

technologies) images of cells were used for counting the number of cells trapped within 

the device. The cell simulation experiments were conducted on a Leica DMi8 widefield 

fluorescent microscope connected to an Andor iXon Ultra 897 EM-CCD camera. A 10X 

microscope objective was used to capture brightfield and green fluorescence images of 

HIV activation over a 14 hour time point. Adaptive focus control was set at each point to 

avoid any stage drifts during the course of long term imaging. The microfluidic device 

was placed on the microscope stage inside a TOKAI HIT live cell humidified chamber 

set to 37 ˚C and 5% CO2. 

Data Analysis 

Flow optimization and cell stimulation images were processed in Image J and Imaris 

(Bitplane AG, Zurich, Switzerland), respectively. Images were background subtracted 

and a spot detection algorithm with a 16 µm spot diameter was used to detect and track 

the intensity change in reactivated cells. The number of non-reactivated cells caught in 

traps were counted manually from the bright field images. Each of the activated cells 

were assigned an identification number and stored in Microsoft Excel. A custom Perl 

(www.perl.org) script was used to organize the original raw data, which were 

subsequently passed through a series of filters accounting for the initial intensity value (to 

avoid counting basal activated cells), cut off time at 12 hours, smoothing of data 

(averaging 3 values for every data point), and cell displacement lengths. Unless otherwise 

stated, a cell displacement length of 5 µm was used in order to consider only the trapped 

cells and to avoid counting floating cells or cell passing the frame. Processed data from 

the Microsoft Excel file was used to calculate metrics such as area under the curve, 

coefficient of variation, maximum and final intensity, onset times, etc. Statistical analysis 

was performed in Prism (GraphPad Software, Inc., La Jolla, CA). Multiple linear 

regression was of the form 

 E(Y|X) = α + β1X1 + β2X2  
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where Y is FmaxO, X1 is ton, X2 is S, α is the intercept, and βj are the regression 

coefficients. Violin plots were generated with a custom script written in R (www.r-

project.org).   

Flow Simulation 

Flow simulation for different trap designs was carried out in COMSOL Multiphysics 

(COMSOL Inc., Burlington, MA) using single phase laminar flow module. A fine mesh 

was generated for the entire subdomain with an automatic triangulation method. A 

PARDISO solver was used to solve the stationary Navier-Stokes equation using shallow 

channel approximation. An initial inlet velocity of 300 µm s
-1

 and outlet atmospheric 

pressure was used under no-slip boundary conditions. Surface plots representing flow 

velocity were plotted and compared with different trap designs. 
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Figures Legends 

 

Figure 1. Design and operation of the passive-flow microfluidic device. (A) Schematic 

diagram of the microfluidic device fabrication process (see Methods for more detail). (B) 

Schematic diagram of the protocol to trap single cells in the passive-flow microfluidic 

device.  

 

Figure 2. Two trap designs at high and low densities were tested for single-cell capture. 

(A) SEM images of high density (Hd) and low density S and V traps. Scale bar represents 

50 µm. (B) Flow simulation results of surface velocity and streamline plots at 300 µm s
-1
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inlet flow velocity. (C) Overlay of bright field and fluorescent images of live cells stained 

with calcein AM viability dye trapped in the microfluidic device. 

 

Figure 3. Optimization and characterization of the cell-trapping protocol for the Hd-V 

microfluidic device. (A) Effect of cell loading density on the overall and single-cell 

trapping efficiency. (B) Effect of loading volume on the overall and single-cell trapping 

efficiency. (C) Cell retention following a wash step. (D) Cell retention efficiency while 

imaging cells over a span of 12 hours. (A-D) Data are presented as the mean ± standard 

deviation of two independent experiments (n=2). (E) Image of a colored dye traveling 

through the channel at different time points (Scale bar represents 150 µm). (F) 

Fluorescent image of cell trapping in the device over time. Cells are labeled with calcein 

AM.  

 

Figure 4.  The activation of latent HIV is highly heterogeneous in a Jurkat T cell line 

latency model. (A) Time lapse images of activation in Jurkat cells upon stimulation with 

PMA. Scale bar indicates 100 µm. (B) Heat plots of single-cell GFP expression over time 

quantified from time-lapse images in response to LRA treatment (upper panels). Mean 

fluorescence intensity (MFI) was plotted over time, and time courses are represented as 

three-frame running averages to reduce the influence of high-frequency noise. Level of 

HIV-GFP expression is color-coded on left. Only cells that activated are included. 

(Lower panel) Data depicted as single-cell activation trajectories. Black line indicates the 

average trace for each condition. Total % of cells activated by 12 hours is indicated. (C) 

Correlations between % cells activated in the passive-flow device versus % cells 

activated in plate-based assay and quantified by flow cytometry. One data point is 

presented for each treatment at 6 hours (blue triangles), 12 hours (red circles), and ~24 

hours (green squares) after stimulation. R indicates Pearson correlation coefficient. 

Complete data is presented in Fig. S3. (D) Schematic of metrics extracted from individual 

HIV activation trajectories.   

 

Figure 5. LRAs differentially affect the dynamics latent HIV activation. (A) 

Distributions (violin plots) of onset time of activation (ton) for only reactivated cells 

(mean n = 146; range of n is 38-348). White dot indicates mean of distribution. (B) 

Coefficient of variation (CV) for ton depicted in A. Error bars represent 95% confidence 

interval obtained by bootstrapping. (C) Distributions of maximum HIV expression 

(FmaxO) for all cells (mean n = 347; range of n is 237-537). (D) CV for FmaxO. (E) 

Distributions for rate of HIV production (S) for all cells. (F) CV for S. Comparison of 

CVs for metrics calculated from all cells and only activated cells are included in Fig. S6. 

 

Figure 6. Evaluating correlations between metrics of HIV activation in single cells 

suggests multiple mechanisms control the reversal of latency. (A) Scatter plot depicting 

the correlation between onset time of activation (ton) and rate of HIV production (slope; 

S) for cells activated by PMA. R indicates Pearson correlation coefficient. (B) 

Correlations between ton and S for all perturbations. (C) Examples of correlations 
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between either ton (left) or S (right) and maximum HIV expression (FmaxO) in cells 

activated by PMA. (D) Regression coefficient between ton (blue) or S (red) and FmaxO for 

all perturbations. Regression coefficients were determined using multiple regression 

analysis. Coefficient of determination (R
2
) for each multiple regression is indicated above 

each bar. Error bars represent 95% confidence intervals.   
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