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Insight Box 

“The DIONESUS algorithm provides scalable and accurate reconstruction of dynamic 

phosphoproteomic networks to reveal new drug targets.” 

 
Mark F. Ciaccio, Vincent C. Chen, Richard B. Jones, and Neda Bagheri. 

 

Reconstruction of a signaling network from a phosphoproteomic dataset suggests that 

enhancement of STAT1 activity is an effective strategy to specifically target EGFR-hyperactive 

cancer cells. We measured 60 phosphosites at 4 time points after 30 diverse perturbations, 

designed to interrupt receptor-tyrosine-kinase co-activation, with a modified microwestern array. 

Microwestern arrays can utilize a broad range of antibodies as electrophoretic separation allows 

epitopes to be cross-referenced to a size standard. We developed a highly scalable, iterative 

network inference algorithm, termed DIONESUS, which employs partial least squares 

regression to remove uninformative sources of variance from the dataset. Integration of 

DIONESUS with systems-level phosphoprotein measurements efficiently identified new drug 

targets and inferred the mechanism of action for ill-characterized drug candidates in validation 

studies. 
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The DIONESUS algorithm provides scalable and accurate recon-

struction of dynamic phosphoproteomic networks to reveal new drug

targets.†
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Many drug candidates fail in clinical trials due to an incomplete understanding of how small-molecule perturbations affect cell

phenotype. Cellular responses can be non-intuitive due to systems-level properties such as redundant pathways caused by co-

activation of multiple receptor tyrosine kinases. We therefore created a scalable algorithm, DIONESUS, based on partial least

squares regression with variable selection to reconstruct a cellular signaling network in a human carcinoma cell line driven

by EGFR overexpression. We perturbed the cells with 26 diverse growth factors and/or small molecules chosen to activate or

inhibit specific subsets of receptor tyrosine kinases. We then quantified the abundance of 60 phosphosites at four time points

using a modified microwestern array, a high-confidence assay of protein abundance and modification. DIONESUS, after being

validated using three in silico networks, was applied to connect perturbations, phosphorylation, and cell phenotype from the high-

confidence, microwestern dataset. We identified enhancement of STAT1 activity as a potential strategy to treat EGFR-hyperactive

cancers and PTEN as a target of the antioxidant, n-acetylcysteine. Quantification of the relationship between drug dosage and

cell viability in a panel of triple-negative breast cancer cell lines validated proposed therapeutic strategies.

Introduction

Candidate drugs have an alarmingly low success rate in clini-

cal trials. The FDA approved only 13.4% of agents introduced

between 1993-2004 for cancer treatment.1 An inability to ac-

curately predict cellular responses induced by network pertur-

bations prohibits efficient drug discovery.2 Systems pharma-

cology, defined as the study of a drug perturbation on a biolog-

ical system, can improve predictions of the efficacy and side

effects of potential cancer therapies by incorporating emergent

(or non-intuitive, systems-level) properties into computational

models. In this study, we combine efficient chemical perturba-

tions, systems-level biological assays, and predictive compu-

tational modeling to improve drug discovery by incorporating

the emergent behavior of signal transduction networks.

Deriving correlations between biomolecules, such as RNA

expression or protein abundance, and cell phenotype by sam-

pling the cell under diverse perturbations can elucidate factors
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that actively drive carcinogenesis, known as drivers. How-

ever, correlations can uncover neutral or compensatory mu-

tations, known as passengers, complicating the search for

effective molecular targets in disease.3 Deriving the under-

lying network structure may provide additional predictive

information by elucidating control structures such as feed-

back loops and redundant pathways. Signaling networks can

be modeled using nodes, representing phosphorylation abun-

dance, and directed edges which represent information flow

between phosphorylation sites. Network visualization can re-

veal the chronological order of phosphorylation events eluci-

dating nodes downstream of known molecular drivers, thereby

suggesting new drug targets in defined cancer subtypes.

In this study, we derived the network architecture of a model

epidermoid carcinoma driven by overexpression of the Epider-

mal Growth Factor Receptor (EGFR). EGFR is a receptor ty-

rosine kinase that is often mutated, overexpressed, or misreg-

ulated in many cancer types, including breast, lung, gastric,

prostate, and cervical cancers.4 We sampled protein phospho-

rylations and cell viability after 32 perturbations with media,

small-molecules, and/or growth factors, designed to activate

or inhibit subsets of receptor tyrosine kinases such as EGFR.

The phosphorylation levels combined with a high-throughput

measure of cell viability were used to discover potential vul-

nerabilities within the network. To gain the statistical power

necessary to infer specific and effective drug targets, we em-
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ployed a modified version of the high-confidence assay of

protein abundance and modification, the MicroWestern Array

(MWA).

New technologies continually strengthen our understand-

ing of the mechanisms that proteins use to relay information.

Assays that allow for direct quantification of protein abun-

dance and phosphorylation states provide a particularly use-

ful source of data with predictive value because proteins are

often the functional entities of cellular decision-making pro-

cesses.5 Higher resolution time-course studies6 and greater

numbers of assayed phosphosites greatly expand our ability

to understand the emergent properties of biological systems.

‘Mesoscale’ protein assays, defined as those that can observe

the tens to hundreds of predefined proteins over many per-

turbations and time points, provide an efficient means to ob-

tain mechanistic insight into defined network behavior.7–10

Because the MWA methodology incorporates the separation

of proteins using electrophoresis, the sizes of proteins can

be cross-referenced against molecular standards, eliminating

much of the uncertainty that convolutes the quantification of

proteins due to non-specific antibody-antigen binding. The

ability to increase the number of time points and conditions

allows for accurate network reconstruction with fewer false

positives. Here, we utilize a modified version of the microw-

estern array and a high-throughput cell viability assay to cre-

ate a large-scale cue-signal-response matrix11–13 on which to

reconstruct the cellular network architecture.

While many algorithms have been successfully used to re-

verse engineer biological networks from measurements of the

concentration of biomolecules after chemical perturbation,14

we created a new algorithm that is scalable to the large number

of time-resolved phosphosite abundances that can be reliably

assayed with the microwestern array from a minute biologi-

cal sample. This computationally-efficient algorithm, termed

Dynamic Inference Of NEtwork Structure Using Singular val-

ues (DIONESUS), employs partial least squares regression

with variable reduction using the Variance of Importance in

Projection (VIP) score. DIONESUS derives network archi-

tecture with minimal computational time by removing latent

sources of variance with little predictive value. In this study,

we applied the DIONESUS algorithm to derive the architec-

ture of a prototypical carcinoma cell that overexpresses EGFR,

from the microwestern dataset. This predictive model sug-

gested several strategies, specifically enhancement of the sig-

nal transducer, STAT1, for combating cancers driven by EGFR

hyperactivation.

Results

Informed perturbation yields high statistical power for

computational models.

We quantified the systems-level properties of the A431 epider-

moid cervical carcinoma cell line and the resultant cell phe-

notype (viability) after perturbations to the EGFR signaling

network. A431 cells grossly overexpress EGFR and therefore

are not a direct representation of cancer cell behavior in vivo.

A431 cells, however, display several attractive features for un-

derstanding how information flows within protein networks,

making them an ideal model to reverse engineer cell signaling

architecture. A431 cell viability is increased by low levels of

Epidermal Growth Factor (EGF) stimulation but is reduced by

high levels of EGF stimulation (Supplementary Fig. 1). This

unique, biphasic response allows for both positive and neg-

ative protein influences on cell viability to be observed from

stimulation with a single ligand.15 Additionally, in A431 cells,

EGFR and many other receptor tyrosine kinases and down-

stream signaling proteins undergo rapid and robust phospho-

rylation in response to growth factors, enabling us to quantify

many protein modifications and relate them to cell viability

with high confidence. The high statistical confidence of our

conclusions is largely due to the wide covariance among ob-

served phosphorylation profiles made possible by the unique

properties of cell signaling in A431 cells. For this reason, re-

sults from this cell line may not apply to those reflecting more

physiological levels of EGFR abundance.

We perturbed A431 cells with growth factors and/or cell-

permeable small molecules, referred to as cues. These cues

were chosen to activate or inhibit distinct cell signaling path-

ways by modulating potential mechanisms of Receptor Tyro-

sine Kinase (RTK) crosstalk, defined as phosphorylation of

multiple receptors, such as c-MET, after activation with a sin-

gle ligand, such as EGF. Following each perturbation, phos-

phorylation abundance, defined as signals, were quantified

at four time points in 60 unique signal transduction protein

residues using the microwestern array (Fig. 1A). Growth fac-

tors were applied at the 0-min time point. Small molecules

were applied 30 mins before growth factor stimulation. We

assayed the phosphorylation state at -30, 0, 5, and 15 mins,

and quantified cell viability, defined as the response, 24 hrs

post-perturbation. The conditions consisted of combinations

of cell growth medium, 4 growth factors, and 13 diverse small

molecules. Supplementary Table 1 summarizes the panel of

cues.

We perturbed A431 cells on six separate days due to the

number of samples that could feasibly be cultured per day.

Experiments 1-6 refer to each set of experimental perturba-

tions. For each experiment, we perturbed cells with 200

ng ml−1 EGF and media-alone in order to quantify the amount
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of inter-experimental biological variance in the experimental

method. In addition, we perturbed the cells with 2-7 unique

growth-factor and/or small-molecule perturbations in each ex-

periment. As RTK coactivation is a means by which cancer

cells can evade precise targeted therapy,16 we chemically in-

terfered with RTK cross-phosphorylation, thereby decreasing

the covariance between phosphosite abundances. This ratio-

nal selection of perturbants increased the statistical power to

reconstruct an accurate network model.

• In Experiment 1, we treated A431 cells with a panel of

four growth factors, either alone or in combination. EGF,

Insulin, Hepatocyte Growth Factor (HGF), and Insulin-

like Growth Factor (IGF) were expected to induce both

specific and overlapping signaling pathways.

• In Experiment 2, we treated cells with EGF in the pres-

ence of a SRC kinase, PLCγ , or PI3K inhibitor. Proteins

that contain the phosphotyrosine-binding SH2-domains,

such as SRC kinase, PLCγ , and PI3K, are often directly

downstream of receptor tyrosine kinases17 and therefore

potential mediators of the transactivation of other recep-

tor tyrosine kinases following EGFR activation.18

• In Experiment 3, we treated cells with EGF in the pres-

ence of a series of protease inhibitors expected to in-

hibit cleavage of extracellular growth factors and other

matrix proteins. Previous studies suggest autocrine and

paracrine signaling due to cleavage of growth factors as

a potential extracellular mechanism of receptor tyrosine

kinase transactivation in response to EGFR activation.19

• In Experiment 4, we treated cells with antioxidant agents.

Antioxidants were expected to induce activation of tyro-

sine phosphatases, resulting in reduced amplitude of spe-

cific tyrosine phosphorylations following EGF stimula-

tion.20 Tyrosine phosphatases can become inactivated by

reactive oxygen species through oxidation of active site

catalytic cysteines.20

• In Experiments 5 and 6, we treated cells with small

molecules intended to modulate the endogenous release

of reactive oxygen species in the cell produced by the

NOX complex and its regulatory subunit RAC1.21 In ad-

dition, we used a lower concentration of the SRC ki-

nase inhibitor, PP2, and a SHP2-phosphatase inhibitor,

PHPS1, to further increase the variance of the phospho-

signaling dynamics.

In summary, we chose experimental perturbations that were

expected to modulate unique and overlapping subsets of

protein signaling networks by modulating receptor-tyrosine-

kinase crosstalk. These perturbations powered a predictive

computational model describing the systems-level mecha-

nisms that determine cell fate.

The microwestern array quantifies high-confidence, dy-

namic phosphoproteomic data.

Figure 1B summarizes the microwestern array data follow-

ing treatment with the panel of cues (consisting of EGF, HGF,

insulin, and combinations thereof). In this study, we modi-

fied the microwestern array platform to print 16 samples per

antibody partition. This modification allowed us to quantify

more samples with each antibody in comparison to the pre-

vious configuration of 6 samples per partition.10 Each fluo-

rescent band can be cross-referenced with a molecular weight

standard to validate that the signal corresponds with the pro-

tein of interest. This novel characteristic of the MWA dif-

ferentiates it from many other antibody-based assays that do

not separate antigens by molecular weight. Separation im-

proves data precision as well as the diversity of useful anti-

bodies. The MWA is therefore amenable to the analysis of

up to 10 times more proteins in comparison to antibody-based

technologies that do not employ separation.10 The MWA has

very high specificity and sensitivity across a wide range of an-

tibodies and sample conditions as it shares the fundamental

mechanism of the tried-and-true western blot. Accordingly,

MWAs were employed to derive the mechanisms of drug syn-

ergy in Squamous Cell Carcinoma of the Head and Neck (SC-

CHN);22 the immune-sensing signaling components of den-

dritic cells;23 and the anti-cancer activity of bioactive natural

products24. The ability to assay larger numbers of variables

with the MWA versus standard western blots allows for infer-

ence of larger phosphonetworks and enables a deeper under-

standing of complexity and emergent mechanisms inherent in

cell signaling architecture.

The quantifications of the fold change in phosphorylation

along with the cell viability after each perturbation are shown

in Figure 1C. The fold change of each phosphorylation was

assayed in technical triplicate and the errorbars, representing

standard error, are displayed to reiterate the low experimental

variance of the MWA method.10 The response of the system is

defined as cell viability at 24 hrs after the addition of growth

factor.

To infer the network architecture, we iteratively defined

each phosphosite, as well as the phenotypic response across

all conditions, as the new response vector. We evaluated the

relevant predictors systematically to identify significant con-

nections to the response variable. The resulting networks were

folded (i.e. the resulting adjacency vectors were concatenated

into a single square adjacency matrix) to form an overall net-

work model of the signal transduction network (Figure 1D).

Phosphoprotein signaling is modular and highly collinear.

Figure 2A shows the phosphorylation dynamics of the 60 as-

sayed phosphosites and the quantification of cell viability. Hi-

erarchical clustering of the data demonstrated several distinct,
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collinear modules of phosphosites, suggesting common path-

ways or regulatory modules (for the full dataset, see Supple-

mentary Figs. 2-13, Supplementary Table 2, and Supple-

mentary Note 1). Volcano plots further illustrate the signifi-

cance and effect size of individual perturbations on phospho-

rylation kinetics (Supplementary Fig. 14).

To explore the architecture controlling cell phenotype, we

began by identifying phosphosites that are accurate predic-

tors of cell viability. To find the quantitative relationship be-

tween phosphorylation and phenotype, we plotted cell via-

bility against the log10 fold change of four predictors (Fig.

2B). These predictors consisted of the two phosphorylation

states with the highest absolute Pearson correlation coeffi-

cient (p-EGFR(Y1086)[5m] and p-STAT1(Y701)[5m]) and

the two with the highest positive Pearson correlation coeffi-

cient (p-GAB2(S159)[5m] and p-PDK1(S241)[15m]) in re-

lation to cell viability. Figure 2C and Supplementary Ta-

ble 4 display the pairwise Pearson correlation coefficients be-

tween all explanatory variables. There are 180 predictor vari-

ables in this dataset (60 assayed phosphosites × 3 informative

time points). The number of pairwise correlations is therefore

32,220 (180×179= 32,220). The number of correlation coef-

ficients with an absolute value above 0.5, specifically 6096 of

the 32,220 pairwise comparisons, suggests a highly collinear

set of predictors. As a result, we employed regularized linear

regression to identify relevant pathways from the large num-

ber of collinear associations in order to resolve the specific

phosphosites most predictive of cell phenotype.

Regularized regression improves the predictive capacity of

computational models.

Linear regression, optimized using cross-validation, can iden-

tify variables with high predictive value.25 In addition, regres-

sion provides a scalable means to quantify and select signifi-

cant explanatory variables inherent in directed network infer-

ence. We inquired which regression method is most useful in

identifying predictors given the cue-signal-response matrix.

The general form for linear regression can be written as

yyy= XXXβββ , where XXX is a matrix of predictors, yyy is a response vec-

tor, and βββ is a vector of weights. We compared results from

several variations of linear regression to develop predictive

models of biological systems. The accuracy of each computa-

tional model was quantified using the goodness of prediction

metric calculated through leave-one-out validation, Q2
LOO. Q2

quantifies the error associated with predicting a given condi-

tion that is excluded from, or left out of, the training data.12,26

We began the regression analysis by inquiring whether a

single phosphoprotein signaling metric would be sufficient

to explain cell viability by using simple linear regression.

We calculated the βi-coefficients upon defining y as the unit-

normalized and mean centered (z-score) of cell viability mea-

surements, and x as the z-score of the given vector of values for

the given phosphoprotein signaling metric, i, across all con-

ditions. Resulting model predictions are shown in compari-

son to experimental measurements in Supplementary Figure

15. Predictions using data from all observations are shown

in green full circles, whereas predictions in which the pre-

dicted perturbation is left out of the training set are shown

in empty blue circles. A model with high fitness corresponds

to an observed-experimental plot with solid green data points

close to the line of unity (depicted as a dotted gray line)

and a high correlation coefficient, R2. A model with a high

predictive capacity will have empty blue data points close

to the diagonal and a high leave-one-out validation coeffi-

cient, Q2. As p-STAT1(Y701)[5m], p-EGFR(Y1086)[5m], p-

PDK1(S241)[15m], and p-GAB2[5m] were found to be highly

correlated with cell viability, we used these phosphoprotein

signaling metrics as single variable predictors in the creation

of a computational model for cell viability. The Q2 metric was

0.717, 0.687, and 0.610 for the simple linear regression model

using predictors p-EGFR(Y1086)[5m], p-STAT1(Y701)[5m],

and p-GAB2(S159)[5m] respectively, suggesting that these

variables have high predictive capacity. While p-PDK1 is

highly correlated with cell viability, it is not predictive in con-

text of a simple linear regression model (Q2 = -0.018). This

fact demonstrates that strong correlation does not also imply

accurate prediction, underscoring the importance of regression

in separating correlates from predictors in computational mod-

els. Additionally, while p-STAT1 is negatively correlated with

viability, p-GAB2 is positively correlated with cell viability,

suggesting that in this system, both significant positive and

negative pathways influence cell viability. Therefore, we em-

ployed multiple linear regression (MLR), which uses multiple

variables to explain the response.

As the MWA data exhibited many collinear variables, we

employed a panel of MLR methods that limit overfitting

by employing a penalty proportional to the magnitude of β
(Supplementary Table 5). As a baseline comparison and neg-

ative control, we used Ordinary Least Squares (OLS), which

solves for the linear regression coefficients by minimizing

the squared deviation of the model predictions from the data.

While OLS regression is a straightforward approach that re-

lates input to output variables, overfitting is a common prob-

lem that leads to poor predictive capacity in cases where input

variables are numerous or collinear.27 As the MWA data ex-

hibited many collinear variables, we compared OLS with a

panel of regularized methods that limit overfitting by assign-

ing a penalty to the magnitude of βββ -coefficients.

We used three related methods: LASSO,28 ridge regression,

and elastic-net regression.29 The LASSO method adds an L1-

norm penalty to the regression problem forcing many regres-

sion coefficients towards zero, yielding a sparse βββ -vector.

Only variables with a non-zero regression coefficient are as-
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sumed to be relevant for prediction, providing a suitable al-

gorithm for variable selection. Similarly, ridge assigns an

L2-penalty, while elastic net combines both L1 and L2 penal-

ties.29 These methods have been used successfully to identify

associations in several large and collinear datasets.29

Aside from λ , the parameter defining the weight through

which βββ is penalized, LASSO, ridge, and elastic-net regres-

sion employ an addition model parameter, α , the ratio of the

L1 to L2 penalties. These tuning parameters were empirically

optimized by identifying the maximal Q2
LOO over the solution

space. In order to compare different constraints, regression

was performed with α = 1.0 for LASSO, α = 0.01 for ridge,

and α = 0.5 for a representative elastic-net solution. A map

of the fitness landscape over the defined parameter space is

shown in Figure 3A. LASSO, ridge, and elastic-net regression

had optimal λ values of 0.692, 0.651, and 0.631 respectively.

Fig. 3B shows plots summarizing the cross-validation

scores for each optimized regression method. With the excep-

tion of OLS, all methods had relatively high Q2 values, sug-

gesting that they offer predictive insight for this model system.

As LASSO and elastic-net regression utilize the L1 penalty

leading to a sparse set of predictors, the number of non-zero

predictors is indicated as n. The optimized LASSO model

had 14 significant predictors (n = 14) whereas the elastic net

had 24 (n = 24). In general, sparser solutions yield simpler

models that are less likely to overfit the data; this sparsity is

often preferable when trying to recover and resolve biologi-

cal mechanism by reducing the search space for effective drug

targets.

A disadvantage of these restrained least squares regression

methods such as LASSO is the fact that selected predictors

may not reflect the actual underlying causal variables.30,31

This problem can be more pronounced in biological contexts

where the data is inherently noisy.30,31 For this reason, we

utilized a method to identify separate sources of variances in

the response variable by projecting the data onto a lower di-

mensional space. Noise can be reduced by eliminating non-

predictive sources of variance from the computational model.

PLS-VIP identifies seven significant predictors of cell via-

bility.

We implemented Partial Least Squares Regression (PLSR) us-

ing the Variance of Importance in Projection (VIP)32 variable

selection criteria to identify predictors that explained signif-

icant sources of variance in the response variable, cell via-

bility. A benefit of PLSR is the minimal computational ex-

pense required to assign importance to each of the explanatory

variables using the VIP metric, as no resampling is necessary.

Metrics can be ordered by VIP score and eliminated in reverse

order of VIP magnitude, in a method known as PLS-VIP.32

The PLSR approach is desirable for a number of reasons; the

approach has been shown to perform well with input matri-

ces containing highly collinear data, missing data, or many in-

put variables.27 The PLSR method has been used previously

to determine novel signal-response relationships from protein

signaling and cell response data.8,33–35

We predicted cell viability as a function of phosphoryla-

tion metrics using the Non-Iterative PArtial Least Squares

(NIPALS) algorithm.36 Explanatory variables were rank or-

dered by VIP score and eliminated from the model in

a stepwise progression starting with the variable having

the lowest VIP score. The Q2 values corresponding to

the range of explanatory variables included in the model

are shown in Figure 4A. Three principal components and

seven significant phosphoprotein signaling metrics show

maximal predictive capacity without overfitting. We uti-

lized these parameters for the final PLS-VIP-based com-

putational model. The resulting observed vs. expected

plot is shown for PLS-VIP (Fig. 4B), demonstrating a

model with high predictive capacity. The seven signifi-

cant phosphoprotein signaling metrics (p-EGFR(Y1086)[5m

and 15m], p-AKT(S473)[5m and 15m], p-CDK2[15m], p-

S6RIBPROT[15m], and p-STAT1(Y701)[5m]), as well as the

corresponding β -coefficients and VIP score for each phospho-

site in the computational model, are shown in Figure 4C.

While these seven phosphosites have been shown to be in-

volved in EGFR signaling, this sparse set of predictors refines

and constrains the search space to include only those molecu-

lar targets, or effective combinations of targets, that reflect the

most confident specificity to EGFR-hyperactive cancer mod-

els.

We found PLSR to have a slightly higher predictive capac-

ity than LASSO, elastic-net, and ridge regression based on

the Q2 metric. PLS-VIP also had the sparsest solution with

n = 7, narrowing the search space for therapeutic targets. In-

clusion of only three principal components eliminated many

extraneous sources of variance in the model, securing greater

confidence that the selected predictors offer causal insight on

the cell phenotype. Therefore, these data suggest that each of

the seven nodes could be effective targets for general modu-

lation of cell viability in this cell line. Interestingly, all vari-

able selection methods (PLS-VIP, LASSO, and elastic net) se-

lected p-STAT1[5m] as a significant predictor, securing its rel-

evance and centrality in controlling cell viability in A431 cells

(Supplementary Tables 5-6).

DIONESUS accurately infers in silico networks from ki-

netic data.

To identify strategies for cancer treatment, we reconstructed

the cell signaling network of 60 phosphosites in the A431

model system. We considered several network inference al-

gorithms, many of which were developed in context of gene
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regulatory networks,14 but with unknown utility and applica-

tion to phosphorylation networks. Regression based network-

inference methods have proven increasingly useful in predict-

ing large-scale networks.37 As PLS-VIP outperforms other

regression methods for predicting cell viability, we hypothe-

sized it would also be useful in inferring edges between phos-

phosites. An additional advantage of PLSR is that edge con-

fidence can be quantified explicitly using the VIP score rather

than using more computationally expensive methods such as

bootstrapping, a common approach in regression-based net-

work inference methods. This advantage greatly reduces the

computational time, a limiting factor in resolving large net-

works.

Therefore, we propose a novel method of inferring sig-

naling networks using PLS-VIP. We named this algorithm

DIONESUS (for Dynamic Inference Of NEtwork Structure

Using Singular values). DIONESUS iterates through the cue-

signal matrix, defining each of the signals as a response and

calculates whether the other signals and cues are significant

predictors. The edge confidences are defined as the VIP score

corresponding to each regression problem. The edges confi-

dences are combined and confidences are rank ordered. The

list of edge confidences are then thresholded to create a repre-

sentative computational model of the cell signaling network.

To our knowledge, this study is the first to utilize PLS-VIP for

the inference of phosphonetworks.

We compared DIONESUS with three top performing net-

work inference algorithms (GENIE3,38 the Inferelator,39 and

TIGRESS40) as defined by the Dialogue for Reverse En-

gineering Assessments and Methods (DREAM5) In Silico

Multifactorial challenge for the identification of genetic reg-

ulatory network architecture.37 In order to create an unbi-

ased assessment of DIONESUS, kinetic models were cre-

ated from three separate one-hundred node in silico bench-

marks that were extracted from a yeast interactome using

GeneNetWeaver as previously described.41,42 The algorithms

were implemented to reverse engineer the network structure

using the default parameters implemented on the GenePattern

server, GP-DREAM.43 The performance of the algorithms

were assessed using the area under the receiver operating char-

acteristic (AUROC) curve (Fig. 4C).44 DIONESUS had the

highest AUROC at 0.637, compared with 0.620 for GENIE3,

0.609 for TIGRESS, 0.566 for the Inferelator, and 0.573 for

pairwise Spearman correlations. These values are in compar-

ison to a theoretical AUROC of 0.500 for a random network.

A comparison of AUROCs is given in Supplementary Fig-

ure 16 for two other randomly generated in silico networks.

For the second in silico network, DIONESUS had the sec-

ond highest AUROC, slightly lower than GENIE3 (AUROC

of 0.585 and 0.595, respectively). For the third in silico net-

work, DIONESUS had the highest performance as rated by

the AUROC.

To further compare the performance of DIONESUS in com-

parison to top performing algorithms, the precision and re-

call were quantified using the area under the precision-recall

curve (AUPR).44 For the first in silico network, DIONESUS

had the highest AUPR at 0.219, compared with 0.215 for GE-

NIE3, 0.216 for TIGRESS, 0.176 for the Inferelator, and 0.180

for pairwise Spearman correlations (Fig. 4D). These values

are in comparison to a random network having a theoretical

AUPR of 0.117. DIONESUS had the highest AUPR scores

among all algorithms tested for the subsequent in silico net-

works (Supplementary Figure 16).

In order to further obtain an unbiased test of the accuracy

of our algorithm versus other network inference techniques,

DIONESUS was submitted to the DREAM8 Breast Cancer

Network Inference Challenge. The submission scored in the

top ten for the in silico challenge, supporting its use as an

accurate method for network reconstruction (in publication).

In summary, DIONESUS accurately reconstructs networks at

comparable or superior performance to other top-performing

network inference algorithms as assessed by the AUROC and

AUPR metrics under the model conditions.

DIONESUS is a scalable algorithm for reconstruction of

large networks.

We next inquired how the computational expense of DIONE-

SUS scaled with the number of assayed nodes within a net-

work. A major strength of DIONESUS is its fast speed, as

no resampling is necessary to derive a quantitative assessment

of edge confidence. To quantitively assess the scalability of

DIONESUS, we calculated the computational time for the im-

plementation of the network inference algorithms as a function

of the number of assayed nodes. Kinetic data was generated

from in silico benchmarks using 100, 150, 200, 250, and 300

node networks produced with GeneNetWeaver.42 The com-

putational expense was timed for DIONESUS and compared

with GENIE3, the Inferelator, TIGRESS, and pairwise Spear-

man correlations (Fig. 4E) All of these inference algorithms

showed a roughly linear relationship between these variables

for networks greater than 150 nodes. The slope, m, was cal-

culated for each algorithm from 150-300 nodes and represents

the change in computational time over a change in the num-

ber of assayed nodes. The basic correlation method had the

smallest value of m at 0.019 suggesting that this method was

highly scalable. DIONESUS had a slope comparable to Spear-

man correlations at an m equal to 0.082. These values were

far lower than those calculated for GENIE3 (m = 1.248), TI-

GRESS (m = 4.240), and the Inferelator (m = 1.483). These

data suggest that DIONESUS can easily scale to very large

networks and could be efficiently utilized for full genomic,

proteomic, or phosphoproteomic studies, common in systems

biology.
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To assess the propensity of DIONESUS to infer the proper

directionality of edges, we developed three separate 3-node

in silico toy models using GeneNetWeaver42 to demonstrate

the strengths and limitations of inference in resolving the ac-

tivating or inhibitory nature of each edge. The models char-

acterized linear cascade motifs of the structure: P1→P2→P3.

While none of these networks were inferred with 100% ac-

curacy, in each case, the algorithm correctly inferred whether

each true edge was activating or inhibitory. In addition, the

true edges (e.g. P1→P2) always reflected higher confidence

(indicated by the VIP score) than the reverse, false positive

edge (e.g. P2→P1). Furthermore, the indirect edge from

P1→P3 reflected the least confidence and was consistently

below the edge threshold in all three examples. Taken to-

gether, the DIONESUS algorithm was able to uncover the

most salient features of the in silico models. A summary of

these findings is shown in Supplementary Figure 17.

DIONESUS elucidates the A431 signaling network.

After assessing the accuracy and scalability of DIONESUS,

we applied the algorithm to form a network connecting the

cues, signals, and responses of the A431 signaling network.

DIONESUS inferred the entire 60-node network in less than

one second on a standard desktop computer without parallel

processing (Intel Core i7-3770 CPU, 20 GB RAM), demon-

strating its ultrafast speed.

An additional advantage of regression-based network infer-

ence algorithms, including DIONESUS, is the straightforward

incorporation of cues as relevant predictors of phosphosite re-

sponse. In this way, the mechanism of small molecules, in-

cluding synthetic chemicals (e.g. n-acetylcysteine) and natu-

ral products (e.g. wortmannin), can be elucidated by inferring

edges between cue-nodes and signal-nodes. Probable protein

targets of a given small molecule are comprised of nodes im-

mediately downstream of the cue within the inferred network.

The architecture of the A431 cell signaling network, as

defined by DIONESUS, is shown in Fig. 5. DIONE-

SUS identified many well-characterized edges, such as c-

MET→GAB1 (Supplementary Tables 11-12). EGF was

identified as the main predictor of p-EGFR(Y1173) and p-

EGFR(Y1068). Similarly, IGF was the strongest predictor of

p-IGF1R(Y1135/1136), as expected, adding confidence to our

methodology.

Further results highlighted the strong antioxidant, n-

acetylcysteine, as a significant activator of p-PTEN(S380).

This edge might be due to the suppression of the reversible

inactivation of phosphatases by the oxidation of the cysteine

in the functional group by reactive oxygen species.45 The in-

ferred edge further supports the hypothesis that PTEN is a

major sensor of reactive oxygen species in the cellular en-

vironment. Surprisingly, the canonical PI3K inhibitor, wort-

mannin, was shown to inhibit phosphorylation of ribosomal

regulator 4EBP1. This suggests that wortmannin may have al-

ternate or additional targets to PI3K including the regulation

of p-4EBP1(T37/46), perhaps through inhibition of MTOR.46

These findings highlight the utility of combining the microw-

estern array with the DIONESUS algorithm to infer the com-

plex behaviors of newly synthesized compounds or natural

products with ill-characterized mechanisms of action, reveal-

ing primary and off-target effects of drug candidates.

A DIONESUS-inferred network has a high overlap with

alternate methods for modeling cell signaling.

A prior knowledge list was compiled from ten online

databases (BIND, DIP, IntAct, MINT, pdzbase, SAVI,

Stelzi, vidal, ncbi hprd, and kegg mammalian) using the

Genes2Networks tool.47 Although connections between phos-

phosites are heavily cell line and context dependent, sev-

eral previously reported edges were confirmed by employ-

ing DIONESUS to dynamic phosphoproteomic data in A431

cells, reinforcing DIONESUS as a powerful algorithm to in-

fer pathways in the phosphorylation network (Supplementary

Table 13). Prior knowledge was not incorporated in the in-

ferred network in the study, but was used to confirm the accu-

racy of the algorithm and to determine connections that were

not previously reported.

To compare DIONESUS to established network inference

algorithms, we applied GENIE3, TIGRESS, and the Infere-

lator to the identical phosphoproteomic dataset. Results are

summarized in Supplementary Note 2 and Supplementary

Tables 7-10. Supplementary Figure 18a illustrates a signif-

icant overlap of edge detection among DIONESUS and these

established methods, specifically with TIGRESS, which em-

ploys regularized regression to infer network structure. To

quantify the overlap of the inferred edges between algorithms,

we calculated the Jaccard similarity coefficient, which is de-

fined by the union divided by the intersection of two adja-

cency matrices.48 A Jaccard index of 1 corresponds to two

perfectly overlapping matrices, whereas an index of 0 cor-

responds to two completely discordant matrices. Threshold-

ing the inferred edge list at a value of 500, we found the

overlap between DIONESUS and GENIE3 to be significant

with a Jaccard index of 0.515 (p-value < 10−3). DIONE-

SUS and the Inferelator had a Jaccard index of .362 (p-value

< 10−3), while DIONESUS and TIGRESS had an index of

.544 (p-value < 10−3). Note that the Jaccard index between

the DIONESUS-inferred adjacency matrix and 100 randomly

generated 500-edge adjacency matrices is 0.075± 0.009 (st.

dev.). A full table containing the Jaccard distances between

methods is shown in Supplementary Figure 18b.
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STAT1 is a significant mediator of EGF-induced cell death.

The DIONESUS network identified several key phosphosites

downstream of EGFR: p-STAT5(Y694), p-STAT1(Y701),

p-CDC2(Y15), p-MET(Y1349), p-SRC(Y416), p-

PYK2(Y402), p-SHP2(Y542), p-GAB1(Y627), and p-

4EBP1(T37/46). As p-STAT1(Y701) was also inferred to be

a significant predictor for cell viability, we hypothesized that

enhancing STAT1 signaling in cells overexpressing EGFR

is a specific vulnerability that can be exploited to decrease

cancer phenotype. The network architecture derived using

DIONESUS supports the centrality of STAT1, placing it

downstream of EGFR. The model suggests STAT1 is a modu-

lator of cell viability and also an effective target for therapy in

EGFR-hyperactive cancers. To validate this finding, we used

small molecules to validate inferred edges in a larger panel of

cancer model systems.

Small-molecule perturbations validate newly inferred pre-

dictors of cell viability.

To validate phosphosite interactions, we employed a

panel of inhibitors and activators in A431 cells to mod-

ulate the following network edges: p-AKT→Viability,

p-S6RIBPROT→Viability, p-CDK2→Viability, and p-

STAT1→Viability. We employed small-molecule inhibition

instead of RNA interference to measure the confidence of an

edge, as small molecules have a shorter time scale for action.

The shorter time scale of action helps prevent rewiring of the

network after removal of the specific signaling node, which

can occur after RNA interference.

We tested the validity of these edges by employing a

p-AKT/p-P70S6K-inhibitor (Caffeic Acid Phenylethyl Ester,

CAPE)24 a CDK2-inhibitor (roscovitine)49, STAT1-inducer

(Diallyl Disulfide, DADS)50, and the STAT1-inhibitor (flu-

darabine)51. As a negative control we used the MEK-

inhibitor, UO12652, as MEK and its downstream partner,

ERK, were not predicted to have significant effect on cell via-

bility.

In order to obtain a quantitative metric for the effect of each

small molecule on cancer cell lines, viability of A431 cells af-

ter 24 hrs was quantified after addition of a serial dilution of

each small molecule(Figure 6A). The dose-response curves

are shown in Figure 6B. As predicted by the network model,

inhibition of AKT/P70S6K and CDK2 significantly lowered

cell viability, with CAPE having an EC50 (potency) of 13.3 M

and roscovitine having an EC50 of 2.5 M. The STAT1-inducer

also lowered cell viability at 100% efficacy (EC∞). We found

it compelling that the STAT1-inhibitor increased cell viabil-

ity with no exogenous EGF stimulation. The relative increase

in cell number was more pronounced when culturing the cells

with 200 ng ml−1 of EGF, further supporting the centrality of

this node in controlling EGF-induced cell death. Conversely,

the MEK-inhibitor had minimal effect on cell viability, con-

firming this node as a negative control. These results offer

strong evidence for the strength of the MWA in quantifying

critical network connections and for the DIONESUS algo-

rithm in identifying interactions between cues, signals, and

responses.

STAT1 stimulation decreases viability specifically in

EGFR-overexpressing cancer cells.

We assessed the broader applicability of this therapeutic strat-

egy by inquiring whether enhanced STAT1 activity would

drive other cancer cell models toward cell death. We used the

STAT1-inducer, DADS, on a panel of breast cancer cell lines

with varying amounts of EGFR expression: MDA-MB-231

(EGFR+++), Hs578t (EGFR+++), BT549 (EGFR++), and

MDA-MB-453 (EGFR-).53 To minimize the effect of molecu-

lar drivers of carcinogenesis outside of the scope of this study,

we chose breast cancer cell lines lacking the common prog-

nostic biomarkers: ER, PR, and HER2. We found that increas-

ing expression of STAT1 using DADS was effective in lower-

ing the viability of cell lines with higher levels of EGFR but

had undetectable potency in a cell line that did not express de-

tectable amounts of EGFR (MDA-MB-453), suggesting that

this treatment is cancer subtype specific (Fig. 6C). As a neg-

ative control we treated the same panel of cell lines with the

AKT/P70S6K inhibitor, CAPE. We found CAPE to be effec-

tive in lowering the viability in all cell lines, suggesting that

CAPE efficacy was not specific to EGFR overexpressing cells

(Fig. 6D). As AKT and P70S6K are downstream of PI3K

and significant predictors of cell viability, this particular small

molecule might be specific to tumors that have carcinogenic

mutations in PTEN or PI3K.24

Discussion

The scalable DIONESUS algorithm allows for quick itera-

tion between experimental design and computational model-

ing to accelerate systems-level drug discovery. DIONESUS

can be easily implemented to infer directed, cyclic networks of

whole genomes, proteomes, or phosphoproteomes with negli-

gible computation time and minimal computational complex-

ity. This scalability allows DIONESUS to be highly appli-

cable to infer large network structures using data from such

technologies as RNA sequencing or quantitative mass spec-

trometry.

As DIONESUS uses PLSR to infer network edges, less

significant sources of variance may be eliminated to allow

more accurate inference from noisy biological datasets. The

computational strengths of DIONESUS promotes expansion

of the algorithm to detect non-additive relationships between

multiple parents of a node allowing rational prediction of
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synergistic relationships between small molecules affecting

a response. The algorithm can be further refined by im-

posing temporal constraints where information, or direction-

ality, flows from earlier to later time points. Detection of

such non-additive relationships and time-dependent signaling

would deepen our understanding of regulatory mechanisms

within the network. Inference of the cell signaling network

across a panel of cell lines with varying amounts of EGFR ex-

pression could further elucidate how phosphonetwork archi-

tecture changes in cancer and inform new therapeutic strate-

gies. In addition, this method would be useful for identifying

phosphoproteomic biomarkers in clinical samples to inform

diagnosis and personalized treatment for disease.

Dysregulation of EGFR signaling is common in many can-

cer subtypes. Our studies identify p-STAT1(Y701) as a sig-

nificant predictor, or regulator, of cell viability downstream

of EGFR. STAT1 expression54,55 and phosphorylation56 have

been reported to be necessary for EGF-induced cell death in

A431 cells. Our analysis confirmed these reported results,

and suggested other possible upstream modulators of STAT1,

such as STAT6. In addition, we identified a subset of signifi-

cant predictors of cell viability suggesting candidate therapies

that may have synergistic effect in decreasing cell viability in

this cell line; for instance, a combination of Akt-inhibition

and STAT1-activation. A compelling further direction of this

study would be to create a dynamic model from DIONESUS-

derived network architecture to predict synergy between drug

combinations. As DIONESUS was able to explicitly calculate

the confidence of each edge, it can be valuable in informing

experimental design by rank ordering hypothetical new targets

to for treating diseases caused by signaling dysregulation.

We demonstrated that enhancing STAT1 expression through

treatment with the small molecule, DADS, decreased cell vi-

ability specifically in cell lines overexpressing EGFR. This

finding suggests that enhancement of STAT1 activity is a

potential primary or adjuvant therapeutic option for EGFR-

hyperactive cancers. Diallyl disulfide has several favorable

properties as a cancer therapy. As DADS is a bioactive nat-

ural product derived from aged garlic, it is available with-

out costly approval from the US Food and Drug Adminis-

tration (FDA).57 Natural products have historically provided

all medicinal preparations and continue to inform compounds

that have successfully passed clinical trials for the treatment

of cancer.57 The DADS molecule may be used as a backbone

to synthesize other effective anticancer therapies or be used in

combination with other proven anti-cancer drugs. As DADS

has been reported to have multiple targets in the cell,58–60

identification of other compounds that specifically enhance

STAT1 would be a compelling direction to further improve

cancer treatment. We additionally identified PTEN as a target

of the antioxidant, n-acetylcysteine, suggesting PTEN may be

a sensor for reactive oxygen in the cellular environment.

The difficulty in identifying effective therapeutic agents that

are bioavailable and that preferentially inhibit the proliferation

and progression of cancer cells represents a major obstacle in

the development of effective anti-cancer strategies. For these

reasons, we developed a novel pipeline of integrating scalable

network inference with the unprecedented protein data acqui-

sition capabilities of the microwestern array. This method rep-

resents an attractive means for the development of strategies

in molecular systems biology to preferentially treat numer-

ous pathological cellular states. Furthermore, our study sug-

gests a general pipeline for inferring the main targets of small

molecules in the cell through direct assay of phosphoryla-

tion kinetics with efficient network reconstruction. This study

tackles a major challenge in integrative biology: targets of

small-molecule modulators such as natural products and syn-

thetic compounds can be inferred in order to understand the

complex mechanisms of action for ill-characterized drugs. In

addition, off-target effects of approved therapies can be quan-

tified in order to understand, and control for, possible adverse

effects. Knowledge of newly discovered targets can also be

used to mitigate common adverse effects of current pharma-

ceutical treatment and to repurpose FDA-approved drug ther-

apies.

Materials and methods

Cell perturbation with growth factors and small molecules

A431 cells were cultured in DMEM with 8% FBS, 0.5%

penicillin/streptomycin, and 20 g/mL ciprofloxacin. Cells

were then synchronized by incubation in serum-free me-

dia for 24 hrs prior to stimulation. Media was replaced

with fresh, serum-free DMEM with 0.5% pen/strep, and 20

g/mL ciprofloxacin 30 minutes prior to stimulation (defined

as the -30 min time point). For perturbations including small

molecules, the chemical perturbants were added with the me-

dia at the -30 min time point. Cells were stimulated with

minimal growth media, EGF, HGF, IGF, insulin, or a com-

bination thereof, at the 0 time point and collected at -30, 0, 5,

and 15 mins post-stimulation. Cell lysates were processed and

subjected to microwestern array analysis with a panel of anti-

bodies directed at 60 phosphosites, GAPDH, β -actin, and α-

tubulin, as previously described.10 Antibodies were selected

from a pool of 91 candidates that generated a relatively high

signal to background ratio from the previous study.10 Protein

load was normalized per lane by dividing by the average in-

tensity of the following control antibodies: GAPDH, β -actin,

and α-tubulin. Fold change was calculated by dividing the 0,

5, and 15 min measurements by the mean signal intensity at

the -30 min time point. In order to accommodate 18 samples,

microwestern arrays were fabricated with antibody-dividing

gaskets containing a width of 18 mm rather than the 9 mm
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width described previously.10 In cases where there were mul-

tiple fluorescent bands in close proximity in the microwestern

lane, ImageJ image visualization software was used to graph

the pixel intensities from the top to the bottom of the lane.

The width of the band was calculated as the distance between

the inflection points of the pixel intensity graph over the band

length. An example plot showing the determination of band

location is shown in Supplementary Figure 19.

Cell viability as the response variable for high-throughput

assays

Cell viability was quantified in parallel with the microwestern

array assay of short-term phosphorylation kinetics in 24-well

dishes following 24 hrs of treatment by fixing, permeabilizing,

and staining cells with Syto-60 fluorescent DNA-binding dye

(Invitrogen).61 Cell viability was assayed in biological tripli-

cate (3 wells of a 24-well dish) and quantified as the relative

percentage of viable cells treated with growth factors and/or

small molecules divided by the control cells treated with me-

dia alone. Following each perturbation, cells were cultured for

24 hrs in serum-free media in the presence or absence of a per-

turbing agent. Fluorescence intensities were quantified using

the LI-COR Odyssey Image Analysis software (version 1.2).

This assay was previously validated against direct cell counts

and showed a strong positive correlation with cell number (R2

= 0.995).61

A cue-signal-response matrix derived from the microwest-

ern array assay

The signal matrix in this study was compiled from the quan-

tification of 60 phosphosites following 31 directed cell pertur-

bations over four time points. The perturbation with the small

molecule, EGCG, was removed from the matrix as it yielded

zero viable cells, barring its use in a useful quantitative regres-

sion model. Each phosphorylation was assayed in technical

triplicate, and the mean of the three log fold changes was used

to inform the model. Although missing data was rare, imper-

fections in the microwestern array image leading to missing

datapoints were replaced with a fold change of 1 (correspond-

ing to a log fold change of 0). Missing datapoints are high-

lighted in bold in Supplementary Table 3. Since, by defini-

tion, the log fold change is zero for the -30 min timepoint, the

remaining 30 perturbations over 3 non-zero time points with

60 phosphoantibodies yielded 5400 informative signals. Cues

were encoded with dummy variables; the matrix element was

set at 1 for conditions where the cue was present and 0 where

the cue was absent.

Clustering

All clustering was performed using the clustergram()

function in Matlab 2013a using the ‘average’ linkage.

OLS, LASSO, ridge, and elastic-net regression

The general OLS equation is given by the following:

βββ f it = argminβ‖yyy−XXXβββ‖2
2 (1)

where argmin() is a function that provides the set of pa-
rameters, βββ f it , that minimizes the value of the contained func-
tion, here the squared difference between the response and the
prediction. Values in the calculated βββ f it vector represent the
predicted weight of variables in XXX on explaining yyy. OLS was
performed using the polyfit() function in Matlab 2013a.
LASSO, ridge, and elastic-net regression were performed us-
ing the lasso() function in Matlab 2013a, with λ and α pa-
rameters of (0.046,1.000), (0.651,0.010), and (0.4600,0.500),
respectively. Data was z-scored by column (condition) to nor-
malize for inter-experimental variance prior to regression. The
general equation for these constrained methods is given by the
following:

βββ f it = argminβ (‖yyy−XXXβββ‖2
2 +λ (α‖βββ‖1 +(1−α)‖βββ‖2) (2)

Supplementary Table 9 was used as the input for all methods.

Assessment of model fitness and predictive capacity

Leave-one-out cross-validation was used in this study for all Q2 cal-

culations. R2 and Q2 are defined as the following.

R2 = 1−
Σ

n
i=1(yi − ŷ)2

Σ
n
i=1(yi − ȳ)2

(3)

Q2 = 1−
Σ

n
i=1(yi − y̌(i))

2

Σ
n
i=1(yi − ȳ)2

(4)

where y is the experimental response variable, and ȳ is the expected

value of the experimental response data for each perturbation. ŷ is the

predicted response trained on all of the data, and y̌(i) is the predicted

response variable from a computational model that is not trained on

the condition, i.12,26,62

Partial least squares regression

The following equations were used for PLSR:

XXX = TTT PPPTTT (5)

TTT = XXXPPP/(PPPTTT PPP) = XXXWWW TTT (6)

yyy =UUUCCCTTT ≈ TTTCCCTTT = XXXWWW TTTCCCTTT = XXXβββ (7)

where TTT and UUU are latent variables that are optimized iteratively to

have the maximal covariance. PPP and CCC are matrices of the XXX load-

ings and yyy loadings respectively. WWW is the matrix of XXX weights.32,62

From these values, the Variance of Importance in Project (VIP) score,
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which is a metric of the contribution of an explanatory variable to a

response, can be calculated. The VIP score for a given predictor is

calculated from the following:

V IP =

√

√

√

√

Σ
pcs
pc=1VarpcW 2

pc

Σ
pcs
pc=1Varpc

(8)

where pcs is the number of principal components, Varpc is the vari-

ance in the response explained by the principal component, and Wpc

is the weight of a given predictor.27,32,62 PLSR was performed using

the Non-linear Iterative Partial Least Squares (NIPALS) algorithm36

in Matlab 2013a using the pls nipals.m code from the library:

“libPLS: An Integrated Library for Partial Least Squares Regression

and Discriminant Analysis”.63 The VIP score was calculated using

vipp.m, also from libPLS library.63 Variables were eliminated step-

wise in order of reverse magnitude of the VIP metric to find the

optimal model fit using leave-one-out cross-validation. Data was

z-scored by column (condition) to normalize for inter-experimental

variance. Supplementary Table 3 was used as an input for all meth-

ods.

Generation of benchmark dynamical models from in silico

networks

Three separate one-hundred node realistic in silico networks were

extracted from a known in vivo genetic regulatory network of

S.cerevisiae using GeneNetWeaver. 42 Kinetic models were simulated

from the network to produce time-series protein expression data as

previously described.42 Dynamic in silico data was sampled from

GeneNetWeaver to have similar characteristics to the phosphopro-

teomic, microwestern dataset assayed in this study. The dataset con-

sisted of 50 times series and 6 timepoints. Inference algorithms were

applied to the datasets with the same form as those generated in the

international DREAM4 competition (Dialogue for Reverse Engineer-

ing Assessments and Methods). Three-node in silico models were

extracted from the yeast interactome using the same parameters in

GeneNetWeaver.

DIONESUS

The input matrix for the DIONESUS algorithm is provided in Sup-

plementary Table 7 and the list of edge confidences is provided in

Supplementary Tables 11 and 12. In order to infer the structure

of signaling networks, we performed n+ o independent regression

problems with n being the number of signals and o being the number

of responses. For each regression problem, one signal or response

was defined as the y vector. We iteratively solved for the relevant

cue and signals that predicted each defined response in the regres-

sion problems. We compiled the vectors of cues across conditions

(assigning 1 for presence of a cue and 0 for its absence in each condi-

tion) and the vectors for the phosphorylation state under each con-

dition to create the input matrix, XXX . Here, all of the time points

were treated as separate conditions to give higher statistical power

to the network inference. The response vector, y, was excluded as

a predictor to avoid self-edges. The rows (explanatory variables)

were mean-centered and unit normalized (z-scored). The VIP met-

ric was calculated for all potential edges. Explanatory variables with

a VIP<1 were eliminated and the VIP scores were recalculated. The

final VIP scores were compiled and sorted in descending order of

magnitude. The only two tuning parameters of the DIONESUS al-

gorithm are the number of principal components and the number of

edges to include in the network analysis. The former parameter was

set to three as inclusion of 3 PCs had the highest average value of

Q2
LOO. The threshold for edge confidence was set to 3.65 by using the

elbow rule.64 Edges with scores above this threshold were included

in the network diagram. As cell viability and phosphorylations were

assayed at separate time points, the inferred edges between phospho-

sites and cell viability were calculated separately using PLS-VIP as

described above. The edges from each regression problem were com-

bined to form the complete network diagram in Figure 4.

Assessment of TIGRESS, GENIE3, the Inferelator, Spear-

man correlation, and DIONESUS

TIGRESS, GENIE3, the Inferelator, and Spearman correlation

inference algorithms were implemented on the GP-DREAM

server43 (http://dream.broadinstitute.org/) using the default param-

eters. DIONESUS was performed using Matlab 2013a. The

tic/toc function was used to calculate computational time. While

all methods including DIONESUS are able to run with parallel pro-

cessing due to the iterative nature of these algorithms, it was not im-

plemented in this study.

Quantification of small-molecule induced viability

Serial dilutions (1:2) of both small molecules and combinations

thereof were dissolved in DMSO, and the dilutions were applied

to each cell line after being synchronized by 12 hr incubation in

serum-free DMEM with high glutamine, sodium pyruvate, 0.5%

penicillin/streptomycin, and 20 g/mL ciprofloxacin. The final con-

centration of DMEM in media was 0.5% for all wells. The impact

of small-molecule treatment on cell viability was quantified 24 hrs

after treatment by staining with Syto-60 in biological triplicate as

described above.61 The data was fit to the following equation using

least squares optimization:

E(D) = E∞ −
E0 +E∞

1+( D
EC50

)H
(9)

where D is the concentration of the small molecule, E is the effect

(cell viability), EC50 is the dose causing half-maximal cell viability

in comparison to media alone, H is the Hill coefficient, and EC∞

is the limit of the effect as the concentration approaches infinity.65

A431 cells were cultured as described above. All other cell lines were

cultured as recommended by ATCC. The cells were synchronized by

incubating in serum-free media for 12 hrs prior to drug application.

Statistical analysis

Fold changes in phosphorylation were calculated by dividing by the

phosphorylation abundance at the -30 min time point. For the visual

illustration in Figure 1, fold changes below 1 were replaced by its

negative inverse and centered to 0 by subtracting 1. For all graphs,

error bars represent the standard error over three technical replicates.
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Fig. 2 Clustering of phosphoproteomic data from the microwestern array reveals a broad-range and highly collinear dataset on which

to inform a predictive model. (A) Cell viability is displayed above the phosphorylation heatmap in a grayscale heatmap. The log10 fold

change in phosphorylation from the time of application of small molecules or media (-30 mins) was quantified and displayed by MWA at 0, 5,

and 15 mins after growth factor stimulation. (B) The log10 fold change of four phosphoprotein signaling metrics with high correlation to cell

viability are marked with a red circle on the heatmap and graphed against the phenotype. The Pearson correlation coefficient is given between

the explanatory variables and the normalized viability (mean ± s.e.). (C) A histogram of the correlation coefficients among the log fold

changes of all phosphoprotein signaling metrics suggests a highly collinear set of explanatory variables.
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Figure 4
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Fig. 4 PLSR with variable reduction by VIP score is an accurate and scalable means of calculating edge confidence for network

reconstruction. (A) Inclusion of three principal components and seven explanatory variables yield a local maximum of model predictive

capacity without overfitting. (B) The optimized observed vs. expected responses (mean ± s.e.) are shown using the optimized parameters.

Green filled circles show the responses for conditions that are trained on the complete data set. Open blue circles show the responses that were

not trained on the given condition. The number of predictors used in each algorithm is given by n. The coefficient of determination (R2) and

the coefficient of prediction using leave-one-out cross-validation (Q2
LOO) are given for the optimized computational model. (C) The seven

significant predictors determined using PLS-VIP are listed with blue arrows for positive β -values and red tees for negative β -values. The VIP

scores are listed as a measure of confidence for a predictor being useful in explaining cell viability. (D) The receiving-operating characteristic

(ROC) curves for DIONESUS and top-performing inference algorithms for the reconstruction of a 100-node in silico network from synthetic

time-course data. Higher accuracy of inference corresponds to a higher Area Under the ROC curve (AUROC). (E) The Precision-Recall (PR)

curves corresponding to the same analyses displayed in part D are shown. A higher Area Under the PR curve (AUPR) corresponds to a more

accurate algorithm. (F) The computational time for each network inference algorithm to reverse engineer an in silico network is displayed as a

function of the number of assayed nodes. All algorithms show a roughly linear relationship for networks greater than 150 nodes. The change

in computational time over the change in the number of assayed nodes over 150 is given by the slope, m. A lower value of m corresponds to a

algorithm that can be more easily scaled to infer larger signaling networks.
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Figure 5
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Fig. 5 The DIONESUS algorithm reveals the network architecture of the cell signaling network in A431 cells. The DIONESUS

algorithm was used to find small molecules and growth factors (cues, as blue rhombi) and phosphosites (signals, as gray or red ovals) that

predict each additional phosphosite and cell viability (the response, as a green rectangle). The confidence in each connection is assessed by

the VIP score and represented by the thickness of the edge. The sign and magnitude of the β -value associated with each connection is

represented by the color of the edge. As cell viability was only quantified at a single time point (24 hrs), the edges pointing to cell viability

were quantified separately for each time point. All edges shown in the figure have a corresponding normalized VIP score greater than 3.65; the

inset graph shows the distribution of edge weights in comparison to the threshold (assigned using the elbow rule). Nodes corresponding to

phosphosites for FGFR, PDGFR, and c-Kit are not shown in this figure for ease of visualization. Signals downstream of the EGF receptor are

shown as red ovals to highlight potential therapeutic targets for EGFR-hyperactive cancers.
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Figure 6
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Fig. 6 Validation with dose-response curves supports inferred edges from DIONESUS algorithm. (A) Select nodes and edges from the

inferred network model show STAT1 as an intermediary between phosphorylated EGFR and cell viability in addition to other significant

contributors to cell phenotype. Small-molecules were chosen from previous reports24,49–52 to enhance or attenuate inferred edges in order to

validate connections in the network model. (B) A431 cells were treated with serial dilutions of each small molecule to calculate the potency

(EC50) and efficacy (Emax). Points on the dose-response curves show the relative viability (mean ± s.e.) at each concentration. (C) In order to

show the relevance of the STAT1-inducer, DADS, in cell lines of varying EGFR expression, dose-response curves were quantified for four

triple negative breast cancer cell lines. DADS had lower efficacy in cells with lower EGFR expression and had no effect at the highest soluble

dosage in the cell line lacking EGFR expression (MDA-MB-453). (D) As a negative control, a serial dilution of the p-AKT inhibitor, CAPE,

was applied to the same panel of cells lines and was shown to be effective in reducing cell viability in all cell lines, but not specific to cells

expressing EGFR.
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