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Insight Box 

We address the technological advances and challenges for investigating complex pathological 

phenomena occurring within the gut.  The intestine can be studied as a complex system with three 

major domains: the intestinal epithelium, the immune system, and the gut flora. Complexity emerges 

from numerous interactions that occur within and between each of these domains. The murine intestine 

is the closest and most applicable mammalian experimental system to study human conditions. 

Innovative, “big data” experimental technologies to interrogate this complex system can be viewed as a 

continuum, from those with genome-wide coverage to those with cellular and spatio-temporal 

resolution. We further discuss data integration techniques for deriving insight from large-scale data, and 

considerations for using mouse models as a platform for systems-level studies of human diseases.   

Page 1 of 50 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



1 

 

Title: Multiscale Analysis of the Murine Intestine for Modeling Human Diseases 

 
 

Authors: Jesse Lyons 
1,2

, Charles A. Herring 
3,4

, Amrita Banerjee 
4,5

, Alan J. Simmons 
4,5

, 

and Ken S. Lau 
3,4,5

 

 

1
 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 

02139, USA  

2  
Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston MA 02115, USA 

3
 Department of Chemical and Physical Biology, Vanderbilt University Medical Center, 

Nashville, TN, 37232, USA 

4 
Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA  

5 
Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 

Nashville, TN, 37232, USA  

 

 

Corresponding author:   Ken S. Lau 

Epithelial Biology Center 

Vanderbilt University Medical Center 

2213 Garland Ave 

10475 MRB IV 

Nashville, TN  37232-0441  

Email: ken.s.lau@vanderbilt.edu 

 

  

Page 2 of 50Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



2 

 

Abstract 

When functioning properly, the intestine is one of the key interfaces between the human 

body and its environment. It is responsible for extracting nutrients from our food and excreting 

our waste products. It provides an environment for a host of healthful microbes and serves as a 

first defense against pathogenic ones. These processes require tight homeostatic controls, which 

are provided by the interactions of a complex mix of epithelial, stromal, neural and immune 

cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, 

genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, 

inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in 

understanding how this important organ functions in health and disease using everything from 

cell culture systems to animal models to human tissue samples. This has resulted in better 

therapies for all of these diseases, but there is still significant room for improvement. In the 

United States alone, 14,000 people per year die of C. difficile, up to 1.6 million people suffer 

from IBD, and more than 50,000 people die every year from colon cancer. Because these and 

other intestinal diseases arise from complex interactions between the different components of the 

gut ecosystem, we propose that systems approaches that address this complexity in an integrative 

manner may eventually lead to improved therapeutics that deliver lasting cures. This review will 

discuss the use of systems biology for studying intestinal diseases in vivo with particular 

emphasis on mouse models. Additionally, it will focus on established experimental techniques 

that have been used to drive this systems-level analysis, and emerging techniques that will push 

this field forward in the future.  
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1. Introduction 

1.1 Why use systems biology to study intestinal health and disease? 

Evolution, due to its non-directed, non-design-driven nature, has generated substantial 

complexity in biological systems. Even the fundamental unit of biology, that of a cell, consists of 

many components that interact with each other to form dynamic complex networks
1
. Additional 

types of complexity emerge at the organ level in vivo. In the intestine, the in vivo environment is 

characterized by interactions between epithelial, immune, muscle, neural and stromal cells, as 

well as interactions between these cell types and extracellular matrix components, secreted 

factors, and micro-organisms (Figure 1).  The reductionist view of biology maintains that the 

functional output of a single component or pathway dictates phenotypic behaviors. This view is 

drawn from in vitro cell culture experiments where simplicity is imposed by controlling 

individual components one at a time. However, because of the interconnectivity between 

components of in vivo biological systems, the effects of single perturbations are propagated 

throughout interaction networks
2
. Hence, macroscopic phenotypic outcomes, like those involved 

in diseases, can be viewed as network state effects versus single pathway effects.  

Complexity of the intestinal system is best demonstrated by the interaction between the 

multitudes of bacterial species in the gut. Using a conservative estimate of ~500-1000 species in 

the gut
3
 with ~5000 genes per species, the combinatorial potential of interaction is enormous. 

Combinatorial complexity is a feature of evolution for maintaining the stability of biological 

processes in the face of constant perturbations – a property known as robustness
4, 5

. Maintaining 

a homeostatic network of interactions within bacterial communities prevents colonization of the 

gut by harmful foreign pathogens via mechanisms of competitive exclusion, stimulation of host 

immunity, and direct antagonism
6
. These mechanisms are difficult to appreciate without 
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considering the underlying combinatorial complexity at the systems-level, and thus, remain far 

from full characterization.    

Systems biology is an approach to studying biological and biomedical problems from an 

integrative perspective. There are three main ways in which a systems approach can be useful. 

First, large scale data collection and network level analysis are ideally suited for screening for 

molecules and pathways that contribute to a given phenotype or can be targeted to produce a 

desired outcome. Second, these networks can be viewed as phenotypes in and of themselves and 

can be used prognostically or diagnostically to determine the effects of an intervention on a 

pathway of interest. Third, network-level analyses facilitate the identification of unexpected 

effects resulting from a perturbation. This may be extremely useful in identifying pathways to 

drug resistance, and in identifying secondary targets that will subvert the resistance mechanisms.  

 An ideal outcome of a systems-level investigation would consist of a model that 

represents all of the species in a system and their interactions. Furthermore, it would describe 

how particular network states relate to given outcomes. By knowing how the pieces of the 

network relate to one another and how those relationships relate to particular outcomes, the 

network could be engineered in order to produce a desired outcome. This could be used for 

deriving combinations of therapies that target not just proteins or pathways, but entire network 

states, and by extension, phenotypic outcomes. While this represents the ideal outcome of 

systems-level analysis, in actual practice, researchers are still building the experimental and 

analytical tools that would enable the production of complete models. 

The barriers to a true systems-level understanding are many. The first barrier is technical: 

even with advances in data collection, it is impossible to measure all of the components of a 

system that may contribute to a given outcome. RNA-based techniques bring us closest, with 
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typical RNAseq platforms capable of measuring hundreds of thousands of transcripts down to 

the level of splice variants
7
.  Mass spectrometry has vastly accelerated our ability to interrogate 

protein abundance
8, 9

, however there are many important low-abundance or poor-flying proteins 

that evade detection by the current state-of-the-art techniques. Fluorescence imaging facilitates 

temporal interrogation of signaling, but only a very limited number of analytes can be assessed at 

a time. The second barrier to a full systems understanding is analytical: as we increase the 

dimensionality of our measurement space, we must adapt our analytical frameworks to deal with 

this increased complexity. To be truly useful in generating actionable hypotheses, these 

analytical frameworks must not only be comprehensive, but predictive as well. Unfortunately, as 

more species are included in a network, it becomes increasingly difficult to predictively model 

their mechanistic interactions. From current sampling of mathematical models constructed from 

biological data (Figure 2), a general tradeoff can be observed between the mechanistic resolution 

of a model and the number of experimental conditions required to constraint each model 

parameter. To reduce the degrees of freedom and draw mechanistic conclusions from high 

dimensional data, the number of experimental conditions must increase in order to differentiate 

between correlative and causative interactions. 

This is one of the main reasons that systems biology has been carried out primarily in 

vitro. Practically speaking, it is cheaper, faster and easier to get consistent results with large 

numbers of experimental perturbations using cell culture models than it is by using in vivo 

models or by testing human specimens. For these reasons, in vitro systems biology is extremely 

powerful for developing the experimental and analytical tools necessary for systems analysis. 

Furthermore, the large-scale connectivity networks that have been developed form the backbone 

of mechanistic systems models used for in vivo studies. However, while in vitro systems biology 
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is extremely useful for understanding intra-cellular signaling networks, it is very difficult to 

mimic the full range of inter-cellular interactions that ultimately control outcome in living 

tissues. Even improved culture methods that involve multiple cell types and three-dimensional 

structure often fail to fully capture the behavior of a living tissue or organ. Lau et al. provided a 

powerful example of unexpected inter-cellular interactions driving tissue behavior when they 

found that a lack of adaptive immune cells increased apoptosis in response to TNF-α in the 

intestinal epithelium
10

. Ultimately, this was the result of a compensatory proinflammatory 

environment (as underscored by IFN-γ) induced by other epithelial and immune cell subtypes in 

the tissue. While IFN-γ and TNF-α have been shown to cooperate to induce apoptosis in vitro, 

the increased IFN-γ and the mechanisms that induce its production would not have been 

predicted by current state-of-the art cell culture models. While this paper speaks to the 

importance of using systems approaches to identify unexpected and novel tissue responses, part 

of the reason the modeling was able to produce actionable hypotheses was that the number of 

analytes (cytokines, immune cells, epithelial response) was relatively few for a systems study. 

Identifying the key components of a network and their mechanistic interactions becomes 

increasingly difficult as the number of analytes increases. Still, this paper provides a valuable 

example of the importance using in vivo models when investigating tissue-level behavior using a 

systems approach. 

In the same way that we think about molecular context in a cellular system, we must 

think about the tissue context when we try to expand to an organ or organismal system. While 

the outcome of activating a given pathway may be modified by the activities of other pathways, 

cell contact, or nutrients in an in vitro setting, an in vivo system is affected by these plus many 

other factors. Spatial and biophysical constraints, the presence of other cell types, access to 
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oxygen, and the presence of microbes are just a few of the additional factors that may drive 

cellular, organ and organismal behavior. This complexity provides one of the strongest 

arguments for the need for systems approaches in studying intestinal diseases, however, it is also 

one of the chief obstacles to creating meaningful, actionable models. Even comparatively simple 

in vitro systems cannot be mechanistically modeled at the scale of many thousands of molecular 

species. This difficulty is further compounded by the complexity of the in vivo tissue 

environment. While the ultimate goal of producing computable systems-level models at the 

tissue and organismal scale may be out of reach with current measurement and analytic 

techniques, systems-level correlative studies have already been powerful tools for hypothesis 

generation and have enhanced our knowledge of human gastrointestinal function and disease
10, 

11
. In this review we will discuss some of the ways that even incomplete models have provided 

key insights into intestinal disease, with particular emphasis on the measurement techniques that 

generate systems scale data, and the mouse as a model system, which have been an invaluable 

tool for generating hypotheses using systems-level measurement and analysis. 

1.2 Mouse as a model system for in vivo systems analysis 

 Every system used to understand human health and disease has its advantages and 

disadvantages. Though human subjects certainly provide the best reflection of human 

physiology, patient tissue is not always readily available or sufficiently robust for experimental 

purposes. On the other end of the spectrum, cell lines are far more readily available and provide 

some of the same network architecture observed in human beings. However, since they lack 

many of the critical features of physiological space, they are not always an ideal platform for 

simulating human disease. Model organisms, such as rodents or zebrafish, have long been used 
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to model human disease
12

. These animal models have provided the means for numerous 

breakthroughs yet there can be significant drawbacks in their use that should be kept in mind.  

 First, we want to touch upon the use of humans as a model system for studying intestinal 

biology. A major challenge for performing human studies is the deficiency of well-defined 

experimental controls. The natural genetic variation present in human populations adds 

tremendous confounding variation to biological phenotypes. Specifically in regards to the gut, 

environmental factors such as dietary influences on the microbiome can further confound 

biological variation
13

. Human social behavior, such as mental state and smoking habits, provides 

additional sources of variation and can also lead to non-compliance during intervention studies
14, 

15
. Of course, the amount of variation that can be tolerated within human studies depends upon 

the phenotype being examined.  A well-controlled study by Wu et al. examined the change in 

microbiome when human subjects were fed restricted diets while retained in a hospital setting for 

10 days. Although changes in microbial species were examined, these changes were far 

outweighed by inter-individual variation, suggesting the genetics and environmental histories of 

the subjects play much more significant roles than the intervention
16

. Evidence from twin studies 

suggests that there is an important component of heritability in Crohn’s disease
17

. Yet, similar 

concordance is not present for either severity or progression of disease
17, 18

. Furthermore, 

monozygotic twins display much less concordance in ulcerative colitis
19

. While genetic variation 

can often be a confounding factor in studying human disease directly, approaches such as 

Genome Wide Association Studies (GWAS) leverage this natural variation in order to identify 

rare and complexly interacting genes and genomic regions associated with a given phenotype. 

For example, IBD GWAS have been fruitful in identifying 163 disease-associated loci
20, 21

. 

However due to many non-genetic variations within human populations, larger and larger sample 
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sizes (some numbering in tens of thousands of patients) are required to find rare or interacting 

disease alleles
22

. Furthermore, although these analyses identify regions of the genome that are 

correlated with disease, follow up work, often using cell and animal models, is required in order 

to confirm a given gene as the driver of the genetic association. 

At present, rodents and zebrafish are the prevailing model organisms utilized in studying 

gastrointestinal disorders. Various features of the zebrafish have made them a desirable 

candidate for modeling GI illnesses such as CD and UC
23, 24

. For instance, organism 

transparency during the larval stage lends itself to sophisticated imaging techniques
25

. 

Additionally, zebrafish are extremely fecund and long-term maintenance is relatively 

inexpensive. Their gastrointestinal tract is very similar to the human small and large intestine and 

the adult zebrafish possess an innate and adaptive immune system with many features 

resembling its human counterpart
26

. The high degree of gene and protein homology may lead to 

the use of zebrafish as an important tool for the study of IBD susceptibility genes. This platform 

could also prove beneficial for high-throughput screening of compounds suitable for IBD 

treatment
23

. An important caveat, however, is that, while the immune system is fully developed 

by adulthood, at this stage in their life cycle, the organism is no longer transparent. This greatly 

minimizes one of the aforementioned benefits of this model organism, which is the ease of real-

time in vivo imaging. Moreover, the current protocols for modeling IBD in zebrafish are mostly 

limited to the use of chemicals known as “haptens,” such as TNBS and oxazolone
27

. Though 

chemically inducing IBD is a laborious process, zebrafish larvae subjected to these treatments 

will develop many of the same histological characteristics of IBD observed in mice and 

humans
25

. These include neutrophil infiltration, altered intestinal lipid metabolism, and goblet 

cell hypertrophy. However, inflammatory response via haptens is little-understood since, at this 
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stage, the adaptive immune system is not fully functional
12

. More critically, these haptens do not 

cause epithelial cell damage, important hallmarks of human UC and CD
25, 27

. Additionally, the 

experimental tools such as surface protein antibodies and associated reagents are less developed 

for zebrafish than for mice or humans.  

Non-human primates, such as the rhesus macaque and the common marmoset, are 

immunologically and biologically closer to humans, certainly more so than rodents or zebrafish. 

The rhesus macaque and the cotton-top tamarin, a marmoset native to Colombia, are both known 

to develop spontaneous colitis when housed in captivity and display an increased incidence of 

chronic diarrhea
12, 28

. Primate models have been especially useful in the evaluation of gene 

therapy techniques and other intervention methods for IBD. In addition, the use of primate 

models has provided insight on the effect of sexual dimorphism in the development of IBD
29

. 

However, these organisms have many obvious drawbacks to their use, chiefly the increased 

expense and effort related to their care. Similarly most work in primate models has been 

primarily observational and limited to studying the pathology of spontaneous incidence of 

chronic inflammation. The dearth of genetic tools is a critical drawback of this model organism.  

Ultimately, given trade-offs in cost versus homology, the mouse still represents the best 

model system for addressing questions of intestinal disorder via systems approaches. Mouse 

models are relatively inexpensive, have a strong experimental tool kit, and reflect many aspects 

of human immune and gastrointestinal physiology. Additionally, numerous genetic and chemical 

models have been developed to study various aspects of gut health and disease, including stem 

cell function
30

, inflammation
31

, and cancer
32

 (Table 1). In the IBD field, for instance, there are 

five main classes of models available for the study of GI-related inflammation
12

. These include 

chemical induction models, cell transfer models, spontaneous models, congenital models, and 
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genetically engineered models. Certainly no other organism has an equally well-developed 

assortment of IBD and GI tumor models.  

However, it is important to bear in mind that researchers must always exercise caution 

when extrapolating from the mouse system to that of the human. There are numerous examples 

of mouse models failing to accurately reflect human biochemistry and disease
33, 34

. For instance, 

the development of intervention methods for IBD have often yielded conflicting results in 

humans as opposed to mice. Experimental therapies that have proven efficacious in rodents have 

not always proven equally effective in clinical trials using human patients
12

. Additionally, 

significant evidence has implicated the importance of strain differences and diet modulation in 

murine research
35-39

. Modeling chronic human diseases may also be limited by the relatively 

short lifespan of mice. Specifically, late stage metastasis in colon cancer has been difficult to 

model with the mouse, perhaps due to insufficient time to accumulate mutations given similar 

mutation and cell division rates in the mouse as human
40

. With mice or any other model system, 

it is imperative to perform complementary studies in humans to confirm critical findings. We 

believe that systems approaches will be invaluable in this regard since they provide a more 

global outlook on a given health or disease state, enabling a more thorough comparison of how a 

mouse model may succeed or fail to reflect the human condition.  

 Below we will describe some of the powerful ways in which systems biology has been 

applied to mouse models of human intestinal biology. In particular, we will focus on the 

experimental techniques that have fueled this growing field and will propel it forward in the 

future (Table 2). We believe that this growing field, especially when combined with in vitro and 

human data, has tremendous promise for improving our understanding of intestinal diseases 

ranging from infection to inflammation to cancer. This enhanced understanding should provide 
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insight into novel methods of treating diseases at the whole organ level, hopefully leading to 

better therapeutic outcomes for human patients. 

2. Tools for generating network-scale datasets from mouse tissues  

2.1 RNA Tools 

Quantitative, network-scale studies of mammalian tissues have been ongoing since the 

early 2000s via the use of gene expression arrays 
41

. Of all the measurement techniques for 

interrogating biological systems, nucleic acid-based platforms including gene expression array 

and RNAseq provide the most comprehensive sampling. However, because gene expression is 

one level removed from the cellular machinery - the proteins and their modifications - that 

control function, signatures derived from these studies are correlative but do not necessarily 

reflect the causative factors that affect phenotypes. As such, these techniques have been most 

useful for classifying samples and for candidate gene identification. In the intestine for example, 

genes involved in neoplasia have been identified by comparing expressed genes between 

ApcMin tumors and adjacent normal tissues
42

. However, to best leverage the large scale of RNA-

based measurements, computational tools for inferring signaling activity based on these profiles 

must be used. Using computational algorithms such as gene ontology enrichment
43, 44

 and Gene 

Set Enrichment (GSEA)
45

, it is possible to identify not only the individual genes that are 

shared/differ, but also to infer biological processes and pathways that contribute to different 

phenotypic outcomes between samples
46

. These techniques can be used for generating biological 

insights from multiple expression profile comparisons, for example, for distinguishing shared or 

divergent gene modules between mouse models and the human diseases they represent. This is 

important both as a basic scientific question and in choosing the best mouse to represent different 

aspects of human physiology or disease. 
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Gene expression analysis, when applied to small amounts of tissue, has the potential to 

expand current understanding of important biological phenomena. For instance, this technique 

could be of particular value in identifying and characterizing rare but significant cell populations, 

such as stem cells or circulating tumor cells
47, 48

. However, validation of single cell mRNA 

sequencing has not been without its challenges. Currently, many mRNA-sequencing protocols 

require anywhere from 1ng to 10ug of sample RNA
47

. Acquiring RNA quantities on the nano- or 

microgram level is often unfeasible for single-cell transcriptomic analysis
49

. As sufficient RNA 

cannot be directly obtained, a variety of protocols have been developed to sufficiently amplify 

the RNA pool in order to carry out next generation sequencing. mRNA transcripts undergo 

reverse transcription, after which double-stranded cDNA is amplified and fragmented for 

sequence library generation
50

. RNA amplification methods, however, vary in their workflow and 

can introduce variation in the downstream sequencing analysis
47

. In order to identify gene 

expression at single cell resolution, amplification protocols and sequencing approaches must be 

capable of accurately recapitulating the transcriptomic profile of individual cells. However, 

various factors should be taken into consideration when interpreting data from single cell 

sequence libraries. For instance, stochastic loss of low abundant transcripts is common when 

transcribing or amplifying cDNA
51

. Insufficient amplification and subsequent transcript 

fragmentation can impede read coverage of rare transcripts. This ultimately results in enrichment 

of high abundant transcripts and skewing of the generated sequence library. Moreover, 

amplification also tends to induce a bias by preferentially enriching towards the 3’end of 

transcripts. Generated fragments do not uniformly sample across the whole length of the 

transcript
50

. As a result, having adequate read coverage for long transcripts becomes increasingly 
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challenging as the levels of input RNA decrease. The 3’end bias also impedes the detection of 

alternatively spliced isoforms of RNA transcripts.  

 While the development of RNA amplification methods has brought the field closer to 

accurate representation of transcriptomics of single cells, there is still significant room for 

improvement. Smart-seq, for instance, has demonstrated capacity to overcome some common 

limitations of RNA amplification. Smart-Seq works by converting poly(A)+ RNA to full-length 

cDNA with the use of oligo(dT) primers and SMART template switching technology
49

. PCR 

amplification generates sufficient cDNA to then construct Illumina-based sequence libraries. 

Application of this technique to early mouse embryos has revealed the presence of random 

monoallelic gene expression in embryonic and mature mammalian cells
51

. Moreover, in 

comparison to various other mRNA amplification protocols adapted for single cells, Smart-Seq 

technology provides improved read coverage and enables quantitative assessment of single cell 
 

transcriptomes
49

. This improved read coverage augments identification and assessment of 

alternatively spliced exons and mRNA isoforms. However, there is still a sensitivity threshold 

where Smart-Seq fails. For instance, this platform possesses limited ability to accurately and 

efficiently read transcripts longer than 4 Kb, which can minimize its utility in certain contexts
50

. 

Furthermore, Smart-seq still demonstrates significant PCR biases during its amplification steps. 

Highly abundant transcripts are preferentially enriched while rarer transcripts are lost
50, 51

. 

Optimization of this and other amplification techniques remains vital for better characterization 

of single cell transcriptomes.  

2.2 Protein Tools 

While RNA-based measurement techniques are extremely powerful for generating global 

patterns of expression, most of the cellular work is carried out by proteins. Fortunately, the 
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number of tools becoming available to assess protein levels and modification at a large scale in 

tissues are increasing rapidly
52

. Candidate approaches such as reverse phase protein lysate 

arrays
53

 and microwestern arrays
54

 have all been applied to study cell culture phenomena at 

various multivariate scales. Furthermore, approaches such as multiplexed bead-based ELISA 

assays have been used to study acute and chronic inflammation in the mouse as well as culture 

models
11, 55, 56

. These technologies are candidate-based such that antibody probes can be selected 

to generate high confidence data, even for low abundance or post-translationally modified 

proteins. However, because of their candidate-based nature, the investigator must have some 

prior knowledge on the important analytes to examine for each study. 

Moving towards higher coverage, advances in mass spectrometry have enabled 

researchers to produce a more quantitative global understanding of protein abundance. The two 

most accurate techniques for measuring relative protein abundances between samples are SILAC 

and isobaric tagging (iTraq, TMT). Both techniques work by differentially labeling proteins 

between samples with heavy metal isotopes and then analyzing all samples in one run. The main 

differences between the two techniques are the number of samples and the labeling procedure. 

For SILAC, proteins are tagged by providing isotopically labeled supplements live, such that the 

label is incorporated into proteins during metabolism. Because of the limited number of isotopes 

available for this type of labeling, only a few samples can be directly compared. Isobaric labeling 

is performed after removal of tissue, and because there are more isobaric tags available, can be 

performed with up to 8 different samples in one run
57

. SILAC has been applied to mouse models 

by feeding mice with a diet modified by isotope-labeled lysines. Using mass spectrometry, 

proteins that are differentially phosphorylated can be identified and quantified between different 

mice. This approach been used for studying the signaling network alterations that occur during 

Page 16 of 50Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



16 

 

the progression of squamous cell carcinoma, using the 7,12-Dimethylbenz(a)anthracene  

(DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA) mouse model
58

. Isobaric tagging 

methods have also been applied to mouse models, and have been used to identify novel 

biomarkers of colorectal cancer from ApcMin mice
59

.  

Although mass spectrometry techniques allow for unbiased sampling of the proteome, 

this technique still carries certain limitations. For both SILAC and TMT labeling, only a few 

samples can be analyzed at a time. Without a sufficient amount of data points to constrain the 

large number parameters measured, it is not possible to build sophisticated models that depict 

biological complexity.  This situation is similar to early microarray analyses performed with few 

samples, but many measured genes. This problem cannot be solved by simply performing 

multiple runs because the coverage of proteins detected by mass spectrometry can vary from run 

to run. At last, mass spectrometry tends to favor highly abundant proteins, while low abundant, 

but important proteins, are not detected
60

.  

3. Moving from bulk measurements to single cells 

3.1 Flow cytometry based-approaches 

Flow cytometry has been a powerful tool for moving from bulk measurements down to 

subpopulations or even single cells. This technique relies on fluidic systems to pass cells one at a 

time past lasers which can detect cell size and granularity as well as fluorescence derived from 

dyes or fluorophore conjugated antibodies. These properties allow flow cytometry to be used in 

one of 3 ways: (1) cell type identification and counting, (2) sorting cell mixtures into 

homogeneous populations or single cells for collection and downstream analyses, and (3) direct 

quantification of proteins in individual cells. The field of immunology has been built upon using 

flow cytometry to identify and enumerate specific immune cell subsets using cell type specific 
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markers (1). In the intestine, flow cytometry has been heavily used for profiling immune cells in 

the lamina propria. These include CD4+ helper, CD8+ cytotoxic T cells in response to food 

antigens in the gut
61

, Foxp3+ T regulatory cells induced by microbiota
62, 63

, dendritic cell 

interaction with the intestinal epithelium
64

, and various innate lymphoid cell subsets interactions 

with the microbiot 
65-67

, macrophages and Tregs
68

. For intestinal epithelial cells, flow cytometry 

has mostly been utilized for sorting and collecting epithelial stem cell populations using surface 

markers such as CD24 and CD44 (2)
69

. Sorted intestinal cell populations can then be further 

analyzed, for example, by qPCR
70

. Alternatively, using multiplexed flow cytometry, protein 

abundances can be determined within those populations directly (3). For example, tumor 

initiating potential of colorectal cancer cell subpopulations can be determined by the levels of a 

panel of cancer stem cell surface markers
71

. Although the number of analytes has been limited by 

the number of unique fluorochromes and their spectral overlaps, the recent development of mass 

cytometry or Cytometry Time-of-Flight (CyTOF) has enabled the number of markers analyzed to 

increase several fold. This growing technology uses heavy metal-labelled reagents in lieu of 

fluorescently labelled antibodies. Because heavy metals have minimal mass overlap, up to 100 

protein analytes can be identified and quantified in single cells
72

.  Another method that 

overcomes fluorescence spectral overlap is DNA conjugation coupled to Nanostring barcode 

detection
73

, which has been used to detect over 90 protein analytes in fine needle aspirates
74

. 

These highly multiplexable technologies enable high resolution phenotypic profiling of 

individual cells, which can lead to significant biological insight into how multiple cell types 

contribute to a tissue phenotype at a systems-level. Advantages of flow cytometry-based 

approaches include whole cell quantification (without sectioning cells into partial cell fragments 

as in in situ approaches), and the thorough sampling of cells from tissues. While these techniques 
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can provide high-dimensional information at the single-cell level, it should be noted that, once 

the tissue is in single cell suspension, all spatial information is lost. 

3.2 In Situ Microscopy Approaches 

To maintain spatial information for single cell studies, microscopy-based approaches to 

quantify protein and nucleic acid analytes at single cell resolution are constantly being improved. 

Conventional and spectral deconvolution fluorescent microscopy, like flow cytometry, is limited 

by spectral overlap for accurate quantification. One strategy to enable high multiplexity with 

immunofluorescent microscopy is dye/reagent cycling. One example of this approach is the GE 

MultiOmyx
TM

 technology, which utilizes chemical-based photo-deactivation after every round of 

imaging to allow multiple antibodies conjugated to the same set of fluorochromes to be used in 

iterative cycles of staining. Using algorithmic software processing routines that register cells 

from different staining rounds and segment individual cells by subcellular markers, MultiOmyx 

has been used to quantify in excess of 60 different protein analytes from single cells in formalin-

fixed paraffin embedded tissue sections
75, 76

. Analogous to the development of CyTOF, the use 

of heavy metal-labelled reagents in conjunction with mass spectrometry-based imaging can also 

enable high multiplexity
77, 78

. A recent emerging imaging technology is to leverage tissue 

clearing strategies and biophysical matrices to preserve the 3-dimensional architecture of a 

cleared, transparent tissue for 3-D imaging (CLARITY)
79, 80

. Future developments of these 

promising technologies for robust multiplex applications will further our understanding of spatial 

relationships and communication mechanisms between individual cells in tissue contexts. 

Imaging gene expression has been made possible by RNA fluorescence in situ 

hybridization (FISH).  RNA-FISH has been used for visualizing the expression of stem cell 

genes within in the intestinal epithelium in native tissue context at single-cell resolution
81

. 
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Similar to protein immunofluorescence, RNA-FISH is also limited by the spectral properties of 

fluorochomes.  To enable high multiplexity, George Church’s group has developed a rolling 

circle-based RNAseq method (fluorescent in situ RNA sequencing FISSEQ), where 

amplification of the cDNA sequence as tandem repeats allows for multiple rounds of stripping 

and re-hybridization of probes with the same set of fluorochromes
82

. Likewise, Long Cai’s group 

has developed RNA in situ hybridization techniques that either use combinatorial fluorescence
83

 

or sequential hybridization
84

 to generate barcodes and enable multiplex quantification of gene 

expression via imaging.  

While in situ imaging approaches maintain spatial resolution, sophisticated and powerful 

imaging processing algorithms are required for segmenting individual cells of analysis. Because 

each type of tissue has different cell morphologies, these algorithms have to be tailored made. 

Furthermore, the accuracy of quantification is reduced since sectioned cell fragments are 

analyzed; it is very difficult to control how much of each cell is sectioned during the tissue 

preparation process. This problem is further compounded by the sampling of a localized 

population of cells via tissue sectioning, thus, important details of heterogeneity may be missing 

unless serial sectioning of the whole tissue is performed. Lastly, both flow cytometry and in situ 

techniques are endpoint assays, meaning that one cannot follow individual cells over time. This 

limitation hampers dynamic analysis of single cells because one cannot directly link early events 

to later phenomena. 

3.3 Intravital Imaging  

At present, the only way to incorporate both spatial and temporal dynamics at the single 

cell level is via intravital imaging. Advances in imaging modalities such as two photon 

microscopy allow researchers to track populations of cells in vivo at depths of up to 1.6mm
85

. 
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This can be used to track cell migration in vivo in real time and can be used to construct detailed 

three dimensional images of tissues with higher clarity than techniques such as confocal 

microscopy. Another approach for intravital imaging is confocal endoscopy. For this procedure, 

a confocal microscope is mounted directly to an endoscope, which can be used to fluorescently 

image the colon
86, 87

. Coupled with emerging varieties of live-cell biosensors that measure, for 

example, Erk activation
88

 or cell proliferation
89, 90

, intravital imaging may be used for identifying 

and quantifying cell types in the mucosa of living, sedated animals. Intravital imaging has been 

used in the intestine to follow single stem cells through an abdominal window in combination 

with a confetti reporter driven by the stem cell marker Lgr5
91

. This work provides strong 

evidence for a model called neutral competition. In this model, stem cells divide symmetrically 

but stochastically compete for space within the stem cell niche, such that differentiation and 

renewal occurs at equal probability to maintain homeostasis. This result confirms previous 

mathematical modeling of stem cell neutral competition
92

, where individual outcomes of cell fate 

follow a stochastic process but stem cell population dynamics provide deterministic outcomes. 

While studies such as these show that intravital imaging can be extremely powerful in revealing 

spatiotemporal dynamics within living tissues, these approaches are not yet amenable to 

network-level studies because they cannot detect more than a handful of colors/analytes at a 

given time. 

4. Microbiome and Metagenomics 

 In recent years, the improved cost and efficiency of next-generation sequencing platforms 

has greatly facilitated the study of the intestinal microbiome. This has vastly improved our 

ability to not only screen for and identify novel pathogens involved in gut diseases
93

, but to study 

microbial communities at the population level as well. Due to the relative ease and lack of 

Page 21 of 50 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



21 

 

invasiveness of sample collection, compared to other systems approaches, microbiome studies 

are perhaps most amenable to human studies. Changes in intestinal microbiome have been 

associated with everything from obesity
94, 95

, to gestational diabetes
96

, to schizophrenia
97

 in 

human subjects. Generally, these effects are correlated with population-level changes in 

microbial population. The use of mice may help in identifying which segments of these 

pathogenic communities are directly causative of disease and the mechanisms by which they 

wield their effects. One of the key methods by which this can be accomplished is through the use 

of gnotobiotic mice with humanized microbiomes
98, 99

. Humanized mice are produced by 

maintaining recipient animals in germ-free conditions followed by transplant with human fecal 

innoculates. Through this method, population level structure of the microbiome is maintained, 

although there may be changes at the species or operational taxonomic unit (OTU) level
98

. These 

mice have been used to assess the microbiome’s effects on traits such as obesity and 

susceptibility to infection by pathogenic bacteria such as Salmonella
100

. It should also be noted 

that this same study indicates that the mouse immune system does not mature as fully when it 

develops in the presence of a humanized microbiome. Furthermore, the methods to correctly 

identify bacteria at the species lever are still in development and shotgun approaches can both 

over-estimate species diversity
101, 102

 and miss rare species that are present within samples
103

. 

While these mice can be very useful as hypothesis generators, as with all mouse models of 

human disease, results must be confirmed in human subjects before drawing any firm 

conclusions. 

 In addition to understanding the role of intestinal microbes in disease, there has been a 

great deal of interest in how the microbiome can be used to improve health. Intestinal microbiota 

are known to have important nutritional consequences, including vitamin synthesis and 
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fermentation of complex dietary carbohydrates. In the colonic lumen, clostridia and 

bifidobacteria ferment dietary fiber into short chain fatty acids (SCFAs) such as butyrate, 

propionate, and acetate
104

. Butyrate is a crucial component in the large intestine and contributes 

to colonocyte proliferation, differentiation, and maturation
105

. Additionally, propionate is known 

to induce Foxp3
+
 IL-10 producing T-regulatory cells via the Ffar2 receptor

105
. Luminal levels of 

SCFAs play an important role in immune modulation, enteric neuron function
106

, and epithelial 

cell maintenance. On a systems scale, metabolomics techniques such as correlative NMR have 

been used to profile the metabolic capability of the microbiome and its associations with 

pathologies such as infection 
107

. The metabolic potential of the microbiome can also be inferred 

simply from metabolic genes expressed, using meta-genomic analyses such as PICRUSt
107-109

. 

However, clinical attempts to replace certain gut metabolites exogenously have largely been 

inconclusive, mainly to the vast combinatorial complexity in the microbial metabolome. As with 

other forms of high-dimensional measurement such as RNAseq and microarray, the techniques 

used to identify microbial molecular species have outpaced the computational and statistical 

tools needed to fully model and understand the interactions present in the system. Improved 

computational tools will be necessary if the field is to move from higher-level understanding of 

populations of bacteria to mechanistic modeling of the gene and metabolic interactions that 

define the microbial compartment.  

  Another approach that has not required gene-level understanding is replacement of the 

whole microbiome of a diseased individual with a healthy microbiome through fecal transplant. 

This approach has been extremely effective, particularly for treating infections like Clostridium 

difficile
110-112

. Patients who have shown poor response to conventional antibiotics and exhibit 

relapsing infection, have shown profound responses to fecal transplant from healthy donors. This 
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technique has already been implemented very successfully with up to 90% cure rates
112-114

, and 

studies in humanized mice may enable researchers to gain insight into the populations of bacteria 

that produce the best patient outcomes. Additionally, a recent paper from Eric Pamer’s group has 

shown how mouse models and meta-genomics can be used to identify single species, and 

particular metabolic functions of that species, that can enhance resistance to C. difficile 

infection
115

. In this paper, the authors used a series of antibiotic perturbations to alter the 

microbiome of mice prior to challenge with C. difficile. By correlating the resulting microbiomes 

with susceptibility to infection and comparing that with patient data, the authors identified a 

different species of Clostridium with an important role in bile acid metabolism that provided 

resistance to infection. Approaches such as this may eventually enable researchers and clinicians 

to identify the key components of the microbiome that provide resistance to infection, and to 

begin standardizing this very powerful therapeutic tool. 

5. Systems Biology in Mouse Models 

5.1 Advantages of Genetic Perturbations 

 One of the reasons that the mouse is such a powerful experimental tool is its genetic 

tractability and the large numbers of genetic models of human diseases that are already available 

to researchers (Table 1). Often based on human genetic data, mouse models have been generated 

that mimic features of inflammation and intestinal cancers. Intestinal-specific expression or 

knockout can be controlled by techniques such as the Cre-Lox recombination system
116

. 

Additionally, genes can be targeted by techniques such as RNA interference
117, 118

 and CRISPR-

CAS
119

. Using the experimental methods described above, these models can be used to generate 

systems-level understanding of the mechanisms of action of genetic lesions associated with 

human pathologies, or to identify unknown genetic events that may drive these diseases. 
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 Alongside traditional transgenic approaches, an emerging discipline known as systems 

genetics may provide additional clues as to the genetic origins of intestinal function.  This 

approach generates variation in mouse models for systems-level studies by harnessing the natural 

variation between different strains of mice
120

. Instead of strictly looking at genes and traits, for 

example, by using haplotype based computational genetic mapping
121

, one can also leverage the 

natural variation in signaling sensitivity between different mouse strains to study network 

behaviors. Genetic variation between mouse strains can be used in lieu of targeted perturbations 

for systems-level studies.  These variations can then be mapped back to pathways if genomic 

information is available. The Collaborative Cross, an effort to generate additional genomically 

characterized inbred lines from eight commonly used but diverse inbred mouse strains, will be a 

valuable resource in the future for studying mice with a spectrum of variation that can be 

leveraged for systems-level studies
122

. 

5.2 Computational modeling of in vivo datasets  

Many theoretical approaches have been developed over the years to model biological 

behaviors at multiple scales. Much effort has been dedicated to deriving insights from systems-

level data generated from cell culture. However, in vivo systems are poor candidates for 

traditional approaches that assume changes in the network state occur through predictable 

continuous pathways in predetermined network topologies due to their inherent heterogeneity.  

Probabilistic approaches based upon statistics are more appropriate for analyzing data that are 

generated from in vivo organisms by experimental systems biology approaches. Here, we give a 

brief introduction to some of the modeling approaches used for in vivo systems data sets. For a 

more thorough review, see Wood et al. in this issue. 
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Dimension reduction statistical approaches – An elegant approach to interpret large in 

vivo datasets is to classify/cluster phenotypic outcomes by measured components (protein/gene 

expression states, etc.) in multivariate space. A commonly used technique is principal component 

analysis (PCA), which uses a mathematical algorithm to reduce the dimensionality of the data 

while maintaining most of the variation in the dataset
123

 (Figure 3A).  PCA introduces new 

variables called principal components that are linear combinations of the original variables. 

Principal components can be assessed by the amount of information (variance) captured, and 

thus, plotting a few principal components with the maximal information content allows for the 

direct visualization of similarities and differences between samples in multi-dimensional 

space
123

. A supervised version of PCA, which allows for correlation between independent and 

dependent variables, called partial least squares regression (PLSR), has been used successfully to 

infer how changes in signaling network are correlated with cell death and proliferative 

outcomes
11, 124, 125

.  Since PCA-based approaches use linear combinations of variables to form 

components, nonlinear relationships between the variables are not always apparent.  t-SNE is a 

space-maintaining dimension reduction approach that preserves nonlinearity of the data
126

. For 

visualization, SPADE
127

 combines spanning tree analysis with clustering to delineate 

relationships between samples and/or cells. 

Bayesian networks – Bayesian-based methods are stochastic methods used to determine 

model parameters from a posterior probability distribution derived from experimental data
128, 129

.  

These methods utilize a likelihood function that increases the predictability with the number of 

datasets used to train the system.  Graph theory and probability meet in Bayesian methods where 

variables are represented as nodes and their relationships through acyclic edges.  The Bayesian 

parameters can be modeled as discrete, continuous, or both, and temporally, the system can be 

Page 26 of 50Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



26 

 

modeled as static or dynamic.  The result is an ensemble of feasible solutions that is more 

predictable and robust than a single best fit solution.  Two popular and freely available software 

packages that incorporate Bayesian methods are SloppyCell and BioBayes
130, 131

.   

Logic modeling – An important goal of systems-level analysis is the derivation of a 

biological network’s topology. Traditionally, a pathway’s or network’s topology is determined 

painstakingly from decades of experiments, which then are cataloged in the literature. Because 

the topology of a network can change depending on biological context (e.g., cell type), it is 

difficult to derive the correct network strictly from mining the literature. Logic-based modeling 

uses a technique borrowed from engineering that derives relationships from systems-level data 

with guidance from a prior knowledge network (PKN)
132

 (Figure 3B).  A PKN is first initiated 

by enumerating all components and connections that are included directly or indirectly in the 

data from the literature or databases. The PKN is then collapsed to exclude nodes and edges that 

have not been explicitly measured while maintaining logical consistency. Next, the modified 

PKN is fit to the experimental data using a logic-based objective function to determine an 

optimal set of networks, with each network in this set considered equally viable.  Finally, the 

quality of each edge is statistically assessed by its representation in an ensemble of models. 

CellNetOptimizer is an example of a freely available logic-based modeling software 
133

. 

5.3 Considerations for systems biology studies in mice 

Studying biological phenomena in in vivo settings provides the advantage of 

physiological significance and relevance. However, studying organisms in vivo presents its own 

set of challenges for the design of controlled experiments. While one can largely control for 

extrinsic factors like diet and drug treatments when doing mouse experiments, even inbred mice 

have additional sources of variation intrinsic to each animal such as sex and age that can affect 
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the outcome of an experiment. These variations can sometimes override the effects of intended 

experimental perturbations. However, if one is aware of these variations from the outset of 

experimental design, one can adjust for these confounding effects with statistical analyses
134

.    

Sex – The most obvious controllable variable is the sex of the animal.  Aside from organ-

specific differences, there are many physiological differences prescribed by the presence of a Y-

chromosome. Examples include differences in hormone levels
135

, neuronal development and 

responses affecting behavior
136, 137

, metabolism, and fat storage
138

. A particular hormonal 

influence that dramatically affects the interpretation of mouse studies is the use of tamoxifen to 

activate estrogen receptor-based inducible Cre recombinase, which can subsequently affect 

normal estrogen receptor function and hormonal balance. Tamoxifen use has also been 

associated with atrophy and metaplasia of the gastric epithelium
139

, even in the absence of any 

floxed alleles. 

Age – Aging is associated with cellular and physiological changes. As such, aging itself is 

a systems-level phenomenon that results from the integration of multiple inputs and outputs 

occurring at different levels. Changes in oxidative stress, endocrine functions, and metabolism 

occurring at the organismal level can have effects down to the cellular level.  Stem cell function 

is drastically reduced in aged mice, resulting in defects in bone marrow
140

 and intestinal 

regeneration
141

.  The latter effect contributes to malabsorption of nutrients and subsequent 

changes in metabolism
142

.  Thymus involution occurs in early adulthood resulting in the 

exhaustion of T cells later in life, a major contributor to immunosenescence
143

. Imbalance of the 

immune system with age can lead to chronic, low grade inflammation called “inflammaging”
144

. 

Changes in the immune system, diet, and gastrointestinal environment with age lead to 

alterations in the microbiome
145, 146

. These are a few specific examples, but it should be born in 
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mind that the multitude of changes that occur with age may have profound effects on many 

biological processes.   

Strain differences – Mice from different strains and sub-strains are produced via multiple 

generations of inbreeding. Their overall genetic compositions can vary significantly, with some 

even harboring homozygous recessive alleles and mutations. As such, phenotypes observed in 

one mouse strain either at steady state or under perturbation are very likely to be influenced by 

its genetic background.  Thus, comparing the effect of a specific perturbation should be 

performed under one background or with added caution if performed across multiple 

backgrounds. An example of a strain-specific effect is the susceptibility to dextran sodium 

sulfate-induced colitis due to variation in immunity genes
147, 148

. As described above, systems 

genetics and strain-specific differences can be leveraged to link suites of genes to changes in 

phenotype. 

Microbiome – Recent research has shed light on the drastic influences of the microbiome 

on vertebrate organism physiology, including metabolism and immunity. The establishment of 

the microbiome is a function of not only inherent features such as genetics, but the environment 

where the organism is housed and raised as well. Mice from the same strain exhibit different 

biological behaviors if they are acquired through different sources.  For example, C57BL6 mice 

exhibit divergent Th17 differentiation in the gut depending on whether they originate from 

Taconic Farms, Jackson Laboratories or Charles River
149

. Human studies suggest that the adult 

microbiome is relatively stable
16

, and is established through a chaotic process during the first 

year of life where dietary richness and environmental exposure increase. Importantly, dizygotic 

twins show significant similarity in early temporal profile gut microbiome development, 

demonstrating the importance of early fostering
150

. There has been evidence suggesting that the 
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adult mouse microbiome is not as stable and can be changed within days
151

. Cage specific effects 

are strong and can account for up to 30% of variation. These effects can be reduced by mixing 

bedding and/or medium term co-housing (weeks), although these approaches may not result in 

perfect normalization
152

. A better strategy may be to begin with littermates or germ free mice 

followed by co-housing, although only a limited number of mice can be studied by this strategy.  

Circadian Rhythm – The day-night cycle also greatly affects vertebrate organism 

physiology.  For example, light-dark cycles neurologically affect feeding behaviors
153

, and 

circadian genes like Bmal1 cyclically regulate cytokine secretion and immune function
154, 155

. 

Cyclic regulation of toll-like receptors can also affect bacterial pathogenesis and microbiome 

balance 
156

. To control for these variations, in vivo experiments should be performed and 

repeated at similar stages of the circadian cycle. 

Discussion 

Technological advances during the latter half of the 20
th

 century enabled scientists to 

interrogate biological systems down to the molecular level and ushered in a golden age of 

reductionist biomedicine. By understanding how genes and proteins are structured and function 

at the molecular level, we have been able to design targeted therapies for many clinically 

important diseases including cancer
157

, inflammation
158

, and infection
159

. While these 

reductionist approaches have been extremely successful in increasing life span and quality for 

many patients, there are many others for whom these treatments eventually fail. In colon cancer 

or IBD, treatments based on initiator genes and proteins often show periods of efficacy followed 

by relapse
160

. In some cases this relapse is triggered by compensatory mutations within the target 

gene or pathway, while in other cases, mutations activating independent pathways or network 

adaptation without mutation can drive resistance.  Understanding and targeting these 
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compensatory mechanisms may prove effective in driving disease remission, with the caveat that 

these successes might be met with secondary resistance resulting in cyclical rounds of treatment 

and resistance.  

Drugs that have even a partial effect or a short-term cure provide immense benefits to 

patients. However, better treatments and complete cures remain the goal for scientists, physicians 

and the patients they serve. For systems biologists, the best route to improving therapies is to 

view these diseases not from the perspective of the single genes and proteins that drive them, but 

from the integrative perspective of the whole disease network. This has been born out at the 

intracellular level using in vitro cell culture systems to map interaction networks and to identify 

network architectures that drive disease-related phenotypes. As our understanding of these 

architectures and the available tools for measuring nodes (whether they be at the level of RNA, 

protein or cell type) in vivo have improved, we are entering an era where we will possess an 

integrated understanding of disease and health at the organ and organismal level. 

The field of systems biology, particularly in vivo, is still in its infancy and exactly how 

this type of understanding will translate to better therapies remains an open question. In the ideal 

scenario, computable tissue-level networks would be leveraged to design combination therapies 

capable of shifting a tissue from a disease state to a healthy one. Several systems biology driven 

companies have been founded based on the principles and techniques described above, and have 

achieved success in bringing drugs to the clinic based on in vitro systems modeling
161

. However, 

it is important to recognize that the field of systems biology is still growing and there are many 

limitations to reaching a fully realized systems understanding of any disease. At present, it is 

impossible to measure and meaningfully model all of the components of any given system. 

However, by incorporating as many of those system-level interactions into our understanding of 
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a given organ, we will be able to better design therapies that attack the disease network, and we 

will be able to better understand how the network responds to drive resistance.  

Here, we have discussed some of the ways in which systems biology has been used to 

study intestinal disease in the mouse and some of the techniques that will drive this growing field 

forward in the future. This approach will be extremely useful in identifying paradigms of tissue-

level systems behavior and to identify candidate networks that may be operative in human 

disease. Furthermore, systems-level understanding will enable us to calibrate our mouse models 

to determine which ones best recapitulate human tissue behavior and which parts of human 

networks are well-represented by a given model. This will be of benefit directly to systems 

biologists and to researchers utilizing mouse models for reductionist approaches. This knowledge 

can be leveraged to identify new therapeutic approaches for diseases affecting not only the 

intestine directly, but many diseases of distant organ systems that are caused or modified by 

intestinal health as well. While the field of in vivo systems biology is still in its infancy, there is 

every reason to hope that it will provide massive value not only to researchers, but also to 

patients suffering from diseases such as cancer, C. difficile infection and IBD.    

Author Information 

The authors declare no competing financial interests. Correspondence should be addressed to 

K.S.L. (ken.s.lau@vanderbilt.edu). 

Acknowledgement 

J.L. is funded by Crohn’s and Colitis Foundation of America Research Fellowship Award. K.S.L 

is partially funded by a Crohn’s and Colitis Foundation Career Development Award (308221), a 

career development award from the Vanderbilt GI SPORE (P50-CA095103), and pilot project 

grants from the Vanderbilt-Ingram Cancer Center (P30-CA068485) and the Vanderbilt Digestive 

Page 32 of 50Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



32 

 

Disease Research Center (P30-DK058404).  K.S.L is indebted to the VICC Young Ambassadors 

for their generous funding.  C.A.H. is funded by the Training Program in Stem Cell and 

Regenerative Developmental Biology at Vanderbilt (T32-HD007502). The authors regret their 

inability to exhaustively enumerate all mouse models of intestinal diseases due to space 

constraints. 

Abbreviations 

IFN  Interferon 

TNF  Tumor necrosis factor 
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Figure Legends 

Figure 1: Gut function and disease is governed by interactions between the epithelium, the 

immune system and the gut microflora. These interactions are mediated by cell-cell contact, 

cytokines, metabolites, and microbial products. We propose that an integrative systems approach 

that engages with this complexity is necessary to fully understand these interactions and their 

impact on gut homeostasis and disease. This figure lists some of the techniques that can be 

applied to systems-level studies in the gut. Techniques in the red box are amenable to studies of 

the microflora; techniques in the blue box are suitable for bulk measurements encompassing all 

components of the gut ecosystem; techniques in the green box are suitable for single cell or 

population-based analysis. Experimental approaches are listed in descending order of coverage 

with the number of unique analytes denoted by the color bar. 

Figure 2: Increased mechanistic resolution of mathematical models require larger amounts 

of data to constrain each model parameter.  The ratio of the number of parameters per model 

to number of experimental data points to build each model from a collection of mathematical 

models in the literature. 
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Figure 3: Quantitative modeling of multidimensional data. (A) Principal component analysis 

can be used for interpreting multivariate data by reducing dimensionality.  In this simple 

example, cells are plotted (left plot) in 3-D according to expression levels of three proteins. The 

grey ellipse encircles the axes that contain the most variation in the data, the principal 

components. The data aligned to the principal components in 2-D (right plot) allows for easier 

visualization of the difference(s) in the data. In this case, the three cell states are more easily 

identified.  (B) Logic-based modeling can be used for constructing a family of optimal models 

from a prior knowledge network (PKN) with a given set of inputs (green nodes) and observables 

(blue nodes). The PKN is compressed by removing all unobservables (grey nodes) while 

maintaining connectivity of nodes downstream. Grey arrows represent activation, while red 

arrows represent inhibition. To allow for all possible connections, the network is expanded. A 

family of optimal models is derived using experimental data.  
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Model Disease Modeled Location Details 

Inflammatory Bowel Disease 

DSS Chemical damage Colon Epithelial cell toxicity followed by 
bacterial penetration and 
inflammatory reaction1 

TNBS Chemical damage Colon Mucosal barrier damage followed by 
increased antigenicity2 

T-cell transfer Ulcerative colitis or 
Crohn’s disease 

Colon and 
Ileum 

1-3 month latency, high penetrance, 
severe mucosal inflammation. 

Crohn’s-like cytokine profile; UC-like 
hyperproliferation, goblet cell loss3  

IL-10-/- Crohn’s disease 
(Colitis) 

Colon and 
cecum 

Variable mucosal inflammation 
dependent on microbiota, epithelial 

hyperplasia,  inflammatory cell 
infiltration, loss of goblet cells4  

TNF∆ARE/+ Crohn’s disease 
(Ileitis) 

Terminal ileum 
(proximal colon) 

Severe ileal transmural 
inflammation, mucosal/submucosal 

infiltration of inflammatory cells, 
increased goblet cells5 

Colorectal Cancer 

AOM/DSS Colonic 
adenocarcinoma 

Colon Tubular adenoma, dysplasia, and 
colitis with mucosal ulceration6  

Lrig1CreERT2/Apcflox/+ Adenoma and 
adenocarcinoma 

Distal colon 
(small intestine) 

Mainly distal colonic adenomas with 
high-grade dysplasia7 

ApcMin/+ Adenoma Small intestine 
and colon 

Low-grade adenoma mainly in the 
small intestine8 

Fabpl-Cre;Apcflox/+;LSL-
KrasG12D/+ 

Adenoma and 
adenocarcinoma 

Distal colon High-grade dysplasia9 

Apcflox/+;LSL-K-rasG12D/+; 
Adeno-cre after colonic 

abrasion 

Adenoma and 
adenocarcinoma 

Distal colon Colonic tumors with high grade 
dysplasia and metastasis10  

Infection Models 

Citrobacter rodentium Enteropathogenic E. 
coli (EPEC) and 

Enterohemorrhagic 
E. coli (EHEC) 

Colon and 
cecum 

Crypt hyperplasia, goblet cell loss, 
mucosal infiltration, diarrhea11 

 

Salmonella-induced 
colitis (with antibiotic 

treatment) 

Early (4-72 hours) 
intestinal events in 
salmonella infection 

Colon and 
cecum 

Mainly in cecum, epithelial 
hyperplasia and erosion, acute 
inflammation, goblet cell lost12 
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Table 1: Common mouse models of intestinal pathologies. 
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Experimental Approach Approximate Number of Analytes 

Microbiome 

Metagenomic Sequencing
1
 4 x 10

6
 

Mass Spectrometry
2
 500-6000 

NMR
3
 500 

Bulk Cell Analysis 

RNASeq
4
 25000 

Microarray
5
 40000 

Mass Spec (iTraq, SILAC)
6
 500-6000 

Reverse Phase Protein Array
7
 150 

Multiplex Bead Based ELISA
8
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9
 100 
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10
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Fluidigm Single Cell RNASeq
4
 6000 

Fluidigm Biomark
11

 96 

CyTOF
12

 50 
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13

 60 
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 18 

Multiplex RNA FISH
15

 30 
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16

 1-2 
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