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Predicting genetic interactions from Boolean models of 
biological networks 
 
Laurence Calzone, Emmanuel Barillot, and Andrei Zinovyev 
 
 
Insight box 
 
A new methodology describing the construction of genetic interaction networks from 
Boolean models of biological networks is presented. The method consists in the 
conversion of a logical mathematical model with a set of initial conditions into the 
corresponding genetic interaction network characterizing the behavior of all single 
and double mutants (loss or gain of function mutations) in terms of phenotype 
probabilities. To compute these probabilities, we used the formalism of continuous 
time Markov chains implemented in MaBoSS software. The methodology is 
demonstrated on three published Boolean models of signaling pathways. The genetic 
interaction networks reconstructed from logical models possess many properties of 
experimentally-measured networks. 
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Genetic interaction can be defined as a deviation of the phenotypic quantitative effect of a double gene mutation from the ef-

fect predicted from single mutations using a simple (e.g., multiplicative or linear additive) statistical model. Experimentally

characterized genetic interaction networks in model organisms provide important insights into relationships between different

biological functions. We describe a computational methodology allowing to systematically and quantitatively characterize a

Boolean mathematical model of a biological network in terms of genetic interactions between all loss of function and gain of

function mutations with respect to all model phenotypes or outputs. We use the probabilistic framework defined in MaBoSS soft-

ware, based on continuous time Markov chains and stochastic simulations. In addition, we suggest several computational tools

for studying the distribution of double mutants in the space of model phenotype probabilities. We demonstrate this methodology

on three published models for each of which we derive the genetic interaction networks and analyze their properties. We classify

the obtained interactions according to their class of epistasis, dependence on the chosen initial conditions and phenotype. The

use of this methodology for validating mathematical models from experimental data and designing new experiments is discussed.

1 Introduction

Genetic interaction is defined as a phenomenon by which the

effect of a double gene mutation cannot be predicted from the

effect of single mutations using a simple (such as additive or

multiplicative) statistical model1,2. The strength of the inter-

action can be characterized by an epistatic score, which is, in

the case of purely deleterious mutations, negative for syner-

gistic interactions (when the phenotype of a double mutation

is significantly stronger than the expected combined effect of

two independent single mutations), and positive for alleviat-

ing interactions (when the combined effect is weaker). Ex-

amples of synergistic interactions are synthetic lethality and

synthetic sickness (in the case of survival-related phenotype)

or synthetic enhancement of a phenotype3,4. An example of

strong alleviating interaction is the suppression of an effect of

one mutation by a second mutation (in classical genetics, such

interactions were historically defined as “epistatic”). Genetic

interactions in the general case of both beneficial and delete-

rious mutations can be classified into 9 groups according to

various inequality relations between the effects of single and

double mutants5.

Genetic interaction networks provide important insights

into relations between different biological functions6. Knowl-

edge of genetic interactions with respect to a disease phe-

notype can provide important hints on personalized treat-

ment strategy, in particular, in cancer7–9. This knowledge is

currently obtained by costly high-throughput screening tech-

niques based on knocking-out or knocking-down genes (us-

ing siRNA or shRNA) in model organisms, such as yeast10,11,

worm12, mouse13 or human cells14. Experimentally, one can

measure both synthetic and synthetic dosage interactions15.

Establishing single genetic interactions can be a result of long

and tedious work, in the case of phenotypes that are complex

and difficult to observe such as metastasis16.

Computational approaches have been used in order to de-

rive genetic interactions from dynamical mathematical mod-

els or by using machine learning approaches. One of the

earliest attempts to characterize the genetic networks of the

genes involved in metabolism was done using flux balance

analysis framework applied to a genome-wide reconstruction

of yeast metabolic network2. In this work, the quantitative

epistatic measure was introduced to characterize the genetic

interactions as a difference between the observed effect of a

double mutant and the multiplicative model prediction from

the effect of two single mutation effects. It was noted that

the distribution of the epistatic measure is tri-modal and that

the interactions between functional modules have a tendency

for monochromaticity, i.e., having the same dominant sign for

between-module interactions. In a recent paper, a similar ap-

proach was applied to characterize genetic interactions with

respect to multiple metabolism-related phenotypes17.

There have been many attempts to apply machine learn-

ing approach for predicting genetic interactions from a sub-
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set of known interactions18,19. For instance, in yeast, the

structure of physical interaction networks was combined with

co-expression networks; data on protein classification was

used for predicting genetic interactions20. In worm, identi-

cal anatomical expression and microarray co-expression, phe-

notype proximity, Gene Ontology annotation and presence

of interlogs were the parameters used for fitting the logis-

tic regression in order to score genetic interactions21. Deci-

sion tree-based approaches trained on the structure of protein-

protein interaction and co-expression networks in both yeast

and worm were also used22. Short polypeptide cluster de-

tection was utilized to predict synthetic lethal interactions be-

tween genes in yeast23. Still in yeast, evolutionary approaches

and the notion of functional asymmetry allowed prediction of

negative genetic interactions between protein complex compo-

nents24. There are very few examples of computational pre-

dictions of genetic interactions in human, one of them used

gene expression analysis to predict synthetic lethal partners of

TP53 gene25. The main problem of most of machine learn-

ing approaches is the absence of bona fide negative exam-

ple (absence of interaction) set for training, which is usually

needed for a successful application of automated classification

methods19. Nevertheless, it was shown that machine learning

methods are able to predict genetic interactions significantly

better than random choice of a gene pair.

The knowledge about molecular mechanisms involved in a

biological phenomenon that one wishes to study can be repre-

sented as a network of interacting entities26. Depending on the

network type, the translation into a mathematical model can be

done using an appropriate formalism (ordinary or partial dif-

ferential equations, logical, rule-based modeling, etc.). These

mathematical models can predict the effect of a perturbation,

intrinsic or extrinsic, and anticipate the response of a drug, for

instance. Boolean (or, more generally, logical) modeling fo-

cuses on how the influences of regulatory molecules combine

to control the expression or activity of each molecular entity

- or process - composing the regulatory network. In a purely

Boolean framework, each variable of the model can only take

two values: 0 or 1 (absent/inactive or present/active). In our

studies, we found that Boolean formalism represents a con-

venient mean of abstraction for modeling cellular biochem-

istry dynamics and verifying that the topology of the networks

representing the studied phenomena fits the experimentally-

observed effects of loss or gain of function mutations on a

phenotype. So far, there was no attempt to systematically pre-

dict genetic interactions using Boolean models of biological

mechanisms.

An important remark should be made with respect to any at-

tempt to predict the genetic interactions computationally. Ge-

netic interactions, being functional rather than physical, can

strongly depend on the choice of both the phenotype (or model

read-out) and the set of initial conditions used for model simu-

lations. Therefore, genetic interactions can be classified as oc-

curring with respect to single versus multiple phenotypes, and

dependent versus independent on initial conditions. With the

mathematical model of metabolism in yeast, it was shown that

genetic interactions synergistic with respect to one phenotype

can become alleviating with respect to another one17. Sim-

ilarly, depending on the set of initial conditions (accounting

for homeostatic, physiological, nutrient-deprived, etc. condi-

tions), some phenotypes represented in the model can never be

reached or the simulations can lead to a different output with

the same set of inputs. For example, in a model of cell fate

decision process in response to TNF (or Fas) ligand activation

signal, the cell response showed to be either survival or cell

death (non-apoptotic and apoptotic with a higher probability

for necrotic phenotype though) depending on the activity of

some nodes of the model27. In a model describing the kinetics

of the restriction point, if the G1 cell cycle phase cyclin, Cy-

clin D1 (CycD in the model), is initially active (corresponding

to presence of growth factors), the cell enters the cycle, other-

wise, it stays stuck in G1 arrest28,29.

In this manuscript, we suggest a quantitative methodology

to convert a logical model of a regulatory network into a ge-

netic interaction network, defined with respect to a chosen

model phenotype (which can be any phenotype and not only

survival-related as it is often the case). The methodology

is based on using the formalism of continuous time Markov

chains implemented in MaBoSS software30. Using published

models, we applied our method to derive several genetic inter-

action networks for the genes that compose these models. We

analyze genetic network properties and show that they pos-

sess many features of experimentally-measured genetic net-

works. The derived genetic interactions reflect the functional

properties of the mathematical models studied, so we briefly

compare these predicted functional relations using available

databases.

2 Methods and data

2.1 Models used in this study

Three published models were selected for testing the method.

The models correspond to signalling pathways involved in

cancer with the focus on: the MAPK pathway31 describing

the crosstalk between the three mitogen-activated protein ki-

nases: ERK, p38 and JNK, and their role in apoptosis and

† Electronic Supplementary Information (ESI) available:

http://maboss.curie.fr/gins. See DOI: 10.1039/b000000x/
a Institut Curie, 26 rue d’Ulm, Paris, France
b INSERM U900. Paris, France.
c Mines ParisTech, Fontainbleau, France
d E-mail: Laurence.Calzone@curie.fr
e E-mail: Emmanuel.Barillot@curie.fr
f E-mail: Andrei.Zinovyev@curie.fr
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proliferation balance; the cell cycle with the focus on the bio-

chemical processes regulating the restriction point28,29; and

cell fate decision between survival and death in response to

extrinsic signals such as death receptor activation27,32.

For each of the model, we provide the models in both GIN-

sim33 and MaBoSS30 formats. Several genetic interaction

networks (GINs) per model can be constructed correspond-

ing to different initial conditions and to the chosen phenotype.

They can be found as separate Cytoscape sessions in Supple-

mentary materials (Supp Mat GINs).

2.2 Computing phenotype probabilities

For each model, we computed the probability of reaching

model phenotypes for all possible single and double mutants

(resulting either from gain of function - modelled as fixing

the corresponding node value to 1, and referred to as ”overex-

pression” or ”oe”, or from loss of function - modelled as fix-

ing the node value to 0 and referred to as ”deletion” or ”ko”).

For these computations, we used both MaBoSS software and

a set of scripts for processing the MaBoSS configuration and

output files, implemented into BiNoM Cytoscape plugin34–36.

MaBoSS is a C++ software designed for simulating continu-

ous/discrete time Markov processes, defined on the state tran-

sition graph representing the dynamics of a Boolean network.

MaBoSS allows the modeller to associate different rates up

and rates down to each variable of the model when the dy-

namics is known, enabling to account for different time scales

of the processes described by the model. Given some initial

conditions, MaBoSS computes time trajectories by applying

Monte Carlo kinetics algorithm (Details and examples can be

found at: http://maboss.curie.fr). More precisely,

probabilities to reach a phenotype are computed as the proba-

bility for the variable associated to the phenotype to have the

value 1, by simulating random walks on the probabilistic state

transition graph.The parameters for the stochastic simulations

(number of runs, initial conditions, maximum time, etc.) are

configured for each simulation. The read-out can be a variable

representing the phenotype, a variable representing a protein

or gene, or a combination of them. The probabilities for the

selected outputs are reported for each mutant based on pre-

defined initial conditions (which can be all random). Since

a state in the state transition graph can combine activation of

several phenotype variables, some phenotype probabilities ap-

pear to be “mixed” or coupled. It is particularly the case for

cyclic attractors. For the cell fate model, we investigated the

effect of the choice of the initial conditions (“random” ver-

sus “physiological”) on the final phenotype probability dis-

tribution. The result of the simulations is stored in a simple

table, containing the complete set of mutants characterized

by probabilities of all pure and mixed model phenotypes (in

Supp Mat Models and Supp Mat GINs).

2.3 Quantifying epistasis in double mutants

2.3.1 Definition of epistasis measures.

The results of double mutant simulations were used to quan-

tify the level of epistasis between two model gene defects A

and B with respect to a particular phenotype φ . We define the

normalized “fitness” of a mutation (or combination of muta-

tions) X with respect to a phenotype φ as the ratio between the

probability of the phenotype in the mutant X and the wild-type

models.

f X
φ =

pX
φ

pwt
φ

. (1)

To fully characterize a genetic interaction, one should be

able to characterize its strength and type. We defined the

strength of the interaction as a deviation of the fitness of the

double mutant from one of the four simplest statistical models

frequently used in this context: additive, logarithmic, multi-

plicative and min , i.e.,

εφ (A,B) = f AB
φ −ψ( f A

φ , f B
φ ). (2)

where f A
φ and f B

φ are phenotype φ fitness values of single gene

defects, f AB
φ is the phenotype φ fitness of the double mutant,

and ψ(x,y) is one of the four functions:

ψADD(x,y) = x+ y (additive)
ψLOG(x,y) = log2((2

x −1)(2y −1)+1) (log)
ψMLT (x,y) = xy (multiplicative)
ψMIN(x,y) = min(x,y) (min)

(3)

To choose the best definition of ψ(x,y), the Pearson corre-

lation coefficient was computed between the fitness values ob-

served in all double mutants and estimated by the null model.

The null model with maximal linear correlation was chosen:

ψ(x,y) = argmax
ψ(i)

corr(ψ(i)( f A
φ , f B

φ ), f AB
φ ),

i = ADD,MLT,LOG,MIN.
(4)

Note that the best definition of ψ can vary from model to

model, from phenotype to phenotype, and even for different

choices of initial conditions. Our simulations show that ψLOG

performs uniformly optimal or close to optimal in most of the

simulations, having also advantage of not producing biased

distributions of ε (see next section).

2.3.2 Removing bias in the distribution of epistatic

measure values.

After computing the distribution of epistatic measures, it

can be observed that the peak of the distribution is shifted to-

wards non-zero epistasis. This can be considered as a bias
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in estimating the null multiplicative model for quantifying the

epistasis measure (2). In our experiments, it was corrected by

linear fitting of the observed value y = f AB to the null model

x = ψ( f A, f B) (see Figure 5B). Then the epistatic measure is

defined as:

ε
(corrected)
φ (A,B) = f AB

φ −αψ( f A
φ , f B

φ ), (5)

where α is the slope coefficient in the best linear fit estimation

∑ ||y−αx||2 → min. Further in the text, we refer to ε(corrected)

as ε unless explicitly specified.

2.3.3 Choosing the threshold for defining the set of ge-

netic interactions.

The distribution of the epistasis measures ε is asymmetric

in many examples. Therefore, we set a threshold separately

for positive and negative part of epistastis measure distribu-

tion (Figure 5A) as a multiplier of one-tailed standard devia-

tions. Those genetic interactions whose strength are above k

one-tailed standard deviations are selected, where k is a real

number parameter (typically, k = 2 as a moderately stringent

selection criterion).

2.3.4 Defining the type of genetic interaction.

Since in model simulations, one can have both deleterious

f X < 1, neutral f X ≈ 1 and beneficial f X > 1 mutations X with

respect to a phenotype φ , multiple possibilities arise for rela-

tions between four numbers f A, f B, f AB and f WT = 1 which

cannot be simply grouped into alleviating and aggravating, as

in the simplest case of pure deleterious mutations. We classi-

fied gene interactions using the existing approach5, according

to 75 possible inequalities between these four numbers which

are further grouped into 9 genetic interaction classes: “sup-

pressive”, “epistatic”, “conditional”, “single-nonmonotonic”,

“additive”, “double-nonmonotonic”, “non-interactive”, “syn-

thetic”, “asynthetic”. The first 4 classes in this list can be char-

acterized by a direction of the interaction, i.e., mutation A is

epistatic to B means that the effect of A completely cancels the

effect of B (and both effects are different from the wild-type),

and not the opposite (A → B). Note that the directed genetic

interaction maps the causal effects in opposite direction (e.g.,

mutations in downstream effectors of a phenotype can mask

more upstream mutations).

To define inequalities, we introduced a threshold for dis-

tinguishing different values of fitness f , i.e., we consider two

values of fitness f A and f B equal, if | f A − f B|< δ , where we

typically choose δ = 0.2.

For example, one of the most prevalent interactions in our

simulations is the “epistatic” (in the sense of the classical defi-

nition of the notion “epistasis”) interaction which corresponds

to inequalities B <WT < A = AB (denoting f B < f WT = 1 <
f A = f AB) or A = AB < WT < B meaning that the effects

of single mutants are opposite with respect to the wild-type

(one is deleterious and another is beneficial) and the effect of

the double mutant is equal to one of the single mutants (one

single mutant “wins”). Another interesting example is “syn-

thetic” interaction type which can correspond to the inequal-

ity AB < WT = A = B (classical “synthetic sickness”) or to

WT = A = B < AB (“synthetic enhancement”).

Some interaction types are counter-intuitive such as “single-

nonmonotonic” which can correspond to the inequality A <
WT < B < AB, when a combination of deleterious and benefi-

cial mutations lead to enhancement of the phenotype stronger

than the beneficial mutation alone. It was shown that these

interactions are observed in real data5, and they are also ob-

served in some of our simulations (see Figure 3).

2.3.5 Visualizing genetic interaction network using

Cytoscape.

The selected genetic interactions are visualized in Cy-

toscape37 (see example with Figure 1 and Figure 3). The vi-

sual mapping chosen distinguishes, by colour and shape, loss

of function and gain of function single mutants. Size of the

nodes reflects the effect on the phenotype of a single mutant,

and the width of the edge, the epistatic effect strength of the

corresponding double mutant. Colouring edges denotes their

types, using the colour schema suggested before5 (see Fig-

ure 2 for definition of the visualization style).

2.4 Using non-linear principal component analysis for

mapping double mutant distribution in the space of

phenotype probabilities

The non-linear principal manifolds were constructed for the

distribution of all single and double mutants of the model in

the space of computed model phenotype probabilities, using

elastic maps method38–40 and ViDaExpert software41. For

computation, only the mixed phenotypes with a probability

expectation over the whole set of double mutants with more

than 1% were selected. This results in sets of double mu-

tants in multi-dimensional space for which principal mani-

folds were computed (see Figure 4).

3 Results and discussion

The three Boolean models were downloaded either from The

Cell Collective database42 or from GINsim database33. The

stable state analysis was done in GINsim software. The mod-

els were then exported in MaBoSS for simulations. Finally,

we used some scripts embedded into BiNoM cytoscape plugin

to automatically compute probabilities for all single and dou-

ble mutants (including both gain of function and loss of func-

tion mutants for all components of each model) and visual-

ize the results of paired interactions as genetic interaction net-

works. A thorough description of each model is given in sup-

plementary materials (SuppMat description models) along
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with the Cytoscape sessions for each model, each phenotype

and different initial conditions for one of the models (Supp-

Mat GINs).

3.1 Cell fate decision model

Figure 3 shows the genetic interaction networks computed

with respect to three different phenotypes (survival, apoptosis,

non-apoptotic cell death referred to as necrosis for short)27.

The general shape of the epistatic measure distribution ex-

hibit tri-modality (Figure 5A), as it was previously observed

in another modeling framework2. The cell fate decision GINs

and the distributions of ε show that the networks computed for

different phenotypes are less similar than the networks com-

puted for the same phenotype but with different initial con-

ditions (Figures 3 and 5C,D, with the legend for GINs given

in Figure 2). Similar conclusions were made for most of the

constructed GINs in this study.

For the physiological initial conditions with TNF=1, some

gene alterations (and, by extension, some pathways) appear

to be more important than when all initial conditions are con-

sidered. Indeed, some of these interactions are lost in the nu-

merous genetic interactions when considering all initial con-

ditions. It is particularly evident for the survival phenotype.

Overexpressing any gene from the survival pathway, which

is described in a linear manner in this model is enough to

favour or even force the survival phenotype. When taking

in account all possible inputs, other pathways can help reach

the survival phenotype: the additive effect of both RIP1 and

cIAP gain of function would be equivalent to forcing RIP1ub.

Single-nonmonotonic interactions are found numerous in the

apoptotic and necrotic genetic networks. Unexpectedly, the

gain of function of BCL2, which leads to a null probability of

reaching apoptosis, together with the gain of function of BAX

increases the apoptotic probability of BAX gain of function

alone. In fact, BCL2 gain of function is able to block very

efficiently both apoptosis and necrosis. If BAX gain of func-

tion promotes apoptosis as observed experimentally, deleting

any signal from the necrotic (or necroptotic) pathway seems to

increase apoptosis even more. This observation confirms the

mutual exclusive nature of the two phenotypes. In accordance

with Drees et al.5, this type of single-nonmonotonic interac-

tions occur with a high frequency in our networks but also

in experimental data even though they are not “recognized by

common genetic nomenclature”.

The distribution of all single and double mutant models

forms a set of points in the multi-dimensional space of model

phenotype probabilities. We found it very informative to vi-

sualize this set with the projection from multi-dimensional to

two-dimensional space, using advanced methods of non-linear

data visualization such as the projection onto the principal

manifolds constructed by the elastic maps method (Figure 4).

In these visualizations, one can see that single and double mu-

tants form clusters characterized by some typical phenotype

probability values. The cluster around the wild-type model,

collects those mutants whose effect can be considered as neu-

tral. Some clusters represent the mutants with extreme ef-

fect of induction of some of the phenotypes. The probability

of different phenotypes changes along the non-linear direc-

tions (gradients) of increasing phenotype probability. Some

clusters, labelled here by “BCL2 oe” and “ROS ko” single

mutants, correspond to some particular states of the model

(“naive survival” for “BCL2 oe” and a complex state com-

bining apoptosis and “naive survival” for “ROS ko”: note that

the last state can be artificial due to some irrealistic assump-

tions such as non-production of ROS, over-abundance of ATP,

or impossibility of MPT).

3.2 MAPK model

The MAPK pathway controls several cellular processes such

as cell cycle activation, apoptosis, survival or differentiation.

The model of Grieco et al.31 details the crosstalk between

the pathways of the three mitogen-activated protein kinases:

ERK, JNK and p38. In response to four stimuli (EGFR,

FGFR3, TGFbeta, and DNA damage), the model produces in

silico the cell response in terms of proliferation, growth ar-

rest and apoptosis in diverse conditions, and simulates differ-

ent sets of mutations often found in cancer. Even though the

model is generic, its analysis is applied to studying bladder

cancerogenesis.

Three GINs are generated using stringent conditions (inter-

actions are selected above k = 3 standard deviations) for fil-

tering the edges for the three phenotypes: apoptosis, growth

arrest and proliferation. The networks are characterized by

modular structure, in particular, for the apoptotic phenotype

(Figure 1, panel 1). Interestingly, interactions within some

modules or between modules are monochromatic with respect

to the type of the genetic interactions. For example, a mod-

ule connecting several transcription factors (JUN, AP1, ATF2)

with phosphatase PPP2CA negatively controlling cell growth

appears in the GINs for both the apoptosis and growth arrest

phenotypes. All interactions inside this module are of “syn-

thetic” type (i.e., synergistic). Monochromatic structure of

interactions between modules can be seen in Figure 1, panel

3, where the network can be decomposed into several mod-

ules (e.g., PTEN/p21/AKT versus p70/ERK/MEK1 2) based

on the same type of interactions in between them.

Genes of the apoptotic pathway such as ATM, MAX, etc.

appear to be hubs in the network with the emphasis on ATM

and conditions for the two following situations: loss of func-

tion or gain of function of ATM and the partners that con-

tribute to increasing (or compensating for the loss of) apopto-

sis (Figure 1, panel 1). The combination of p53 gain of func-
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tion and ERK gain of function seems to be a good combina-

tion to improve the growth arrest phenotype (Figure 1, panel

2) whereas loss of function of PTEN reduces the arrest caused

by gain of function of BCL2. In the GIN for the proliferation

phenotype (Figure 1, panel 3), the gain of function of either

MEK1 2 or ERK seems to be crucial in promoting prolifera-

tion, particularly in combination with gain of function of AKT

or loss of function of p53 or p38, for instance. They form a

hub in the network and seem to be very similar (symmetric)

in terms of genetic interactions they share with the rest of the

proteins of the network.

The MAPK model is the biggest network we study here. We

anticipate that in even bigger regulatory network models, the

corresponding genetic interaction networks should be modular

and provide informative hints on pathways that are activated

with respect to a particular phenotype. Predictions about the

co-occurrence or the mutual exclusivity between gene alter-

ations could be also derived from these networks.

3.3 Mammalian restriction point model

This Boolean model29 was adapted from a mathematical

model based on ordinary differential equations developed by

Novak and Tyson28. The model was built to illustrate the be-

haviour of cells exposed to cycloheximide treatments at differ-

ent times of the cell cycle. The model describes the dynamics

of the restriction point situated in late G1 after which the cell

commits to division even if treated by the drug.

For this small model, the GINs are easier to interpret bio-

logically (Figure 6). The model is built such that if the cell

does not receive any external growth signals, of which CycD

is the sensor, it remains stuck in G1 cell cycle phase. There-

fore, neither CycD nor Rb are included in these networks as

their gain or loss of function would automatically lead to forc-

ing or deleting the phenotypes. The gain of function of the

cell cycle inhibitor p27 is counteracted by the gain of function

of downstream cyclins such as CycA and CycE. Similarly, if

both inhibitors of the G2 and M cyclins are deleted, Cdc20

and cdh1, it is equivalent to overexpressing the cyclins and the

cells can no longer arrest. A similar mechanism is achieved

by overexpressing E2F and deleting cdh1. The role of cdh1

seems to be more prevalent in degrading the cyclins. Note that

cdh1 and Cdc20 are in both genetic interaction networks for

growth arrest and proliferation because the two read-outs are

symmetric. The loss of function of both Cdc20 and cdh1 leads

to a very low probability of arresting the cycle, and a very high

probability for proliferating. The two phenotypes are mutually

exclusive.

3.4 Comparison with experimentally derived genetic in-

teractions

We performed two types of comparisons: first, we compared

the genetic interactions from our method to available experi-

mental results, and second, we compared the genetic interac-

tions between models.

We have compared the results from each of the examples we

have chosen in this analysis with genetic interactions listed in

BioGRID database43. In the database, we queried the genes

that appeared as participating in pairs of genetic interactions

in a significant manner in our three models. We found that

in the MAPK model, TP53 and MDM2 interactions came

out in both BioGRID and our study: TP53 and MDM2 were

identified in a phenotypic suppression type of genetic interac-

tion in BioGRID and we showed that overexpression of both

TP53 and of MDM2 led to a suppressive genetic interaction

with respect to the apoptosis phenotype. The pair ATM and

TP53 seems to be involved in a phenotypic enhancement in

BioGRID, but was not found in our study. In the cell fate

model, we listed three phenotypic suppressions between XIAP

and CASP8, IKK1 and TNF, and BCL2 and CASP8. The

first two were confirmed in our analysis: overexpression of

XIAP and of CASP8 lead to an epistatic interaction with re-

spect to apoptosis in the TNF-activated signal, and deletion

of IKK1 and deletion of TNF lead to an epistatic interaction

with respect to the necrosis (NonACD) phenotype in the TNF-

activated signal. Also, overexpression of IKK1 and deletion

of TNF lead to an epistatic interaction with respect to the

survival phenotype in the TNF-activated signal. The last in-

teraction was not identified with our method. In the mam-

malian restriction point model, there was only one interaction

that appeared in BioGRID and involved a phenotypic enhance-

ment between p21 and p27 which was not found in our anal-

ysis. More details can be found in supplementary materials,

SuppMat Analysis BioGRID. In conclusion, the comparison

showed that some interactions predicted by our method were

indeed confirmed in BioGRID database. This type of com-

parison can serve to validate Boolean models developed for

various molecular mechanisms with respect to known genetic

interactions and provide additional constraints on the choice

of model network topology, logical rules and rate parameters.

Of course, in this analysis one should take into account incom-

pleteness of our knowledge on genetic interactions.

We also compared more in detail the results of the genetic

interactions among the three examples. Unfortunately, there

was no overlap between the three models since the only com-

mon gene was BCL2 between the cell fate and the MAPK

models. We then looked more carefully at the genetic inter-

actions between phenotypes but for each model individually.

With this comparison, we identified the complementary role of

some genes in the networks and confirmed findings from the
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initial publications. The results can be found in supplementary

materials, SuppMat comparison phenotypes.

4 Conclusions

In this manuscript, we suggest a methodology for converting

a logical mathematical model with a set of initial conditions

into the corresponding genetic interaction network character-

izing the behaviour of all single and double mutants in terms

of phenotype probabilities. The advantage of the methodology

is in that it allows:

1) estimating and classifying possible functional interac-

tions between the different elements composing the model;

2) distinguishing extreme cases of mutations amplifying or

masking each other and, based on this, suggesting intervention

points in order to achieve a desired phenotype (such as in16);

3) suggesting experimental designs from the logical mod-

els;

4) detecting controversial (non-intuitive) properties of mu-

tants with respect to expected phenotypes such as nonmono-

tonic genetic interactions;

5) comparing quickly similar logical network models in

terms of their functional properties;

6) validating the model and comparing different models us-

ing available screenings for genetic interactions (such as syn-

thetic lethality screens).

The last point deserves further development. We aim at ex-

tending our methodology using existing databases containing

genetic interactions (similar to what we did with BioGRID43)

for matching the model predictions with genetic interactions

or single mutation phenotypes known from the literature or

from screenings. Moreover, similar to the methodology of pa-

rameter fitting in constructing chemical kinetic models, one

can fit the kinetic rates defined in our continuous-time discrete

approach30 in order to optimize the set of model predictions.

Another set of experimental data that could be used with this

approach is high-throughput cancer data, such as large-scale

mutation landscapes that are collected for series of tumours.

Patterns of co-occurrence or mutual exclusivity of mutations

can reflect action of genetic interactions in cancer cells. For

example, synthetically lethal interactions can lead to the pat-

tern of mutual exclusivity since cancer cells possessing both

synthetically lethal mutations will be eliminated from the cell

population. Using these data for interpretation and validation

of model-based predictions requires the development of a sta-

tistical methodology for detecting statistical patterns in high-

throughput data.

Genetic interaction networks reconstructed from log-

ical mathematical models possess many properties of

experimentally-measured networks. They are characterized

by a variety of types of genetic interactions (with predomi-

nance of masking, e.g., epistatic interactions), modular struc-

ture for sufficiently big discrete models (Figure 1), with

some modules characterized by monochromaticity for within-

module interactions as well as between-module interactions.

Sets of genetic interactions are highly dependent on the phe-

notype with respect to which they are defined and, to less ex-

tent, sensitive to the initial conditions (in other words, to the

molecular context) chosen for performing simulations. These

properties make the obtained genetic interaction networks a

good model for the experimentally-measured ones.

Therefore, we believe that the suggested methodology will

contribute to the toolbox of computational approaches in sys-

tems biology, connected to mathematical modeling of cellular

mechanisms.
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and C. Chaouiya, Biosystems, 2009, 97, 134–139.

34 A. Zinovyev, E. Viara, L. Calzone and E. Barillot, Bioin-

formatics, 2008, 24, 876–877.

35 E. Bonnet, L. Calzone, D. Rovera, G. Stoll, E. Barillot and

A. Zinovyev, Methods Mol Biol, 2013, 1021, 127–146.

36 E. Bonnet, L. Calzone, D. Rovera, G. Stoll, E. Barillot and

A. Zinovyev, BMC Syst Biol, 2013, 7, 18.

37 M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky,

N. Landys, C. Workman, R. Christmas, I. Avila-Campilo,

M. Creech, B. Gross, K. Hanspers, R. Isserlin, R. Kel-

ley, S. Killcoyne, S. Lotia, S. Maere, J. Morris, K. Ono,

V. Pavlovic, A. R. Pico, A. Vailaya, P.-L. Wang, A. Adler,

B. R. Conklin, L. Hood, M. Kuiper, C. Sander, I. Schmule-

vich, B. Schwikowski, G. J. Warner, T. Ideker and G. D.

Bader, Nat Protoc, 2007, 2, 2366–2382.

38 A. Gorban and A. Zinovyev, International Journal of

Computing Anticipatory Systems, 2001, 353–369.

39 Principal Manifolds for Data Visualisation and Dimension

Reduction, LNCSE 58, ed. A. Gorban, B. Kegl, D. Wunsch

and A. Zinovyev, Springer, 2008.

40 A. N. Gorban and A. Zinovyev, Int J Neural Syst, 2010,

20, 219–232.

41 A. N. Gorban, P. A. and A. Zinovyev, Arxiv preprint,

http://arxiv.org/abs/1406.5550, 2014.

42 T. Helikar, B. Kowal, S. McClenathan, M. Bruckner,

T. Rowley, A. Madrahimov, B. Wicks, M. Shrestha,

K. Limbu and J. A. Rogers, BMC Syst Biol, 2012, 6, 96.

43 C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Bre-

itkreutz and M. Tyers, Nucleic Acids Res, 2006, 34, D535–

D539.

8 | 1–14

Page 9 of 16 Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 1 Genetic interaction networks computed for MAPK model, with random initial conditions and for the three phenotypes: apoptosis,

growth arrest and proliferation
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additive: WT<B<A<AB; B<WT<AB<A; WT<A<B<AB; A<AB<WT<B; 

        B<AB<WT<A; AB<B<A<WT; AB<A=B<WT 

epistatic: A=AB<WT<B; WT<A=AB<B; WT<B<A=AB; B<WT<A=AB;  

asynthetic: WT<A=B=AB; A=B=AB<WT 

single-nonmonotonic: A<WT<B<AB; WT<A<AB<B; AB<B<WT<A 

conditional: WT=B<A<AB; WT=B<AB<A; A<AB<WT=B; A<WT=B<AB 

synthetic: WT=A=B<AB; WT<A=B=AB; AB<WT=A=B 

suppressive: WT=A=AB<B; B<WT=A=AB 

non-interactive: B=AB<WT=A; WT=A<B=AB; WT=B<A=AB; WT=A=B=AB 

gain-of-function 

loss-of-function 

Legend 

double-nonmonotonic: WT<AB<B<A; AB<WT<B<A; WT=AB<B<A   

Fig. 2 Colour code for the genetic interaction networks. The name of the interaction and the colour code is in accordance with 5. Only the

rules found in our analyses of the three models are indicated for each interaction
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Fig. 3 Genetic interaction networks computed for cell fate decision model, with random and physiological initial conditions and for the three

considered phenotypes: apoptosis, necrosis and survival
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Fig. 4 Application of non-linear principal manifold analysis for visualizing the distribution of double mutants in the space of phenotype

probabilities. The figure shows projection of phenotype probabilities from multi-dimensional space onto the 2D space of internal coordinates

of the non-linear principal manifold. Each point corresponds to a mutant. A big violet pentagon coresponds to the wild-type model, triangles

to single-element mutant model and circles to double mutants. Gradients of increase of the model phenotypes probabilities are shown by

curved arrows. The gray color in the background visualizes local density of the projections onto the map, allowing to perform cluster analysis

visually.
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Fig. 5 Illustrating epistasis measures for cell fate decision model. A) distribution of ε values for three phenotypes. B) Additive model of

epistasis, solid line shows uncorrected additive null model and dashed line shows the corrected model; an arrow shows a particular double

mutant BAX+/BCL2+, for which the combined effect is stronger than expected by the null model (example of single-nonmonotonic genetic

interaction, A <WT < B < AB); the length of the arrow equals to ε(BAX +/BCL2+) in this case. C) comparison between ε values for the

case of random initial conditions and the physiological initial condition. D) comparison between ε values for two different cell death

phenotypes.
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Fig. 6 Genetic interaction networks computed for restriction point model, with random initial conditions and for the two phenotypes: growth

arrest and proliferation
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The network representation of the cell fate decision model* is used to 
generate a genetic interaction network for the apoptosis phenotype. Most 
genetic interactions are epistatic, single nonmonotonic, and additive**.  
(*Calzone et al., 2010; **Drees et al., 2005) 
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