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The mechanisms governing blood vessel patterning continue to be elucidated using both traditional 

experimentation and computational methods. We present a new approach whereby time-lapse confocal 

imaging of 3D embryoid body constructs is integrated into an agent-based model (ABM) of sprouting 

angiogenesis. An additional Monte Carlo simulation was explored as a control to explore if capillary 

sprout initiations can be modeled as a purely stochastic process. Our rule-based ABM proved to be more 

accurate at predicting both the frequency and location of sprout initiations, suggesting that intercellular 

signals propagated through the cell network provide a sufficient deterministic basis for endothelial cell 

behavior. 
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Agent-based model of angiogenesis simulates 
capillary sprout initiation in multicellular networks 

J. Walpole,a J.C. Chappellb, J.G. Clucerub, F. Mac Gabhannc, V.L. Bautchb, and S. 
M. Peircea 

Many biological processes are controlled by both deterministic and stochastic influences. 
However, efforts to model these systems often rely on either purely stochastic or purely rule-
based methods. To better understand the balance between stochasticity and determinism in 
biological processes a computational approach that incorporates both influences may afford 
additional insight into underlying biological mechanisms that give rise to emergent system 
properties. We apply a combined approach to the simulation and study of angiogenesis, the 
growth of new blood vessels from existing networks. This complex multicellular process 
begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent 
vessels in response to stimulation by exogenous cues. We have constructed an agent-based 
model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and 
location, and we have experimentally validated it using high-resolution time-lapse confocal 
microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that 
purely stochastic simulations could not generate sprout locations as accurately as the rule-
informed agent-based model. These findings support the use of rule-based approaches for 
modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic 
methods. 
 
 

Introduction 

 To understand, harness, and modulate complex systems, 
science must go beyond a deterministic cause-and-effect view 
of the natural world. While some biological subsystems may be 
described using rule-based methods, many must be 
supplemented with probabilistic or stochastic techniques to 
understand, model, and predict the outcomes of biological 
processes1-3. Randomness in model descriptions of a biological 
system can be included at three tiers: (1) the biology itself may 
include stochastic elements or events (e.g. gene expression) that 
are described in the model using stochastic methods 2, 4, (2) 
measurements of the biological system may introduce sampling 
errors that propagate random noise, which should be accounted 
for in a model to understand the underlying biological 
mechanism being sampled; or (3) underlying deterministic 
behavior can be modeled using validated stochastic approaches 
as a method to reduce model complexity and computational 
cost without loss of insight 5, 6. Further, stochastic behavior may 
represent a contextual phenotype – a system may normally exist 
with strict rule-based control but then transition to stochastic 
behavior when certain conditions are met (e.g. chemokine 
signaling or pathological pathway activation)7. Alternatively, a 

system may be stochastic at physiological conditions but 
converted to deterministic behavior when integrated into more 
robust signaling network, such as in bacterial colony 
formation8, 9. 
 We sought to explore this balance of stochastic and rule-
based behaviors in the setting of sprouting angiogenesis, a 
fundamental biological process underlying blood vessel 
network growth throughout development10. In the adult, 
sprouting angiogenesis has roles in both wound healing and 
endometrial vascularization. Additionally, pathologic sprouting 
angiogenesis is implicated in the expansion of solid tumors11-14, 
growth of ectopic endometrial tissue in endometriosis15, 16, and 
in neoangiogenesis of diabetic retinopathy17-19. Sprouting 
angiogenesis can be approximated by five main stages: (1) tip 
cell selection, (2) endothelial stalk extension, (3) stalk guidance 
to neighboring or nearby vessels, (4) anastomosis with a 
neighboring vessel (success) or regression/collapse to the 
originating vessel (failure), and (5) maturation and 
lumenization of anastomosed vessels20. Regardless of the final 
fate of the sprout, this process must begin with appropriate 
selection of a quiescent endothelial cell to undergo phenotype 
switching, becoming a tip cell with increased filopodial 
extension frequency. These cell behaviors, in aggregate and in 
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conjunction with external signaling cues, have been presumed 
to dictate where new vessels initially form within a blood vessel 
network. 
 Regulation of endothelial phenotype switching is closely 
tied to several signaling pathways, including the well-studied 
Notch1/Delta-Like-Ligand 4 (DLL4) intercellular pathway10, 20-

27, which suppresses sprout initiation, and the vascular 
endothelial growth factor receptor (VEGFR) axis that signals to 
increase phenotype switching and sprout frequency10, 28, 29. 
Disruption of either the suppressive pathway (Notch1/DLL4) or 
the activating pathway (VEGF/VEGFR) results in dramatic 
blood vessel phenotypes ranging from early embryonic lethality 
to significant vascular dysmorphogenesis (e.g. hypersprouting, 
hyperbranching phenotypes). Further, there are several isoform 
and dimerization states of VEGFRs allow for differential 
signaling21, 23, 28, 30, 31. In this work, we explore the balance 
between pro-angiogenic VEGFR2 and VEGFR1, which can 
function as a decoy receptor for VEGF. As such, the balance 
between the DLL4 and VEGFR signaling axes is crucial to 
vascular patterning. However, endothelial cell behaviors 
leading to sprout initiations in the context of intercellular 
signaling and capillary network connectivity remain unclear.  
 Computational models offer unique insight into the study of 
biological systems, enabling us to query unmeasurable, 
unobservable, or inaccessible metrics pertinent to biomedical 
science32-37. In assembling a model, the investigator is able to 
explicitly define methods for simulating each aspect of the 
biological processes they are modeling – either as stochastic or 
as rule-based. Comparisons between models that assume 
different relative contributions of stochastic and rule-based 
behaviors empower investigation of the underlying system 
properties by contrasting the accuracy of each technique. The 
relevant question then becomes: what do we learn from 
modeling a system using separate rule-based and stochastic 
techniques that both provide verifiable results? 
 Several other computational models have been developed 
using primarily rule-based methods to explore the process of 
sprouting angiogenesis with single-cell and subcellular 
resolution. These include ABMs of endothelial phenotype 
switching that focus on filopodial extension and intercellular 
Notch1 signaling27. Bentley and colleagues have extended this 
model to bone regrowth as the multiscale model of osteogenesis 
and sprouting angiogenesis incorporating lateral inhibition of 
endothelial cells (MOSAIC)38, and more recently used it to 
explore endothelial cell motility in the context of the extending 
sprout stalk with and without genetic mosaics39. At the 
subcellular level, Hashambhoy et al. have used mass action 
kinetics models to explore VEGF diffusion, VEGFR 
dimerization, and surface signaling in simulated endothelial 
extensions40. Finally, Kleinstreuer et al. used a Cellular Potts 
Model to study vasculogenesis of the fetal liver with 
subsequent endothelial sprout formation as a screening tool for 
high throughput toxicology analysis41. Though the specific 
approaches differ, these models all sufficiently capture and 
explore the possibility for a deterministic (or rule-informed) 
basis for cellular behaviors in sprouting angiogenesis at 

multiple resolutions. However, while these rule-based 
approaches are certainly valid, they do not compare their results 
to stochastic alternatives that may be similarly predictive of 
biological behavior. 
 Here, we describe a new agent based model (ABM) of 
angiogenic sprout initiation informed by high-resolution 
dynamic spatial and temporal data from the three-dimensional 
embryoid body (EB) model of embryogenesis42. Our ABM 
includes Notch1-DLL4 and VEGF signaling within and 
between cells to predict the frequency and location of 
endothelial sprout initiation events in image-based realistic 
multicellular networks and is validated against the data from 
the EB time-lapse movies. This is the first report of validating 
an ABM one-to-one with dynamic data of angiogenic sprouts. 
Further, we constructed a Monte Carlo simulation as a 
benchmark for asserting accuracy of sprout localization using 
purely stochastic methods. By comparing the rule-based ABM 
to the Monte Carlo we demonstrate that rule-based models 
more accurately simulate endothelial cell sprout initiation 
location. This combined approach supports the hypothesis that 
the location of sprout initiations in multicellular endothelial 
networks occur with in a rule-based manner, informed by 
underlying cell-signaling pathways. 

Experimental	
  

Embryoid body experiments 

Maintenance and differentiation of mouse embryonic stem (ES) 
cells was described previously.43 Stable expression of PECAM-
eGFP in ES cell lines was previously reported.44 Real-time 
imaging of day 7-8 differentiating ES cell cultures was 
conducted as follows: confocal images were acquired at 4-10 
min intervals for 16-20 hr with an Olympus FluoView FV1000 
or FV10i system (full environmental controls) using either a 
10× or 20× objective. At each location, a z-stack of 6-8 images 
was acquired with 4-6 microns between focal planes. These 
images were compressed post-acquisition into a single frame 
for each time point. 

Agent based model 

 Agent and time definitions. The ABM was built using 
Netlogo 5.0 and data were analyzed using MATLAB45, 46. Each 
endothelial cell (EC) is spatially defined by eight membrane 
nodes (mNode) and a single centroid “nucleus” linked to each 
membrane node; the mNodes are connected to each other by 
membrane links (Figure 1A). The two-dimensional space 
occupied by cells is discretized into 10 µm x 10 µm pixels. 
During the course of the simulation the each cell adjusts its 
shape to approach an average endothelial cell surface area 
(ECSA, Table 1); this is achieved by having links convey 
movement between their attached nodes – when a node is 
moved all linked nodes attempt to follow but may be hindered 
by other links. The time step of the simulation is 24 minutes, 
enough time to resolve micron-scale changes in cell position 
and still capture changes in protein levels 47 (Figure 2). 
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 Modeling molecular biology: VEGF and DLL4 signaling 
axes. Each pixel stores concentration values of soluble 
VEGFR1 (sVEGFR1) and VEGF. sVEGFR1 is secreted by 
endothelial cells and in this simulation are produced by the 
mNodes. VEGF is secreted by cells throughout the tissue and 
therefore is produced by the pixels in this model. Diffusion is 
included using a simple distribution command – 25% of each 
diffusible species in each pixel is equally distributed among its 
eight neighboring pixels (Moore neighborhood).  
 Receptor binding kinetics are assumed to be 1:1 interactions 
between dimerized VEGFRs and dimeric VEGF48, 49– if a pixel 
contains VEGF and also includes either (1) an mNode with 
membrane-bound VEGFR1 (mVEGFR1), (2) an mNode with 
VEGFR2, or (3) sVEGFR1, then binding will occur until one of 
the pools (ligand or receptor) is completely depleted. For 
example, if there 10 molecules of VEGF and 100 available 
VEGFR2, the ABM will remove all VEGF from the pixel, 
while the local mNode reduces VEGFR2 to 90, and adds 10 
phosphorylated VEGFR2 (pR2). When binding sVEGFR1 or 
mVEGFR1 there is no downstream function – receptor-ligand 
complexes are removed from the cell surface without further 
impact on signaling. These binding rules do not account for 
equilibria or mass action kinetics, favoring simpler, lower 
resolution molecular interactions at the multicellular scale. 
When VEGFR2 is converted to pR2 it increases the DLL4 
production in that cell, following the formula: 
 
 DLL4!!! =DLL4! + 𝑘  ×  pR2 − (𝑘deg  ×  DLL4t) (1) 
 
where DLL4t+1 expression level is defined as the current 
amount of DLL4t, increased by activation of pR2, and 
decreased at a constant degradation rate (Figure 2).  
 Based on what is known about the molecular biology of 
these families in endothelial cells, production rates of the 
VEGFRs are directly related to DLL4 expression on 
neighboring cells by the formula: 
 
 𝑥min = 𝑥min+ (𝑥max− 𝑥min)𝑒!! DLL4neighbors (2) 
 
where ẋ is the production rate per time-step of receptor x, and 
xmin and xmax are the minimum and maximum production rates, 
respectively. The DLL4 content of each neighboring cell 
(defined as having an intercellular link between mNodes) is 
summed and then scaled by the Notch1 transfer coefficient α. 
When α is 0 there is no information transfer between 
neighboring cells. Notch1 signaling alters the transcriptional 
regulation of VEGFRs, increasing the production of both 
sVEGFR1 and mVEGFR1 and decreasing the production of 
VEGFR2 (Figure 2). VEGFR production rates are updated with 
each time-step. 
 Initial production rates for VEGF and VEGFRs are 
estimated based on literature-derived values (Table 1). In the 
case of Notch1 and DLL4, the initial values were set at 0 and 
instantiated based on Equation 2 and basal production rates. 
Minimum and maximum production rates (xmin and xmax, 

respectively) were estimated to be two orders of magnitude 
above and below the basal production rate. 
 Phenotype switch from quiescent to tip cell. When the 
pR2 levels on an endothelial cell in the model are above the tip 
cell activation threshold (β, Table 1) they undergo transition to 
the tip cell phenotype. Activated tip cells respond to VEGF 
signaling via chemotaxis towards the nearest source of VEGF. 
To calculate the direction of movement, the cell determines the 
mNode with highest pR2, and moves in the direction of the 
neighboring pixel with the highest VEGF concentration. This 
ability to sense VEGF concentrations at a distance of up to 10 
µm accounts for the effects of filopodial extension without 
explicitly modeling individual filopodia in the ABM. 
Endothelial cells in the tip cell state that drop below the tip cell 
activation threshold return to a quiescent phenotype. 
 Rendering embryoid body data as ABM geometries. 
Projections of confocal image stacks were converted to 16-bit 
intensity maps and loaded into the ABM using a custom image 
processing program written in Netlogo (Figure 1B). Loaded 
images were then converted to starting ABM configurations by 
manually selecting cell locations and then allowing for 
membrane shape change to approach the average endothelial 
cell surface area, ECSA. Using the EB image as a guide, each 
cell mNode could be manually edited to better match the 
geometric configuration of the fluorescence intensity data. The 
EB image was then cleared and the resulting vessel geometry 
file exported for use in simulations (Figure 1B). 
 Parameter estimation of Notch Transfer Coefficient. 
From each of three EB movies a quadrant was selected and 
used as training data to determine the Notch Transfer 
Coefficient (α, Equation 2) for subsequent simulations. 
Simulation of sprouting using these starting configurations was 
performed over a parameter range from 0 to 2 in increments of 
0.2, yielding a total of 16 different parameter values, each 
evaluated in 20 replicate ABM simulation runs. The number of 
sprout initiations over the course of each simulation was 
compared to raw sprout initiation counts from the paired EB 
movie and the best fit Notch Transfer Coefficient value was 
determined. 
 The Notch Transfer Coefficient value that generated the 
best fit from the parameterization was then validated in seven 
additional, independent EB Movie quadrants to confirm its 
accuracy and robustness across different initial network 
geometries. An example of true positive predictions as 
compared to false positives is shown in Figure 4B. 
 Sensitivity analysis. A local approach was used to evaluate 
sensitivity to the ABM Notch Transfer Coefficient: all other 
variables were held constant while sampling the parameter 
space of the Notch Transfer Coefficient between 0 and 2.0 
using a 0.2 step size. A total of 20 simulations were run at each 
parameter value for each of the eleven total starting geometries 
defined by EB Movie quadrants. 
 Monte Carlo analysis of stochastic sprouting without 
molecular control. For each EB movie quadrant, Monte Carlo 
simulations wer performed using Netlogo. Unlike the ABM, the 
Monte Carlo simulation randomly selects endothelial cells to 
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undergo phenotype switch to tip cells (i.e. this method does not 
include the molecular mechanisms of VEGF and Notch1 
signaling). The cells chosen were selected from a uniform 
distribution with replacement – this allowed the same cell to be 
chosen to be a tip cell more than once, as might occur in the 
ABM or EB model if a tip cell becomes quiescent and then 
reactivates at a later time point. The Monte Carlo simulations 
were not tasked with predicting the number of sprout initiation 
events; rather, the number of sprout initiation events (i.e. 
number of tip cell selection events) was drawn from a normal 
distribution with mean and standard deviation taken from ABM 
predictions. Each EB movie quadrant was evaluated over 1000 
replicates. 
 The set of available sprout initiation locations available to 
the Monte Carlo simulation was bounded by the location of 
endothelial cells in the starting configurations of each EB 
movie quadrant. A performance index was defined as the 
difference between true positive frequencies in the ABM and 
Monte Carlo analyses – a positive value indicates better 
predictive performance of the ABM whereas a negative value 
indicates better predictive power of the Monte Carlo 
simulation. 
 Genetic algorithm. A genetic algorithm (GA) was applied 
to four parameters of the ABM (Notch Transfer Coefficient, tip 
cell activation threshold, sVEGFR1 production rate, and 
mVEGFR1 production rates) with the goal of maximizing the 
true positive frequency of the worst performing simulation, 
using the following objective function: 
 
   1−𝑋!" = ℱ(𝑥!,𝑥!,𝑥!,𝑥!)           (3) 
 
where XTP is the true positive rate achieved by the ABM using a 
set of parameter values xn. Minimum values for each parameter 
(xn in Equation 3) were set to zero while maximum values were 
set to 100x the initial parameter value (Table 1). The simulation 
was run for 190 generations with 20 ABM replicates at each 
generation to determine an average true positive frequency. 
 Statistical analysis. Confidence intervals, Pearson’s 
correlation, and partial least squares regression analysis were 
performed using GraphPad Prism version 5.0d for Mac OSX. 
Unless otherwise stated, significance was asserted at P ≤ 0.05. 

Results	
  

 ABM Notch Transfer Coefficient parameter estimation. 
Lacking a literature-derived value for the Notch Transfer 
Coefficient (α, Equation 2), the key parameter governing the 
strength of Notch1 intercellular signaling, necessitated the use 
of parameter estimation. A single quadrant from each of three 
independent EB movies was evaluated over 16 different Notch 
Transfer Coefficient (α) parameter values (Figure 3D). As the 
strength of Notch lateral inhibition increases (increasing α), the 
number of sprout initiations occurring over the course of the 
simulations decreases, as would be expected. Above a value of 
α = 1.6 all three simulated movie quadrants converged to 0 
sprout initiation events, effectively preventing any phenotype 

switching. Conversely, when the Notch Transfer Coefficient 
parameter was maintained at 0, no lateral inhibition was 
possible, and every cell in the simulation attempted to sprout. A 
Notch Transfer Coefficient parameter of approximately 0.6 
resulted in agreement between the ABM predictions of sprout 
initiations and the observed sprout initiations in the three 
training quadrants (Figure 3D). 
 ABM simulates sprout initiation frequency. We sought to 
validate the Notch Transfer coefficient value of 0.6 established 
by parameter estimation with 3 training EB movie quadrants. 
To achieve this, 8 additional test EB movie quadrants were 
analyzed (Figure 3E). For all but one simulation (M3Q3), the 
observed number of sprout initiations in the corresponding EB 
movie quadrant fell within the ABM predicted 95% confidence 
interval of sprout initiations. This discrepancy for M3Q3 may 
be due to having a high number of sprout initiations occurring 
in close proximity in the EB movies – two sprout initiations 
that occur in close proximity may be underestimated by the 
ABM which predicts only one sprout initiation. 
 Sensitivity of ABM to Notch Transfer Coefficient 
parameter. All EB movie quadrants were evaluated for 
sensitivity to the Notch Transfer Coefficient. Across the range 
of tested parameter values (α = 0.0-2.0) all simulated vessel 
networks demonstrated a sprout initiation frequency that was 
inversely proportional to the Notch Transfer Coefficient (Figure 
3F). Further, we performed a bidirectional sensitivity analysis 
for sprout initiation frequency, simultaneously varying both the 
Notch Transfer Coefficient (α) and the tip cell activation 
threshold (β). While the sensitivity to the Notch Transfer 
Coefficient is preserved across values of the tip cell activation 
threshold, the latter demonstrates less of an affect on the former 
(Figure S1). In all EB movies, the sprout initiation frequency 
was less sensitive to the tip cell activation threshold than the 
Notch Transfer Coefficient.  
 Despite variations in vessel network morphology such as 
number of endothelial cells and vessel length density (Figure 
3A-C), all simulated movie responses could be estimated using 
linear functions within the parameter range from 0.0 to 1.0 
(Figure 3G) with coefficients of determination greater than 0.80 
for all simulations except one (M3Q3, R2 = 0.70) and with non-
zero slopes that were statistically significant (p < 0.05). These 
data demonstrate sensitivity to the Notch Transfer Coefficient 
across all tested EB movie vessel networks 
 Use of a Monte Carlo model to evaluate accuracy of 
ABM-simulated sprout initiation locations. The trued 
positive frequency of ABM sprout initiation locations was 
scored using the methods described in Figure 1B. A Monte 
Carlo analysis was performed to determine the likelihood of 
correctly predicting sprout initiation locations purely by 
random chance, given the mean and standard deviation of 
paired ABM simulation sprout initiation events as input. The 
frequency of true positive events (determined by comparison to 
the observed sprout initiations in the EB movies) as generated 
by Monte Carlo simulation was compared to that of the ABM 
in the range of sprout initiation frequency when the Notch 
Transfer Coefficient parameter is set to 0.6 (Figure 4A).  
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 Using the difference in true positive frequency as a 
performance index we demonstrated that the ABM has higher 
spatial accuracy in 7 of 11 starting geometries (Figure 4B). 
There appeared to be no correlation between performance index 
and initial conditions of the EB movie networks, such as 
number of sprout initiations, number of starting endothelial 
cells, vessel length density, or sprout initiation density (Figure 
4C-F). 
 Unsupervised parameter identification in ABM using 
GA. The parameter values used in the ABM simulations were 
literature-derived values (Table 1), with the exception of the 
Notch Transfer Coefficient, which was estimated (Figure 3). 
However, it is possible that a set of optimal parameters could 
improve the performance index of the ABM simulations. To 
explore this possibility, we used an unsupervised approach to 
search for a set of parameter values that could maximize the 
true positive frequency of the simulation with the worst 
performance index, M1Q1 (Figure 4B). 
 We used a GA to identify, in an unsupervised manner, the 
values of four key parameters (Notch Transfer Coefficient, tip 
cell activation threshold, sVEGFR1 production rate, VEGFR1 
production rate, Equation 3) over the range from 0 to 100 times 
their original simulation values. As shown in Figure 5A the true 
positive frequency of the GA derived parameter values 
approach 40% accuracy. This rank ordering of all generations 
demonstrates four populations of outcomes: zero accuracy (no 
sprout initiations), low accuracy (less than 10%), medium 
accuracy (10%), and the highest accuracy (40%). Notably, these 
are all less than the original true positive frequency of the ABM 
(approximately 60%, Figure 4A). 
 Of interest, the GA obtained its best results when 
minimizing the tip cell activation threshold for phenotype 
switch from quiescent endothelium to tip cell. Conversely, 
reduced values of the Notch Transfer Coefficient (α) were 
associated with poorer performing populations (Figure 5C). 
Additionally, for the highest true positive frequency population 
(defined as >36%), the average value of α was 0.63 (Figure 
5B), in agreement with the parameter estimation performed in 
Figure 3. 
 The GA derived production rates of mVEGFR1 and 
sVEGFR1 were both approximately six orders of magnitude 
higher than the values used in Table 1, with the ratio of soluble 
to membrane bound production being 1.6 (data not shown). 
 

Conclusions 

 With the advent of innovations in intravital microscopy, 
such as light sheet microscopy, confocal, and multi-photon 
microscopy, imaging dynamic processes in living tissues and in 
ex vivo engineered tissue model systems has become more 
feasible50-52. These approaches generate data-rich movies that 
capture the dynamic behaviors of cells as they migrate within 
tissues and form multicellular structures, such as blood 
vessels53-55. Viewing movies of tissue morphogenesis prompts 
the observer to ask a number of questions about underlying 

mechanisms, such as: are these behaviors defined by rule-based 
pathways? Are they the result of stochastic biological noise? 
Or, perhaps, are they controlled by some combination of both 
rule-based and stochastic influences? By combining 
computational modeling with confocal imaging we have 
attempted to address these questions in the context of 
angiogenic sprouting. We compared two different modeling 
approaches: (1) an ABM in which endothelial cell behaviors are 
governed by a set of rules and (2) a Monte Carlo simulation 
with purely stochastic cell behaviors, uninformed by signaling 
pathways.  
 In developing our ABM, we had to make several 
simplifying assumptions. In particular, diffusion and binding 
kinetics play important roles in signaling through the VEGFR 
family, including homo- and heterodimerization states that were 
not included in the ABM. Furthermore, VEGF itself was 
modeled as a single diffusive isoform with properties similar to 
the VEGF121 splice variant that lacks a heparin binding 
domain31. We feel these assumptions are valid in the context of 
simulating the locations and frequencies of sprout initiations; 
however, simulating subsequent steps in sprouting 
angiogenesis, such as extension of the sprout away from its 
parent blood vessel, would likely require more high-resolution 
simulation of these molecular pathways, incorporating the 
physics of particle diffusion and mass action kinetics40, 48, 49. 
Furthermore, a similar irreversible binding kinetics model has 
been suggested for the related Epidermal Growth Factor (EGF) 
membrane-bound polypeptide signaling receptor complex56. It 
is important to note that while the ABM simulations are driven 
by deterministic rules, diffusion of VEGF was modeled as a 
stochastic process, allowing for variation in receptor binding 
for each simulation. 
 Additionally, the ABM demonstrates sensitivity to the 
Notch Transfer Coefficient with a response region that can be 
approximated by a linear response with a non-zero slope. This 
permits tuning of the model to additional experimental 
conditions. For example, decreasing the Notch Transfer 
Coefficient parameter mimics inhibition of the Notch1-DLL4 
pathway and produces increased sprout initiations as would be 
expected by small molecule inhibition (e.g. the gamma-
secretase inhibitor DAPT)23, 57. 
 The Monte Carlo simulation, with no molecular 
mechanisms included, was constructed to compare a purely 
stochastic method of modeling endothelial cell behavior against 
ruled-based ABM-generated sprout initiation locations. 
Whereas we could directly compare the number of sprout 
initiations simulated by the ABM to the number of sprout 
initiations observed in the EB movies, there was no gold 
standard for evaluating the accuracy of sprout initiation 
locations. The Monte Carlo provided a benchmark for assigning 
a performance index (Figure 4B) of ABM accuracy as 
compared to the accuracy of random chance. 
 We demonstrate that the ABM accounting for Notch1-
DLL4 lateral inhibition under control of VEGFR regulation is 
capable of simulating the frequency of angiogenic sprout 
initiations within the EB (Figure 3E). Despite disparate initial 
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endothelial cell network configurations from one EB movie to 
the next (Figure 3A-C), the ABM predicted the correct number 
of sprout initiation events in all but one of the EB movie 
quadrants. Further, the ABM outperforms the Monte Carlo 
simulation of endothelial sprout initiation location in 7 of 11 
EB movies (Figure 4B), strongly suggesting that deterministic 
rules are necessary for accurately simulating sprout initiation 
locations.  
 Using a GA, we attempted to improve the performance of 
an ABM with the lowest performance index as defined by the 
Monte Carlo. Four key parameters were selected and 
systematically tested by the GA to maximize the ABM true 
positive accuracy for that movie quadrant (Equation 3). Despite 
the use of this optimization algorithm, there was no 
improvement in the ABM’s ability to accurately simulate sprout 
locations. Note that the objective function employed (Equation 
3) does not penalize for false positive predictions – our primary 
use of the GA was to test for a parameter set that improved 
upon our literature-derived values for predicting sprout 
initiations. As an alternative, using an objective function that 
negatively weighted false positives would potentially provide a 
more constrained parameter set. Nevertheless, as compared to 
the values obtained in an unsupervised manner by the GA using 
a less conservative objective function, literature-derived 
parameter values are better approximations of the underlying 
biological processes that they describe. 
 Taken together, our use of a Monte Carlo simulation and a 
GA optimization algorithm to score ABM performance and 
attempt to improve upon that performance, respectively, lead us 
to conclude that inclusion of additional biological mechanisms 
in future iterations of the ABM may be necessary to improve its 
predictive capabilities. We speculate that the addition of new 
rules accounting for the presence of perivascular cells, for 
example, or that simulate VEGF molecular diffusion and 
receptor binding at the cell surface with higher spatial 
resolution, may extend the ABM’s capabilities. 
 Others have also begun to explore how accurately 
angiogenic sprouting can be modeled by purely stochastic 
methods. Silva et al. recently investigated the frequency of 
sprouting events in a fibrin bead assay by comparison to a 
theoretical Poisson distribution and demonstrated that this 
probabilistic approach consistently underestimated sprout 
frequency58. They concluded that enrichment with “efficient” 
sprouting endothelial cells was responsible for the discrepancy 
– indeed, isolation of a population of endothelial cells 
expressing low levels of CD143 and subsequent analysis in 
bead sprouting assays demonstrated significant increase in 
sprout frequency over both control (mixed) and isolated 
“inefficient” sprouting cells. Thus, after demonstrating that a 
probabilistic model insufficiently captured the features of fibrin 
bead sprouting, a new hypothesis – the existence of populations 
of endothelial cells with differential sprouting capacity – was 
generated and tested. Including this new rule-based cellular 
behavior (efficient or inefficient sprouting) into the theoretical 
Poisson distribution generated sprout frequency predictions in 
agreement with experimentally observed results. Our present 

study is consistent with theirs, and suggests that probabilistic 
models that lack the inclusion of rule-based mechanisms may 
be insufficient for accurately simulating sprouting 
angiogenesis.  
 Our manuscript represents a first step towards greater 
understanding of sprouting angiogenesis through the integration 
of ex vivo, dynamic imaging techniques and computational 
simulations with both rule-based and stochastic methods. Our 
ABM uses a minimal set of rules to simulate, with considerable 
accuracy, the frequency and locations of endothelial sprout 
initiations in the EB during sprouting angiogenesis. By 
comparing ABM to Monte Carlo predictions, we were able to 
quantitate the spatial accuracy of the ABM and evaluate 
whether or not unsupervised parameter exploration improved 
its performance. Moreover, our simulations suggested that 
deterministic rules that account for key biological mechanisms 
are better able to recapitulate experimentally observed 
angiogenic sprout initiations than random chance, suggesting 
that rule-based influences predominate over stochastic 
influences in this setting of embryonic vascular development. 
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Table 1 ABM Parameter Values 
Parameter Description Value Reference 
ECSA EC Surface Area 962E-8 cm2 59 
dsVEGFR1 Initial sVEGFR1 Secretion Rate 2.8E-10 nmol cm-2 ·s-1 40 
dmVEGFR1 Initial mVEGFR1 Insertion Rate 2.8E-10 nmol cm-2 ·s-1 40 
dVEGFR2 Initial VEGFR2 Insertion Rate 8.4E-10 nmol cm-2 ·s-1  48 
dVEGF VEGF Production Rate 5.0E-10 nmol cm-2 ·s-1 40 
dDLL4 Initial DLL4 Insertion Rate 0 Estimated 
dNOTCH Initial Notch Insertion Rate 0 Estimated 
xmin Minimum insertion rate 1.0E-12 nmol cm-2 ·s-1 Estimated 
xmax Maximum insertion rate 1.0E-8 nmol cm-2 ·s-1 Estimated 
ECctx Chemotactic Migration Rate 30 µm ·h-1 Estimated from 47, 60, 61 
α Notch Transfer Coefficient Model Specific Parameter Fit 
β Tip Cell Activation Threshold Model Specific Estimated 
 
Table 2 Summarized ABM Rules 
Rules Key Parameters Reference 
Endothelial cells migrate towards the highest concentration of VEGF, 
based on VEGFR2 activation 

ECctx 10, 47, 60-62 

Increased VEGFR2 activation increases DLL4 expression  57, 63, 64 
DLL4 activates Notch1, resulting in decreased VEGFR2 expression α 57, 63 
mVEGFR1 and sVEGFR1 act as a decoy receptors to reduce local 
VEGF concentrations 

 30, 65 

VEGFR2 activation induces a tip cell phenotype characterized by 
increased EC sprouting 

β 10, 66 
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Figure Legend 

 
Figure 1: Construction of ABM from experimental time-lapse movies. Each cell is comprised of multiple agents including 
mNodes, nuclei, inter-, and intra-cellular links as shown in the cartoon (A). The embryoid body movie’s initial frame is converted 
to an ABM representation to match EC locations. Simulation predictions of sprout initiations (circles) are then compared to 
observed sprout initiations from the EB movie (squares) and scored as true positive or false positive (B). 
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Figure 2: ABM workflow. Each of the main subroutines occur sequentially at every time step: section and binding, rate 
adjustment, and phenotype switching and chemotaxis. 
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Figure 3: Parameterization and validation of ABM based on a diverse population of EB Movies. The vessel network characteristics 
of each EB Movie are not uniform and represent a diverse sampling of possible EC network architectures (A-C). Using three EB 
Movies the ABM Notch Transfer Coefficient was parameterized to predict the number of sprout initiations (D). The Notch 
Transfer Coefficient value of 0.6 was then tested in all other EB Movies. The number of sprout initiations observed in the EB 
Movies (red squares) is shown to fall within the 95% confidence interval of ABM predictions (black circles and error bars, E). 
Perfoming the same sweep of the Notch Transfer Coefficient from 0.0 through 2.0 for all EB Movies demonstrates a similar trend, 
possessing a linear response region from 0.0 to 1.0 (shaded region is one standard deviation, F,G). 
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Figure 4: Comparing ABM and Monte Carlo predictions of sprout initiation locations. For each movie, the Monte Carlo (red) and 
ABM (black) prediction of sprout initiations (x-axis) and true positive frequency (y-axis) were compared (SEM, A). A 
performance index, defined as the difference between ABM and Monte Carlo true positive frequency, was calculated. The ABM 
outperforms the Monte Carlo simulation in 7 out of 11 EB Movie simulations (Green Bars, B). C-F, Metrics of EC network 
structure from each EB Movie plotted as a function of the performance index; no correlation could be discerned. 
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Figure 5: Parameter optimization using genetic algorithm to improve performance index. The true positive frequency for each 
generation was plotted in increasing rank order to highlight four distinct outcome populations: no sprouting, low-, medium-, and 
high-populations (mean ± SD, A). The Notch Transfer Coefficient (α) was plotted using the same rank-ordered generations and 
found to approach a value of 0.6 (B). To achieve improved true positive frequency the genetic algorithm attempted to minimize the 
tip cell activation threshold for phenotype switch from quiescent EC to tip cell (C).  
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