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Abstract 1 

The impact of genome-scale human metabolic models on human systems biology and 2 

medical sciences is becoming greater, thanks to increasing volumes of model building 3 

platforms and publicly available omics data. The genome-scale human metabolic models 4 

started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of 5 

healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we 6 

review recent trends in genome-scale human metabolic modeling, including various generic 7 

and tissue/cell type-specific human metabolic models developed to date, and the methods, 8 

databases and platforms used to construct them. For generic human metabolic models, we 9 

pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. 10 

Draft and high-quality tissue/cell type-specific human metabolic models have also been 11 

generated using these generic human metabolic models. Integration of tissue/cell type-12 

specific omics data with the generic human metabolic models is the key step, and we discuss 13 

omics data and their integration methods to achieve this task. Initial version of the tissue/cell 14 

type-specific human metabolic models can further be computationally refined through gap 15 

filling, reaction directionality assignment and subcellular localization of metabolic reactions. 16 

We review relevant tools for this model refinement procedure as well. Finally, we suggest the 17 

direction of further studies on reconstructing an improved human metabolic model. 18 

 19 

 20 

 21 

 22 

  23 
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Introduction 1 

Genome-scale models (GSMs) of metabolism continue to be an important tool in systems 2 

biology by providing snapshots of the global metabolism under given genetic and 3 

environmental conditions. A fundamental principle of GSM reconstruction lies in mass 4 

balance of metabolites, the assumption of pseudo-steady state and the use of a stoichiometric 5 

matrix to run simulations using numerical optimization
1
. This modeling approach is called 6 

constraints-based modeling or more formerly constraint-based reconstruction and analysis 7 

(COBRA) because genetic, environmental and physicochemical variables (e.g., gene 8 

inactivation, specific nutrient availability and reaction directionality, respectively) are 9 

incorporated into the GSMs in the form of constraints which then are numerically considered 10 

during optimization procedure for the prediction of intracellular flux values. Due to its ease 11 

of implementation and relatively high predictive power, especially for microorganisms, 12 

constraints-based metabolic modeling and simulation have contributed to a diverse array of 13 

applications in the fields of systems biology and metabolic engineering, for example 14 

prediction of gene manipulation targets in metabolic engineering
2
, and prediction of drug 15 

targets in microbial pathogens
3
 and abnormal human cells (e.g., hepatocytes from patients 16 

with non-alcoholic fatty liver disease)
4
. 17 

Advances in metabolic modeling and the increasing availability of high-quality 18 

omics information have enabled construction of models not only for prokaryotes, but also for 19 

higher organisms, including eukaryotes. The GSM of the most widely employed bacterium 20 

Escherichia coli was reported in 2000 for the first time
5
, while the first GSM of eukaryotic 21 

metabolism came from Saccharomyces cerevisiae in 2003
6
. In addition to many more GSMs 22 

for a number of organisms developed since then, the first GSM of human metabolism (Recon 23 

1) was released in 2007. This human model was created by thorough manual curation of 24 
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biochemical data generated over more than half a century
7
. Recon 1 subsequently ignited 1 

further studies of constraints-based metabolic modeling specific to human, in particular 2 

development of omics data integration methods to build tissue/cell type-specific metabolic 3 

models, as well as model refinement methods to improve the quality of the model. It has 4 

become apparent that novel methods of constraints-based modeling and simulation are 5 

increasingly being developed for human systems to address the biochemical and genetic 6 

complexity of human metabolism because conventional constraints-based modeling and 7 

simulation methods primarily developed for microorganisms cannot be directly applied to the 8 

human models
8
. Among many relevant challenges, omics data integration with metabolic 9 

models is one of more important challenges in human metabolic modeling in order to 10 

generate tissue/cell type-specific metabolic models. Subcellular localization of metabolic 11 

reactions is also critical step in this field, and gene-protein-reaction (GPR) information needs 12 

to be more carefully refined with consideration of alternative splicing of each genes. Such 13 

challenges need to be explicitly discussed. 14 

 Here we review recent trends in human metabolic modeling with emphasis on 15 

tissue/cell-specific human metabolic models developed so far, and the methods used for their 16 

construction and refinement; high-throughput tools employed to build functional human 17 

metabolic models through the use of omics data and the methods to computationally fine-tune 18 

the initial version of the model are reviewed. Also, we discuss current challenges to further 19 

improving the human metabolic modeling approaches using omics data. More refined human 20 

metabolic models will certainly contribute to better understanding and treatment of various 21 

metabolic disorders (e.g., diabetes) and cancers that are highly associated with abnormal 22 

expression patterns of metabolic genes. 23 

 24 
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Current status of genome-scale human metabolic models 1 

A unique aspect of human metabolic models in comparison with those of microorganisms is 2 

the requirement of generic metabolic models, which intend to cover all the known metabolic 3 

reactions according to the entire human genome. An obvious reason for this is that cells of 4 

different tissues from one person possess the same genomic information, but show 5 

differentiated, tissue-specific gene expression patterns. Such feature suggests the importance 6 

of developing a high quality generic metabolic model, as this generic version serves as a 7 

template model to derive tissue/cell-type-specific metabolic models based on the gene 8 

expression and other omics data. Context-specific models refer to such metabolic models 9 

derived from the original generic model, or models developed and simulated under specified 10 

genetic and/or environmental conditions. Obviously, the context-specific metabolic models 11 

will show poor performance if the generic models used are of low quality. Consequently, the 12 

early versions of genome-scale human metabolic models, Recon 1
7
 and Edinburgh Human 13 

Metabolic Network (EHMN)
9
, were constructed through thoughtfully planned manual 14 

curation in order to validate each metabolic reaction to the greatest extent. 15 

 At the moment, the most comprehensive generic human metabolic models are Recon 16 

2
10

 and HMR 2.0
4
. These two generic models were created by integrating previously 17 

developed models and incorporating additional and updated biochemical content obtained 18 

from databases and literature. Recon 2 was developed by merging the metabolic contents of 19 

EHMN, HepatoNet1
11
, an acyl carnitine and fatty-acid oxidation module

12
, and a human 20 

small intestinal enterocyte model
13
 with those of Recon 1. In a similar manner, HMR 2.0 was 21 

developed by merging metabolic information from several comprehensive human metabolic 22 

models such as Recon 1, EHMN, HepatoNet1, iHuman1512
14
 and iAdipocytes1809

15
, as well 23 

as from the four major metabolic databases: KEGG
16

, HumanCyc
17

, LIPID MAPS 24 
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Lipidomics Gateway
18

 and REACTOME
19
. In particular, the HMR 2.0 intended to strengthen 1 

its description of lipid metabolism. The objective behind the development of these two 2 

generic human metabolic models is to complete the models as comprehensively as possible 3 

by covering virtually all the experimentally and theoretically known metabolic reactions. As 4 

of January 2015, Recon 2 and HMR 2.0 cover 1789 genes (7440 reaction and 5063 5 

metabolites) and 3765 genes (8181 reactions and 5546 metabolites), respectively. The Recon 6 

and HMR series are regularly updated, and their COBRA-compliant SBML and .mat files are 7 

provided through their repositories, Recon X (http://humanmetabolism.org/) and Human 8 

Metabolic Atlas (http://humanmetabolism.org/), respectively. In addition, the Human Metabolic 9 

Atlas provides various context-specific human models derived from the HMR 2.0. 10 

Integration of tissue/cell type-specific omics data with the generic human metabolic 11 

model has become a key practice to generate high-quality, context-specific metabolic 12 

models
20

 (Fig. 1). Such metabolic models generated from Recon 1 include: hepatic metabolic 13 

models by Jerby et al.
21
 and HepatoNet1

11
; a multi-cellular brain metabolic model consisting 14 

of three neuron cells and astrocyte
22

; a kidney metabolic model
23

; the alveolar macrophage 15 

model iAB-AMØ-1410
24
; a multi-tissue metabolic model consisting of hepatocyte, myocyte 16 

and adipocyte
25

; a heart specific model by Zhao and Huang
26

; a cardiomyocyte model 17 

CardioNet
27

; and a Human Embryonic Kidney (HEK) cell culture model
28
. Those derived 18 

from HMR include iAdipocytes1850
15,29

 and iHepatocytes2322
4
 (Fig. 2). 19 

Application of tissue/cell type-specific omics data to the generic human metabolic 20 

models has also led to the construction of large sets of context-specific metabolic models, 21 

largely draft versions, for various human tissues and cells
10,14,30

, cancer metabolic 22 

models
14,20,31,32

 and personalized metabolic models of hepatocellular carcinoma patients
33
 23 

(Fig. 2). Such context-specific metabolic models have addressed some of medically important 24 
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diseases in modern society. Cancer metabolism has in particular been an ideal application 1 

target of human metabolic models because of the rapid biomass generation, mutations in 2 

metabolic genes and the Warburg effect (aerobic glycolysis) in cancers which can be 3 

effectively simulated using constraints-based flux analysis. A representative application was 4 

the generation of six personalized genome-scale hepatocellular carcinoma metabolic models
33
 5 

using the HMR 2.0 and personal proteome data. This investigation led to the identification of 6 

antimetabolites that effectively inhibit cancer cells by binding to enzymes consuming 7 

structurally similar native substrates. More recently, oncometabolites, excessively 8 

accumulated natural metabolites or abnormal metabolites typically absent in healthy cells, 9 

which cause the onset of cancers, have been predicted using nine tissue-specific cancer and 10 

normal metabolic models using Recon 2 as a template
34

. Other metabolic diseases such as 11 

obesity and non-alcoholic fatty liver disease have also been rigorously studied using 12 

adipocyte and hepatocyte metabolic models, iAdipocytes1809 and iHepatocytes2322, 13 

respectively
4,15

. In both studies, metabolic profiles emerged from diseased and normal 14 

condition-specific omics data were compared, thereby identifying potential biomarkers and 15 

therapeutic targets. It is obvious that more of metabolic diseases will be subjected to these 16 

kinds of systematic analyses using human GSMs. 17 

Increasing availability of high-quality omics data has greatly facilitated studies 18 

generating both high-quality and draft context-specific models, especially since 2010. Such 19 

draft context-specific metabolic models transform into high-quality models upon manual 20 

curation of the relevant literature and/or based on the simulation results obtained with the 21 

predefined tissue/cell-type-specific metabolic tasks. Metabolic tasks are defined to be 22 

(in)activation status of specific metabolic reactions that are experimentally verified under a 23 

particular condition (e.g., conversion of ammonia into urea, glutamine and alanine in liver), 24 
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and the reconstructed metabolic models are supposed to correctly predict the defined reaction 1 

activity status. An important pattern is that a greater number of metabolic tasks have been 2 

considered to be correctly predicted in upgraded versions of Recon series and hepatocyte 3 

metabolic models, suggesting the improved model quality in latter versions (Fig. 3). The 4 

results reported so far suggest that the selection of omics data and the methods for their 5 

integration with the human generic metabolic models are key determinants of the quality of 6 

context-specific metabolic models. 7 

 8 

Use of state-of-the-art high-throughput techniques and data for human 9 

metabolic modeling 10 

High-throughput methods to build functional context-specific human metabolic models 11 

Several context-specific modeling and simulation methods have been developed and are 12 

important assets to human metabolic modeling and simulation (Fig. 1). At the moment, the 13 

COBRA Toolbox
35
, the RAVEN Toolbox

36
 and the COBRApy

37
 package serve as 14 

representative platforms for building, manipulating, and/or simulating metabolic models. 15 

They provide built-in functions to generate context-specific models from the generic 16 

metabolic models through previously developed algorithms, including GIMME
38

 and iMAT
39

 17 

in the COBRA Toolbox, and INIT
14

 and tINIT
33
 in the RAVEN Toolbox. These algorithms 18 

allow building context-specific models aiming at maximizing the degree of consistency 19 

between the activity status of reactions and their respective gene/protein expression levels in 20 

the examined omics data. 21 

These algorithms are different in their characteristics as follows. The GIMME 22 

algorithm directly edits the model by removing and re-inserting reactions based on their 23 

gene/protein expression profiles and predefined target metabolic functionalities, whereas 24 
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iMAT uses mixed-integer linear programming (MILP) to constrain reaction fluxes to 1 

maximize their consistency with the expression profiles without model editing. Recently, 2 

metabolic phenotype analysis (MPA)
32

 was developed to build a breast cancer metabolic 3 

model which categorizes reactions into high, low and moderate activities (as with iMAT), and 4 

additionally employs a scoring scheme to obtain flux profiles maximally consistent with 5 

examined omics data. Similar to the iMAT method, INIT uses MILP and experimental omics 6 

data, but takes human proteome data as the primary input and additionally considers tissue-7 

specific gene expression and metabolome data
14
. The tINIT algorithm is an extended version 8 

of INIT by enabling the target context-specific models to accomplish tissue/cell type-specific 9 

metabolic functions
33
. 10 

There also exist context-specific modeling methods that are not built-in functions of 11 

the abovementioned platforms; nevertheless, many of them are compatible with these 12 

platforms. For instance, GIM
3
E run in COBRApy considers metabolomics data to make sure 13 

that detected metabolites in the metabolomics data are used in the simulated metabolic flux 14 

distributions. Subsequently, transcriptomics data is used to further adjust flux values by 15 

imposing penalties on reactions whose fluxes are not consistent with gene expression 16 

profiles
40
. However, this method is yet to be demonstrated with human models. Another set of 17 

algorithms including MBA
21

, mCADRE
30
, and FASTCORE

41
 are also available to generate 18 

context-specific models. They all have in common that they first define a core set of reactions 19 

that have strong support for being active in a specific tissue or cell, and therefore include 20 

them in the target context-specific models created. The major difference among them lies in 21 

their subsequent strategies to generate the final context-specific metabolic models. Finally, a 22 

recently reported PRIME algorithm generates context-specific models by identifying genes 23 

whose expression profiles are significantly associated with the specific cell’s phenotype (i.e., 24 
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a linear relationship) and modifying the upper bounds of the respective reaction fluxes
42

. 1 

Among these several tools to generate context-specific metabolic models, it is 2 

difficult to assess which one is the best due to their different logics, as discussed by Vlassis et 3 

al
41
. Rather, it is important that the same method is consistently used throughout the process 4 

of constructing target context-specific models in order to perform comparative studies (e.g., 5 

normal versus cancerous cells). More recently developed algorithms including mCADRE and 6 

FASTCORE are designed to overcome limitations observed in the methods developed in the 7 

past, such as long computing time to generate context-specific models. Finally, although 8 

manual curation is an important procedure to improve the model quality, the use of 9 

appropriate context-specific modeling methods with omics data can still achieve high-quality 10 

models even without manual curation. For example, application of MBA to Recon 1 resulted 11 

in a liver metabolic model with reasonably good quality as quantitatively validated
21
, while 12 

use of the iMAT with Recon 2 produced 65 draft cell type-specific metabolic models
10
 (Fig. 13 

2). More detailed discussions on the omics data integration methods are available 14 

elsewhere
43-47

. 15 

 16 

Further computational refinement of context-specific human metabolic models 17 

Initial versions of functional context-specific models can be refined through computational 18 

tools (Fig. 4). First, improvement can be made through gap filling procedure, which is 19 

necessary due to our incomplete knowledge on a target organism’s metabolism. In fact, gap 20 

filling procedures have been a longstanding topic in metabolic modeling to improve model 21 

fidelity
48

. Both the COBRA and RAVEN Toolboxes provide built-in functions to fill in 22 

biochemical gaps of metabolic pathways. GapFind and GapFill are built-in functions of the 23 

COBRA Toolbox, which fulfill this gap-filling procedure. GapFind identifies every gap by 24 
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searching for blocked (or dead-end) metabolites, and GapFill minimizes the number of gaps 1 

with minimal modifications through changing of reaction reversibilities and/or addition of 2 

gap-filling reactions
49
. The RAVEN Toolbox provides similar built-in functions that check 3 

metabolites that can be consumed and/or produced, identify internal loops in model, and 4 

remove the biochemical gaps by adding a minimal set of reactions. A recently reported 5 

fastGapFill, which runs on the COBRA Toolbox, is the first algorithm designed for 6 

compartmentalized and large-scale metabolic models such as Recon 2
50
. Application of 7 

fastGapFill to the Recon 2 model resulted in successful identification of 400 gap-filling 8 

reactions. 9 

 Another important element of the GSM reconstruction is the assignment of reaction 10 

directionality that highly affects the prediction of intracellular flux distributions. A relevant 11 

software package is the von Bertalanffy series (current version 2.0) that runs under the 12 

COBRA Toolbox. This package quantitatively assigns reaction directionality in multi-13 

compartment metabolic models by considering experimental and estimated thermodynamic 14 

data, metabolite structures, temperature, pH, electrical potential, ionic strength and 15 

metabolomic data
51
. It was applied to determine reaction directionality of the Recon 1 model, 16 

including intercompartmental transport reactions
52
. The recently reported von Bertalanffy 2.0 17 

adopts a new framework called component contribution method that appears to better 18 

estimate the standard Gibbs energy of metabolic reactions compared to previous methods
53
. 19 

Another complementary approach to assign reaction directionality is the analysis of 20 

metabolite patterns in the metabolic network
54
, but its predictive power in comparison with 21 

the component contribution method is yet to be studied. 22 

 Because of the presence of intracellular organelles in human cells, it is important to 23 

accurately assign metabolic reactions to their respective organelles and to provide 24 
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intercompartmental transporter reactions to link reactions occurring in different organelles in 1 

the human metabolic model. The process of assigning metabolic reactions to the correct 2 

organelles, also known as subcellular localization, can be predicted from gene sequences. 3 

There exist several organelle-specific prediction tools, including WoLF PSORT
55

 and 4 

CELLO
56

 in RAVEN Toolbox. Moreover, BRENDA
57

 provides literature-based subcellular 5 

localization information. Furthermore, the recently released COMPARTMENTS
58

 database 6 

also provides integrated localization information obtained from literature, as well as high-7 

throughput microscopy-based and theoretically predicted data (e.g., search of signal 8 

sequences and text mining of relevant literatures). The Human Protein Atlas (HPA; 9 

http://www.proteinatlas.org/)
59,60

 is another important database that provides experimental 10 

subcellular localization data obtained by immunostaining experiments. However, it should be 11 

noted that both intercompartmental and membrane transporter reactions that link reactions 12 

across different organelles and between the extracellular space and the intracellular cytosol, 13 

respectively, cannot be precisely predicted from gene sequences alone. Thus, manual curation 14 

is critical during the process of adding transporter reactions. In case of the Recon 2 model, 70 15 

transporter reactions were newly added and GPR associations of 24 transporter reactions 16 

were updated through manual curation of literature
61

. 17 

 Finally, in addition to the aforementioned three stand-alone platforms, BioMet 18 

Toolbox (http://www.biomet-toolbox.org/)
62

 and MetaNetX (http://metanetx.org/)
63

 are web-based 19 

platforms that can also be used to improve the quality of context-specific metabolic models in 20 

the web environment. Among several useful functions for metabolic models and omics data 21 

analysis, BioMet Toolbox has functions to check the elemental balance within a reaction and 22 

to identify dead-end reactions and metabolites in GSMs. Likewise, MetaNetX provides 23 

functions to identify dead-ends, fill in biochemical gaps of metabolic pathways and predict 24 

Page 12 of 29Integrative Biology

In
te

gr
at

iv
e

B
io

lo
gy

A
cc

ep
te

d
M

an
us

cr
ip

t



13 

 

the direction of each reaction in metabolic models. Both web-based platforms are intuitive 1 

and can be particularly useful for biologists who are not familiar with the command-line 2 

interface. 3 

 4 

Next generation omics data for high-quality metabolic models 5 

Along with omics data integration methods, the omics data itself is becoming more important 6 

to improve the quality of context-specific human metabolic models. With remarkable 7 

advances in high-throughput techniques, several public databases provide high-quality omics 8 

data across the genome, transcriptome, proteome and metabolome. In the field of cancer 9 

genomics that has been one of the major topics of human systems biology studies, The 10 

Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/) and Catalogue Of Somatic 11 

Mutations In Cancer (COSMIC; http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/)
64

 provide 12 

useful cancer genomic data that can be used to predict the effects of cancer-associated genetic 13 

mutations on human metabolism using metabolic models
34

. TCGA database contains data on 14 

34 types of tumors from more than 11,000 patients covering genome sequences, expression 15 

profiles (e.g., RNA-Seq) and somatic mutations. In addition to the cancer genomics, RNA-16 

Seq profiles of 16 normal human tissues (Gene Expression Omnibus accession code: 17 

GSE30611) have been released from the Illumina Human Body Map 2.0 project. 18 

As for the human proteome, the HPA
59,60

 and ProteomicsDB 19 

(https://www.proteomicsdb.org) are useful databases; proteome data from the HPA served as 20 

primary input data for the tINIT algorithm to create personalized human metabolic models
33
. 21 

The HPA database contains protein expression data for normal and tumor tissues/cells in 22 

humans, obtained from a variety of proteomics techniques such as immunohistochemistry, 23 

immunofluorescence, western blot, protein arrays (i.e., antigen microarrays), RNA-Seq and 24 
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manual curation of literature. Meanwhile, ProteomicsDB provides proteomic data obtained 1 

using mass-spectrometry that shows a high coverage of human proteins and their quantitative 2 

expression levels. At present, ProteomicsDB covers 93% and 24% of all known human 3 

proteins and splice isoforms, respectively, obtained from various tissues, cell lines, and body 4 

fluids. 5 

The availability of such a large volume of omics data and its effective use in human 6 

metabolic modeling requires several considerations. First, GPR association of the generic 7 

human metabolic model needs to be regularly updated according to the up-to-date contents of 8 

major metabolic databases and literature. This is the common objective of the Recon X and 9 

Human Metabolic Atlas. Second, heterogeneous data from several different databases, such 10 

as KEGG, MetaCyc, HumanCyc, REACTOME, and SMPDB
65

, need to be effectively 11 

incorporated into the generic human metabolic model by resolving any inconsistencies 12 

existing among them. To accomplish this, the use of consistent identifiers for metabolites and 13 

reactions can be useful. Recently, the database MNXref was released through MetaNetX, 14 

providing reconciled information for metabolites, biochemical reactions and compartments 15 

adopted from several different databases using a chemoinformatics approach
66

. A recent 16 

example of using MNXref is the draft metabolic models generated from the Path2Models 17 

project having their model contents described with MNXref identifiers
67

. Third, human 18 

metabolic models need to have more detailed genetic information (i.e., GPR associations) up 19 

to a splice isoform level (Fig. 4). Current human metabolic models have gene-level 20 

information, but human genes are additionally spliced into alternative isoforms that have 21 

important implications in pathologies. For instance, compared to healthy cells, cancerous 22 

cells have different expression levels of each splice isoform for particular genes, and effects 23 

of the splice isoform-level changes cannot be predicted using metabolic models having only 24 
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gene-level information. Because current omics techniques such as RNA-Seq provide splice 1 

isoform-level expression profiles, human metabolic models with refined GPR association 2 

accordingly will make predictions of human metabolism more precise. In this step, the 3 

APPRIS database, which provides annotation of human splice isoforms, can be useful to 4 

define the splice isoform-level GPR association of the human metabolic models
68
. The 5 

annotations in APPRIS currently cover splice isoforms generated from 85% of human 6 

protein-encoding genes. Fourth, next generation omics data available at diverse databases, 7 

including those mentioned above, should be more actively used to generate and simulate 8 

context-specific metabolic models. A large fraction of the RNA-Seq data publicly available 9 

still remains unused in human metabolic modeling despite many databases providing many 10 

sets of such data in various forms. Examples of data useful for building context-specific 11 

metabolic models include quantitative expression levels of individual splice isoforms for each 12 

gene from the TCGA, and probability of changes in expression levels of splice isoforms 13 

between tumor and non-tumor cells from the TCGA SpliceSeq database. In particular, 14 

personalized context-specific metabolic modeling will benefit from patient-specific omics 15 

data available at the TCGA, potentially providing patient-specific therapeutic targets. Finally, 16 

although genomic and transcriptome data for specific cell and tissue types are increasingly 17 

available, omics data for blood vessels, preferably large-scale metabolome data, are relatively 18 

very rare. This will certainly bottleneck the advance of whole body metabolism modeling 19 

because individual cell and tissue models can be connected via metabolites flowing through 20 

the blood vessel
22,25

. 21 

 22 

Prediction of human metabolic fluxes 23 

Upon generation of context-specific metabolic models, they can be subjected to constraints-24 
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based flux analysis to predict intracellular flux distributions. In contrast to microorganisms, 1 

however, human metabolism lacks clear objectives that can be considered for the constraints-2 

based simulation, especially for healthy cells and tissues, because their growths can be hardly 3 

defined and various objective functions have not been systematically examined in human 4 

system
69
. For this reason, human metabolic models are often simulated to examine whether 5 

they achieve the predefined metabolic tasks (Fig. 3). It should be noted that metabolic tasks 6 

cannot be considered as a true representation of genome-scale flux distributions because they 7 

mostly focus on single reactions rather than a set of many reactions (e.g., biomass 8 

generation)
10
. In the past, minimization of internal fluxes was used to predict genome-scale 9 

flux distributions while reflecting the near-zero growth rate of healthy human cells
11
. This 10 

method is based on an assumption that cells are evolved to achieve specific metabolic tasks 11 

with efficient use of energy
70

. Cancer metabolism having a rapid growth rate is an 12 

exceptional case and biomass maximization is considered to be a safe assumption
71
. Finally, 13 

some of the aforementioned context-specific modeling algorithms can also be used to predict 14 

intracellular fluxes using tissue/cell type-specific omics data in addition to generating 15 

context-specific models, including iMAT, GIMME, GIM
3
E, INIT and tINIT

44
. However, 16 

these methods have not been extensively used to conduct pathway-level analysis using 17 

genome-scale flux distributions of healthy and diseased cells/tissues, and await more rigorous 18 

experimental validations. 19 

 20 

Conclusions 21 

Generation of context-specific metabolic models using generic human metabolic models has 22 

now become common practice for prediction of metabolic phenotypes of specific tissues and 23 

cells under varied health statuses, and for identification of therapeutic targets. With 24 
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continually updated generic human metabolic models, increasing volumes of next generation 1 

omics data and improvements in the metabolic modeling platforms, the quality and number of 2 

resulting context-specific metabolic models will also increase accordingly. We therefore 3 

reviewed various human metabolic models developed so far, as well as recent tools available 4 

for each process of context-specific human metabolic modeling. Furthermore, we emphasize 5 

the use of newly available omics data by incorporating them into the context-specific 6 

modeling process, for example splice isoform-level gene expression profiles form RNA-Seq. 7 

Through this approach, high-quality context-specific metabolic models will be more 8 

efficiently generated, which will be useful for studying human metabolism in genome-scale. 9 
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 14 

 15 

Figures 16 

Fig. 1 Schematic overview of the procedure for building functional, context-specific human 17 

metabolic models. See Table 1 for the details. 18 

 19 

Fig. 2 Current status of reported generic and context-specific human metabolic models. 20 

Model statistics linked to human organs correspond to high-quality context-specific human 21 

metabolic models. For these models, left, middle and right numbers indicate the number of 22 

genes, reactions and metabolites, respectively. Numbers with an asterisk were obtained from 23 

direct processing of the respective SBML files because the model statistics were not obvious 24 

in the original literature. 25 

 26 

Fig. 3 Model statistics of Recon series and hepatocyte metabolic models. A greater number of 27 

metabolic tasks are considered in the upgraded versions, indicating the improved model 28 

quality. 29 
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 1 

Fig. 4 Various components of human cells that heavily influence the quality of context-2 

specific human metabolic models. Membrane and intercompartmental transporter reactions 3 

are representative components that largely depend on manual curation rather than 4 

computational analysis. Other cellular components including metabolic reactions, reaction 5 

directionality, subcellular localization and incorporation of splice isoform-level information 6 

for the GPR associations can be computationally refined. 7 
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Tables 

 

Table 1 Databases and tools useful for building and refining genome-scale human metabolic models.  

Category Name Description Refs / URL 

Transcriptome 

The Cancer Genome Atlas 
(TCGA) 

Repository for comprehensive cancer genomics http://cancergenome.nih.gov/ 

GEO database Repository for high-throughput gene expression data 72 

Illumina Human Body Map 2.0 A project that provided RNA-Seq data for 16 human tissue types  

Proteome 
Human Protein Atlas (HPA) 

Repository for human protein expression data from immunostaining 
experiments 

59,60 

ProteomicsDB Repository for proteomic data obtained using mass-spectrometry https://www.proteomicsdb.org 

Omics 
integration 
methods 

Algorithms 
Optimization 
problem 

Platform Objective function  

iMAT MILP Matlab (COBRA) Not required 39 

GIMME LP Matlab (COBRA) Required 38 

GIM
3
E MILP 

Python (COBRApy 
extension) 

Required 40 

INIT / tINIT MILP Matlab (RAVEN) Not required 14, 33 

PRIME LP Matlab Required 42 

MBA MILP - Not required 21 

mCADRE MILP Matlab Not required 30 

FASTCORE LP Matlab Not required 41 

Platforms 

COBRA Toolbox Run in the MATLAB environment 35 

COBRApy Run in the Python environment 37 

RAVEN Toolbox Run in the MATLAB environment 36 
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Model 
refinement 
methods and 
tools 

 
Tools 

 
Logics 

 
Platforms 

 

GapFind 
Finds all gaps in a metabolic model by searching 
for blocked metabolites 

COBRA Toolbox 49 

GapFill 
Minimizes the number of gaps with minimal 
modifications 

COBRA Toolbox 49 

fastGapFill 
Fills the gaps for compartmentalized and large-
scale metabolic models 

COBRA Toolbox 
extension 

50 

von Bertalanffy 

Assigns reaction directionality in multi-
compartment metabolic models by considering 
experimental and estimated thermodynamic 
data, metabolite structures, temperature, pH, 
electrical potential, ionic strength and 
metabolomic data 

COBRA Toolbox 
extension 

52, 53 

WoLF PSORT and CELLO 
Predicts protein localization sites based on 
amino acid sequence 

RAVEN Toolbox 55, 56 

BRENDA 
Provides literature-based subcellular localization 
information 

 57 

COMPARTMENTS 
Subcellular localization database with different 
levels including prediction, literature, and 
experimental data 

 58 

Human Protein Atlas (HPA) 
Provides spatial expression patterns on the 
subcellular level as well as protein expressions 

 59,60 
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Fig. 1 Schematic overview of the procedure for building functional, context-specific human metabolic 
models. See Table 1 for the details.  
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Fig. 2 Current status of reported generic and context-specific human metabolic models. Model statistics 
linked to human organs correspond to high-quality context-specific human metabolic models. For these 

models, left, middle and right numbers indicate the number of genes, reactions and metabolites, 
respectively. Numbers with an asterisk were obtained from direct processing of the respective SBML files 

because the model statistics were not obvious in the original literature.  
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Fig. 3 Model statistics of Recon series and hepatocyte metabolic models. A greater number of metabolic 
tasks are considered in the upgraded versions, indicating the improved model quality.  
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Fig. 4 Various components of human cells that heavily influence the quality of context-specific human 
metabolic models. Membrane and intercompartmental transporter reactions are representative components 

that largely depend on manual curation rather than computational analysis. Other cellular components 

including metabolic reactions, reaction directionality, subcellular localization and incorporation of splice 
isoform-level information for the GPR associations can be computationally refined.  
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Genome-scale metabolic models of human cells and tissues can be reconstructed using omics data for 
systematic and personalized medicine  
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