

The Occurrence of Tricin and Its Derivatives in Plants

Journal:	Green Chemistry
Manuscript ID	GC-CRV-12-2015-003062
Article Type:	Critical Review
Date Submitted by the Author:	23-Dec-2015
Complete List of Authors:	Li, Meijun; Oak Ridge National Laboratory, Chemical Sciences Division Pu, Yunqiao; Oak Ridge National Laboratory, Biosciences Division Yoo, Chang Geun; University of Wisconsin at Madison, Biological Systems Engineering Ragauskas, Arthur; University of Tennessee,

SCHOLARONE[™] Manuscripts

REVIEW

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Mi Li,^{a,b} Yungiao Pu,^{a,b} Chang Geun Yoo,^{a,b} Arthur J. Ragauskas^{*a,b,c}

Our understanding of the structure and biosynthetic pathway of lignin, a phenylpropanoid heteropolymer, continues to evolve especially with the discovery of new lignin monomers/structural moieties such as monolignol acetate, hydroxycinnamyl aldehyde/alcohol, and p-hydroxybenzoate in the past decades. Recently, tricin has been reported as a component incorporated into monocot lignin. As a falvonoid compound widely distributed in herbaceous plants, tricin has been extensively studied due to its biological significance in plant growth as well as potential for pharmaceutical importance. Tricin is biosynthesized as a constituent of plant secondary metabolites through a combination of phenylpropanoid and polyketide pathways. Tricin occurs in plants in either free or conjugated forms such as tricinglycosides, tricin-lignans, and tricin-lignan-glycosides. The emergence of tricin covalently incorporated with lignin biopolymer implies the possible association of lignification and tricin biosynthesis. This review summarizes the occurrence of tricin and its derivatives in plants. In addition, synthesis, potential application, and characterization of tricin are also discussed.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Introduction

Lignocellulosic biomass is now well acknowledged as a viable sustainable resource for the production of bioenergy, biofuels, and biobased chemicals. U.S.A. governmental policy has outlined goals to produce 20% of its transportation fuels and 25% of its petroleum based chemical commodities from biomass over the next two decades.¹ Terrestrial plants are mainly composed of 35-45% cellulose, 15-30% hemicellulose, and 15-35% lignin, and to-date most developed biorefinery technologies have focused on the utilization of plant polysaccharides into fuels and chemicals. Whereas lignin, the second most abundant terrestrial polymer, is usually underutilized, and frequently used as a resource to generate power by combustion.² For this reason, valorization of lignin can be a solution for effective utilization of total biomass.^{1, 2} Lignin is a racemic aromatic heteropolymer derived mainly

^{a.} BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

from three traditional monolignols (i.e., p-coumaryl, coniferyl,

and sinapyl alcohol). The monolignols are synthesized through the phenylpropanoid pathway followed by monolignol-specific

dimethoxyphenyl)-4H-chromen-4-one), a flavonoid type compound, belongs to the flavanones ${\rm subclass.}^{11}$ It is structurally comprised of two phenyl rings and one heterocyclic ring (Fig. 1): a benzoyl system (ring-A), a

Green Chem., 2015, 00, ×-× | 1

10

^{b.} Joint Institute for Biological Sciences, Oak Ridge, TN 37831, USA

^c Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, TN 37996, USA. Email: aragausk@utk.edu; Fax: +1 865 974 7076; Tel: +1 865 974 2042

REVIEW

cinnamoyl system (ring-B), and a heterocyclic system (ring-C), which features the flavanone backbone.¹² Like other flavonoids, tricin is originated from the plant secondary metabolic pathways.^{12, 13} The biosynthesis of tricin includes two stages: the flavanone backbone is formed by coupling compounds from polyketide and phenylpropanoid pathways followed by mediation with chalcone synthase and isomerase; the flavone synthesis and sequential methylation leading to tricin occur at a later stage.¹⁴ Tricin is typically accumulated in the leaves and stems in herbaceous and cereal plants with sporadic amounts^{15, 16} and is frequently isolated by solvent extraction from plant tissue.^{14, 17, 18} The reported forms of the isolated tricin include free tricin (or tricin aglycone) and tricin derivatives (e.g., tricin-glycosides, tricin-lignans, and tricinlignan-glycosides) (Fig. 1). Recently, tricin has also been observed as a moiety occurring in lignin isolated from a few monocots, such as perennials,^{19, 20} rice straw,²¹ wheat straw,²² maize plant,^{10, 23, 24} bamboo,²⁵ sugarcane,²⁶ and even brewer's spent grain.²⁷ The incorporation of tricin into lignin was further confirmed by biomimetic coupling reactions of tricin with monolignols, and the results indicated that tricin could act as an initiative lignification site and that the polyketide pathway for tricin biosynthesis was possibly associated with lignification.¹⁰ In this review, advances in tricin related studies including the occurrence and identification of tricin and its derivatives, tricin biosynthesis, and its potential for biological and pharmaceutical applications are discussed. In particular, the recent development in our understanding of tricin incorporation into lignin is highlighted.

Occurrence of tricin and its derivatives

Tricin, in the free form, was first isolated from rusted wheat leaves dating back to 1930³¹ and later was also observed in many monocotyledonous plants such as the family of Gramineae^{32, 33} and Cyperaceae.^{34, 35} The isolated tricin from plants usually contains tricin derivatives including tricin-glycosides, tricin-lignans, and tricin-lignan-glycosides. In tricin-glycoside, tricin is attached with carbohydrates units while tricin-lignan refers to tricin derivatives in which tricin is acylated with monolignols (**Fig. 1**). Tricin-lignan-glycosides

consists of both carbohydrate and monolignol moieties. The detection of tricin and tricin conjugates from many new plant species indicates that tricin is more widespread than it was previously thought.¹⁴

Free tricin

The natural presence of free tricin occurs in a number of sources of plants and tissues, and its content varies from a few to hundred milligrams per kilogram of plants on a basis of reported isolation yields (Table 1). Tricin has been mostly isolated from leaves of cereal plants such as wheat, rice, and barley. It has also been reported in bamboo, palms, sugarcane, and even in the grains, seed, 36 and juice^{37} of plants. It also exists as different forms such as 3-O-acetyl tricin³⁸ and 4'-Omethyl tricin.³⁹ Due to the plant protection function of tricin, the leaves of pest-resistant rice contained higher tricin than the susceptible controls.⁴⁰ Similarly, accumulation of tricin in wheat was enhanced when the wheat seedlings were treated with herbicide safener.⁴¹ The seeds of Orobanche ramosa⁴² and rice bran of Oryza sativa L.43, 44 contain relatively high content of tricin. The cold-acclimated wheat and wheat husks also showed higher quantity of tricin when compared to the wheat under non-acclimated conditions and other parts of the plant (e.g. leaves and brans).^{45, 46} Tricin was recently observed in two species of evergreen shrubs in Okinawan: M. bontioides A.^{47,48} and *Gynerium sagittatum*.⁴⁹ Other than in plants, tricin and its derivatives were also discovered as pigments in insects.⁵⁰ The occurrence of tricin in plants was previously overlooked because the difficulty to distinguish it from other methylated compounds via traditional characterization and separation techniques.¹⁵ In addition, the presence of tricin in free form is also guestioned due to the possibility of enzymatic hydrolysis during the extraction process.⁵¹

	-				
Table 1	Occurrence	of free	tricin	in pla	ants

Plant	Species	Part of plant	Isolation yield (mg/Kg)	
Arundo grass	Arundo donax L.52	Aerial part	-	
Bamboo	Indocalamus herklotsii & pedalis ⁵³	Leaves	10-20	
	Neosinocalamus affinis ⁵⁴	Leaves	7.6	
	Phyllostachys glauca55	Leaves	26500*	
	Phyllostachys nigra ^{56, 57}	Leaves	618* ³⁸	
	Pleioblastus amarus ⁵⁸	Leaves	1.2	
	Sasa albo-marginata ⁵⁹⁻⁶¹	Leaves	0.2	
	Sasa borealis ⁶²	Whole plants	10	
	Sasa senanensis (Rehder)63	Leaves	46	
	Sasa veitchii (Carr.) 64	Leaves	1.4	
Barley	Hordeumv ulgare ⁶⁵	Grains	10.4	
	Hordeum vulgare ⁶⁶	Leaves	17.4	
arnyard millet	Echinochloa utilis67	Grains	36	
arrenwort	Epimedium brevicornum ⁶⁸	Aerial parts	6.4	
	Épimedium hunanense ⁶⁹	Aerial parts	2	
Blue grass	Poa ampla ⁷⁰	Stromata, seeds,	6	
	Catania mini dia 71	A spikelet, leaves	100	
ristiegrass	Bammoulus sigholdii Mia	Whole plant	128	
uttercup	Ranunculus siebolati Milq.	whole plant	1.2	
	Autominia and Ehil 73	A	£	
opacopa	Triana II. Communication 1 74	Aeriai parts	3	
enugreek	1 rigonetia joenumgraecum L.	Seeds	-	
escue	Festuca spp.	Leaves	33	
18118 19	Desmostacnia bipinnata" Maaanaania hauni du la ⁷⁷	Aerial parts	1/2.5	
iimaiayan poppy	<i>Meconopsis norriaula</i>	Aeriai parts	4	
ungie rice	Echinochioa colona L."	Shoots	-	
Talagasy	Ageiae pentagyna"	Leaves	0/	
vat plants	Avena sativa L."	Dians	2.4	
aim	riypnaene inebaica L.	Leaves	1.9	
eari millet	Pennisetum glaucum	Fruit	-	
onnsongrass	Sorgnum halepense	Aerial parts	03.8	
orn stover	Zea mays L.	Stems	0.5	
yrethrum	Pyrethrum tatsienense ⁸⁴	whole plant	99	
lice plant	-(pest resistant rice plant)85	Leaves, stems	18.4	
	Oryza sativa L. ⁶⁰	Aerial parts	-	
	Oryza sativa L. ^{40, 87-89}	Leaves	7060**	
	Oryza sativa L. ⁹⁰	Rice hulls	-	

	Oryza sativa L.43,91	Rice brans	240 ⁴³	1
	Oryza sativa ⁹²	Different tissues	-	
	Zizania latifolia93	Aerial parts	4.2	I
Rice seeds	Transgenic ⁴⁴	Seeds	110	I
Rattan palm	Calamus quiquesetinervius94	Stem	1.1	
Sandspurry	Spergularia diandra & marina ⁹⁵	Aerial parts	4 & 16.4	1
Sorghum	Sorghum bicolor ⁹⁶	Stem	10.9	I
Stoneshrub	Lycopodium japonicum ³⁹	Whole plant	0.5	1
Stoneshrub	Myoporum bontioides47,48	Leaves	9.7 ⁴⁷	I
Stonecrop	Sedum sarmentosum ⁹⁷	Whole plant	-	
Sugarcane	Saccharum officinarum L.98	Culms, syrups	3, 35, 132	
-	Saccharum spp. Hybrids/76]	Stem	-	1
	-	Sludge99	3.2	I
Tumbleweed	Salsola collina Pall. 100, 101	Whole plant	23 ¹⁰⁰	
Wheat	Triticum aestivum46	Husks, brans,	770	
		leaves		
Wildcane	Gynerium sagittatum ⁴⁹	Roots	18.4	
, not reported.	* based on leaves extract			_ I

Tricin-glycosides

Tricin-glycosides occur in plants in two forms (i.e., tricin-O and tricin-C-glycoside) in which the carbohydrate unit is attached to the hydroxyl group and carbon on the benzene rings (ring-A and ring-B), respectively.¹⁰² Like the free form of tricin, tricinglycosides are also widely distributed in herbaceous plants (Table 2). Tricin-O-glycoside is dominated by tricin 5-O- and 7-O-glucoside with the glucose unit glycosylating to the 5-OH and 7-OH on ring-A, respectively. In contrast, tricin-C-glycoside is rarely found in plants.^{54, 103} Although tricin-glucoside mainly entails glucose coupled tricin, other carbohydrate units such as xylose,¹⁰³ arabinose,¹⁰⁴ rhamnose,¹⁰⁵ and boivinose⁵⁴ have also been found in a conjugation with tricin. Units such as glucuronic acid and diglucuronic acid coupled with tricin have been isolated from alfalfa,¹⁰⁶⁻¹⁰⁹ stoneshrub,⁴⁸ barrel medic,¹⁰⁸ and hedgenettle.¹¹⁰ Tricin-diglycoside (e.g., rhamnosylhexoside) was detected in some plants such as blue grass,⁷ sugarcane,¹¹¹ and liverworts.¹⁰³ A few other forms of tricinglycosides including salt form of tricin-7-O-glucoside,¹¹² Cglycosyl tricin,⁵⁴ 7-O-methylated tricin-glucoside,⁵⁸ 4'-Omethtylated tricin-glucoside,¹¹⁰ and tricin-malonylhexoside⁹² were also reported. Alfalfa,¹⁰⁹ halfa,⁷⁶ and the subspecies indica of rice plant (leaves)⁹² have shown relatively high content of tricin-glycosides (around 1600-4700, 300, and 400 mg/Kg plants isolation yields, respectively). Research on barley showed that the amount of total flavone glycosides including tricin-7-O-glucoside in the leaves decreased with increased rate of fertilizing.¹¹³

						anon nghano (loo	action field (
Та	ble 2 Occurrence	of tricin-glycoside	es in plants		mg/Kg pla	nt) are relatively	lower than	n tricin ar
R5	2 3 OR3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R ₅ Compound -H Tricin-5-O-gluc -H Tricin-4'-O-gluc -H Tricin-4'-O-gluc -H Tricin-7-O-gluc -H Tricin-7-O-gluc	coside coside coside binoside curonide 1-5-O-glucoside	glycosides. relatively h mg/Kg). ^{29, 4}	Mohanlal et al. f nigh content of tr 3	ound that r ricin guaiacy	ice bran p Iglyceryl e
	1 1' 5' OCH 3	8 -H -Gle-Rha -H -H 9 -H -Glur-Glur -H -H	-H Tricin-7-Menty -H Tricin-7-O-neo	hesperidoside	Та	ble 3 Occurrence o	f tricin-lignar	ns in nlants
R ₄ OR ₁	4 0	10 -H -Galur-Rha -H -H 11 -H -H -H -Boi - 12 -H -H -H -Boi - - 13 -H -H -H -Ara - -Ara - 14 -H -H -H -Glc - - -	-H Tricin-7-O-Rha -Glc Tricin-6-C-Boi -Glc Tricin-6-C-Xyl -Glc Tricin-6-C-Ara -Ara Tricin-6-C-Glc	a-galactoronide i-8-C-glucoside I-8-C-glucoside a-8-C-glucoside 2-8-C-arabinoside	*	CCH 3 CCH 3	yceryl 4'-0- dyceryl 4'-0 ucylglyceryl 4'-0	Compound β-guaiacylglyceryl tricin β-p-hydroxyphenylglycer 8-(γ-O-acetyl)-guaiacylg
Plant	Plant species	Part of plant	Compound	Isolation yield (mg/Kg)		1' 5' OCH 3 4 -(El)-guaia 6' 5 -(Me)-guai 3 6 -(Me) (Ac) 7 -(coumaroy	cylglyceryl 4-O acylglyceryl 4'-O guaiacylglyceryl 4'-O 'l)-guaiacylglyceryl 4'-O	-β-(α-O-ethyl)-guaiacylgl -β-(α-O-methyl)-guaiacylg -β-(α-O-Me)(γ-O-Ac)-gua -β-(γ-O-p-coumaroyl)-gua
Alfalfa	Medicago sativa L. 106-109	Aerial parts	5; 9	140; 81 ¹⁰⁷	он о			
Bamboo	Fargesia robusta ²⁸	Leaves	1	4700 ¹⁰⁹ 62.5	Plant	Plant species	Part of plant	Compound
	Neosinocalamus affinis ³⁴ Plaioblastus amarus ⁵⁸	Leaves	2; 11	2.2; 1	Corn stover	Zea mays L.83	Stems	1
	Sasa borealis ¹¹⁴	Leaves	2, 0, 7	45	Johnsongrass	Sorghum halepense ⁸²	Aerial parts	1
	Sasa kurilensis ¹¹⁵	Leaves	1; 3	0.7; <0.1	Numazasa Ost plants	Avena sativa L ¹³¹	Whole plant	1, 5, 6; /
Barley Barrel medic	Hordeum vulgare ¹¹³ Medicago truncatula ¹⁰⁸	Leaves Aerial parts	2 5; 9	16 -	Rattan palm	Calamus quiquesetinervius ⁹⁴	Stem	1;2

Blue grass Poa ampla Stromata, seeds, 2;8 12: -Leaves Aerial part Setaria viridis⁷ 2 10.3 Bristlegrass Buttercup Ranunculus sieboldii Miq. 2 Whole plant 1.9 Ranunculus sceleratus L.⁷² Alstonia macrophylla¹⁰⁴ Trigonella foenumgraecum L. Deviltree Leaves 4 2 Fenugreek Seeds Desmostachia bipinnata⁷ Halfa Aerial part 2 268 Hedgenettle Stachys officinalis 2;5 Leaves Stachys alopecuros Stachys scardica¹¹ Lonicerae japonica¹¹⁶ Honevsuckle Flower 8 Liverworts Metzgeria conjugata¹⁰³ Whole 13; 14 Metzgeria leptoneura¹⁰ Avena sativa L.¹⁰⁵ Whole Oat plants 3;4;8 Leaves, stems inflorescences Avena sativa L⁷⁹ 2 Brans 33 Palm Hyphaene thebaica L.80 Leaves 5.6 Phoenix hanceana¹¹ 2;8 2 1.2; 0.5 Leaves Paulownia tomentosa¹¹⁸ Flower Princess tree -(pest resistant plant)^{85, 119} Oryza sativa L.^{88, 120} 29.2: 33.5 Rice plant Leaves stems 1:2 1;2 25; 42 Leaves Different tissue 429:150 Orvza sativa⁵ 1:2Zizania latifolia¹²¹ Aerial parts 2 2 6.4 Meconopsis horridula Regional Aerial parts 0.1 poppy Stoneshrub 5 2 Mvoporum bontioides Leaves stonecrop Sedum sarmentosum⁹⁷ Saccharum officinarum L.¹²² Whole plant 10 Sugarcane Bagasse, leaves Saccharum officinarum L.111 Bagasse, leaves, 2;8 juice Saccharum officinarum L 123 2 3' Juice 124 Saccharum officinarum I Leaves 2;8 Saccharum spp. Hybrids¹²⁵ Bagasse Juice¹²⁶ 2;82;8 Salsola collina Pall.100 Tumbleweed Whole plant 2 Wildcan Gynerium sagittatum45 Roots 14.2 Glc: glucose; Ara: arabinose; Xyl: xylose; Rha: rhamnose; Boi: boivinose; Glur: glucuronic acid Galur: galacturonic acid; Me: methyl; -: not reported; * mg/L

Tricin-lignans

Tricin-lignans belong to flavonolignans in which the flavone backbone is acylated with another phenylpropanoid unit, usually at ring-B.¹²⁷ They are usually present along with tricin and tricin-glycosides in plants such as rice, oat, palm, alfalfa, and sugarcane (Table 3). The tricin-lignan was reported to occur in Aegilops ovata L. in the form of p-coumaryl alcohol acylated tricin,¹²⁸ namely aegicin. Salcolin is another type of tricin-lignans existing in Salsola collina with an additional methoxy group attached on the *p*-coumaryl unit.¹⁰¹ The reported tricin-lignans are primarily in a form of tricin and guaiacylglyceryl ether its derivatives. Tricin coumarylglycerl ether was observed in rattan palm.94 Some other guaiacylglyceryl units etherified with methyl, ethyl, acetyl groups, and acylated with coumaroyl unit have also been reported in conjugation with tricin.^{64, 93, 129, 130} The contents of tricin-lignans (isolation yield usually less than 30 latively lower than tricin and tricinet al. found that rice bran possessed t of tricin guaiacylglyceryl ether (61

Compound 4-O-β-guaiacylglyceryl tricin 4-O-β-β-yhdroxyphenylglyceryl tricin 4-O-β-(α-O-ethyl)-guaiacylglyceryl tricin 4-O-β-(α-O-ethyl)-guaiacylglyceryl tricin 4-O-β-(α-O-Mel(γ-O-Ac-guaiacylglyceryl 4-O-β-(α-O-β-(γ-O-β-guaiacylglyceryl 4-O-β-(α-O-β-(γ-O-β-guaiacylglyceryl

Isolation

vield . (mg/Kg

8.7

1-4

0.9

0.3: 0.6

REVIEW

	Calamus	Stem	4	0.2
	quiquesetinervius ¹²⁹			
Rice	Oryza sativa L.29, 43	Rice bran	1	61
	Oryza sativa ⁹²	Different	1	-
		tissues		
	Oryza sativa L. ¹³⁰	Aerial parts	1; 5	0.9; 0.8
	Zizania latifolia ¹²¹	Aerial parts	1	15.4
	Zizania latifolia93	Aerial parts	1;5	11.8; 14.6
Sugarcane	Saccharum officinarum	Bagasse,	1	-
	L. ¹²²	leaves		
	Saccharum officinarum	Bagasse,	1	-
	L. ¹¹¹	leaves, juice		
	Saccharum spp. Hybrids125	Bagasse	1	-
Thatching grass	Hyparrhenia hirta L. ³⁰	Leaves	1	30
Tumbleweed	Salsola collina ¹⁰¹	Epigeal part	1	1.1
Vetivergrass	Vetiveria zizanioides ¹³²	Aerial parts	1	28.9
 not reported. 				

Tricin-lignan-glycosides

Compared to tricin-glycosides and tricin-lignans, tricin-lignanglycosides have only been reported in a few plants such as alfalfa, rice plant, and sugarcane (**Table 4**). In tricin-lignangylcosides, the phenylpropanoid unit usually links to the 4'-OH of tricin, while the carbohydrate unit attaches to 7-OH separately. However, the phenylpropanoid unit (*p*methoxycinnamate) has been reported to link with tricin through glucose moiety in tricin-lignan-glycoside occurring in sugarcane juice.¹⁸ The guaiacylglyceryl ether and glucose glycosylation are the two main moieties reported in tricinlignan-glycosides. Another group of tricin-lignan-glycosides, in which the ferulic, coumaric, and sinapic acids unit was coupled with tricin through glucuronic acid at the 7-OH, were also observed in alfalfa and barrel medic from species of *Medicago*.¹⁰⁶⁻¹⁰⁸

Table 4 C	Occurrence of tricin-li	gnan-glycosi	des in plants
R ₁ 0 7 8 9 0 1 7 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	$ \begin{array}{c} & {\bf R}_{1} / {\bf R}_{2} \\ {\bf G}_{1} \\ {\bf G}_{2} \\ {\bf G}_{1} \\ {\bf G}_{2} \\ {\bf G}_{2$	Compound T-7-0-(4'-O ₇)-guuisc. Cervi T-4'-O ₇ -(-Q-O ₈)cuco rector T-4'-O ₇ -(-Q-O ₈)cuco rector Tricin '1-0-(4'-O ₇ -Q-Q H Tricin '1-O(2'-O ₇ -Q-Q) H Tricin '1-O(2'-O ₇ -Q-Q) H Tricin '1-O(2'-O ₇ -Q-Q)	ylghyceryl ether) gluonide oldo-gaulacylghyceryl ether tido-gaulacylghyceryl ether hebrycourantyp lghocide hoyl-Glur (-12)-glucuronide maroyl-Glur (-12)-glucuronide maroyl-Glur (-12)-glucuronide maroyl-Glur (-12)-glucuronide maroyl-Glur (-12)-glucuronide oly-Glur (-12)-glucuronide
Plant	Plant species	Compound	Isolation yield (mg/Kg)
Alfalfa	Medicago sativa L. ¹⁰⁶⁻¹⁰⁹	6; 7; 8; 9	2-30 ¹⁰⁶ 100-160 ¹⁰⁷ 500-2.000 ¹⁰⁹
Barrel medic Gum arabic tree Rice Sugarcane Thatching grass	Medicago truncatula ¹⁰⁸ Acacia nilotica Linn. ¹³³ Oryza sativa L ¹³⁴ Zizania latifolia ¹²¹ Saccharum officinarum L. ¹²² Saccharum officinarum L. ¹¹¹ Saccharum spp. Hybrids ¹²⁵ Saccharum spp. Hybrids ¹⁸ Hyparrhenia hirta L. ³⁰	6; 7; 8; 9; 10; 11 4 3 1; 2 1 1 5 1	82.5 1.3 10.6 - - 13 <0.7
-: not reported.			

Tricin-lignin

The presence of tricin in lignin was not determined until a recent report by Del Río et al. in 2012.⁹ Later on, tricin was also found in lignin isolated from a few more monocot plants such as rice straw, coconut coir fibres, bamboo, corn stover (maize stover), and brewer's spent grain (**Table 5**). Both the whole cell wall and the isolated lignin of wheat straw,⁹ corn stover,^{10, 24} and sugarcane bagasse²⁶ showed the presence of tricin. In dioxane lignin (DL) of wheat straw without ball-milling, tricin constituted 15% of the sum of H, S, and G units; however, this amount decreased down to 8% when the biomass milled with

Page 4 of 14

extended time (i.e., 16 h).¹³⁵ Tricin in wheat straw lignin was reduced from % to 2% per hundred C6-C3 units after steam explosion pretreatment.²² The presence of tricin was not detectable when the milled wood lignin (MWL) of bamboo was acetylated.²⁵ It appears that the detectable content of tricin in lignin is affected by the lignin isolation process as well as by pretreatments. In addition, the occurrence of tricin component in lignin varies on the tissue of plant sampled. For example, tricin was detected in the milled wood lignin and alkaline extracted lignin from foliage but not the stem of arundo grass.¹⁹ The alkaline extracted lignin from rice straw rather than rice husk showed the presence of tricin.²¹ Wen et al. reported that tricin was present in the milled wood lignin from bamboo stem but not in the pith.²⁵

Table 5 Occurrence of tricin-lignin in plants						
Plant Plant species Type of lignin						
Arundo grass	Arundo donax Linn. ¹⁹	MWL and alkaline lignin				
Bamboo	Phyllostachys pubescens ²⁵	MWL of stem				
Brewer's spent grain	Hordeum vulgare L.27	MWL, DL, CEL				
Coconut coir	Cocos nucifera ¹³⁶	MWL				
Corn stover	Zea mays ^{10, 24}	MWL, whole cell				
Maize plant	Transgenic ²³	MWL				
Rice straw	-	Alkaline lignin ²¹				
Sugarcane	Saccharum spp. hybrids26	MWL, whole cell				
Wheat straw	Tritium aestivum L.135	DL and AL				
	Triticum durum C.9	MWL, whole cell				
	Triticum sativum ^{137, 138}	MWL and CEL				
	-	EMAL ²²				
Wula sedge	Carex meyeriana Kunth20	MWL				

MWL: milled wood lignin; DL: dioxane lignin; CEL: cellulolytic enzyme lignin; AL: acidolysis lignin; EMAL: enzymatic mild acidolysis lignin; -: not reported.

Preparation and isolation

Solvent extraction from plant

Tricin can be isolated from plants by a combination of solvent extraction, liquid-liquid partitioning, and chromatography separation and purification (Scheme 1).¹³⁹ In general, plant tissue is cut and dewaxed and defatted by petroleum ether (PE) or hexane to remove lipids and chlorophyll pigments prior to solvent extraction. Tricin and its derivatives are usually extracted by aqueous methanol (MeOH) or ethanol (EtOH). It was reported that MeOH had better extraction efficiency than EtOH, and 80% MeOH was superior to pure and 50% MeOH for extracting tricin from Pyrethrum.⁸⁴ Other solvents such as hotwater,^{57, 59, 60, 115} dichloromethane (CH₂Cl₂),^{73, 131} and acetonitrile (CH₃CN)^{113, 116} have also been used to obtain crude tricin extract. After concentration, the condensed extract (oily residue) is then partitioned by liquid-liquid extraction with solvent such as *n*-hexane, diethyl ether (Et₂O), ethyl acetate (EtOAc), chloroform (CHCl₃), CH₂Cl₂ and butanol (*n*-BuOH) with increasing polarity. A preliminary fraction containing tricin is obtained from the layer with lower polarity (e. g. ethyl acetate).

The separation and purification are the key steps to achieve desired fraction for identification and quantification of tricin. The available techniques for tricin separation and purification include thin-layer chromatography (TLC), column chromatography (CC), semi-preparative high-performance liquid chromatography (HPLC), preparative HPLC, and analytical HPLC. A list of separation techniques and columns used for tricin and its derivatives are summarized in **Table 6**.

Scheme 1. Isolation procedure for tricin and its derivatives from natural plants. Adapted from $^{\rm 140}$

A repeated CC separation technique using appropriate stationary and mobile phases systems is often employed to get the target fractions and compounds. Silica gel CC was primarily employed to obtain the desired fractions.^{78, 93} Further purification was conducted with diverse columns filled with dextran (e.g. Sephadex LH 20), C_{18} , octadecylsilyl (ODS), and polyamide. A simple purification method of tricin from wheat leaves was accomplished by injecting filtered MeOH extract directly into reversed-phase HPLC coupling with C18 and semipreparative column.^{84, 141} Recently, preparative HPLC⁵⁶ and resin CC followed by dialysis⁹⁹ were proposed to separate tricin from the extract of bamboo leaves and sugarcane, respectively. Other methods such as high performance thin layer chromatography (HPTLC)^{53, 95} and high-speed countercurrent chromatography (HSCCC) with two-phase solvent system¹²³ have been developed to isolate and purify tricin. In addition, capillary electrophoretic (CE)¹¹⁶ and highperformance capillary electrophoresis (HPCE)57, 131 have all been used for qualitative and quantitative analysis of tricinglycosides and tricin-lignans.

Table 6 Isolation and purification techniques for tricin and its derivatives

Chromatography type	Columns
Normal-phase	Silica gel ^{30, 38, 39, 43, 47, 59, 60, 68-70, 76-78, 83, 90, 93, 94, 96, 121}
	Celite 53528,94
Reversed-phase	Acquity BEH C18 ¹²⁵
*	Alltima C ₁₈ ²⁸
	Bondapak C18 49, 56
	Cosmosil 5C18 ^{67,94}
	Cosmosil 5 Ph ⁸⁵
	Eurospher 80 C18 ¹⁰⁹
	Eurospher PD 82107
	Kromasil C1884
	LiChrosorb RP-1830, 69, 90, 106, 110, 113, 131
	Luna C18 ⁵⁶
	Macroporous absorption resin (AB-8)54, 56, 123
	MCI gel CHP-20P38
	Nucleosil 120 C-18141
	ODS 43, 47, 48, 64, 65, 67, 71, 78, 83, 85, 113-115
	Omnisphere C ₁₈ ²⁸
	Polyamide68, 69, 80
	Sep-Pak C ₁₈ ^{109, 141}
	Shield RP18111, 122, 124
	Shim-pack C18123
	Supersphere C ₁₈ ⁴¹
	Synergi polar column ⁴¹
	Varian Polaris 5-C ₁₈ ⁴⁶
	Vertex Eurospher RP-18106
	Zorbax SB-C ₁₈ ¹²⁰
	Zorbax SB-Aq ¹¹⁸
Size-exclusion	Sephadex LH-20 ^{28, 43, 48, 49, 58, 67, 73, 77, 80, 83, 96, 131, 132}
Ion-exclusion	Diaion HP-2047, 64, 79, 115

Organic and chemical synthesis

Chemical synthesis of tricin has been conducted using Baker-Venkataraman (BV) transformation as the base for flavone backbone synthesis.^{142, 143} The key step of BV transformation involves the etherification of hydroxylacetophenone (e.g. phloracetophenone) with benzyl group (e.g. benzylsyringic anhydride) catalyzed under alkaline condition (**Scheme 2**). The flavone backbone is formed by cyclodehydration with cold acid. The resulting compound is debenzylated by hydrochloric acid (HCl) in acetic acid leading to tricin. Instead of using benzylsyringic anhydride, acyl chloride from oxalyl chloride and acetylsyringic acid can also be introduced to phloracetophenone to generate flavone backbone by BV reaction.³⁸ However, a selective protection and de-protection of phenolic hydroxyl groups is required to produce tricin.

To protect the phenolic hydroxyl groups on ring-A, lithium bis(trimethylsilyl)amide (LiHMDS) has been introduced to deprotonate phenolic hydroxyl groups on phloracetophenone in a form of lithium polyanion.¹⁴⁴ In combination with *t*-butyldimethylsilyl protection of the phenolic hydroxyl on ring-B, this method yielded 82% tricin (**Scheme 3**). Based on this methodology, tricin has recently been synthesized via reaction of 4-*O*-*tert*-butyldimethylsilyl-3,5-dimethoxybenzoate with LiHMDS and 2',4'-O-bis(*tert*-butyldimethylsilyl)-6'-hydroxyacetophenone with a yield of 68%.^{60, 145, 146} To simplify the extensive protections and de-protections of hydroxyl groups, BV transformation has been modified to a three-step reaction to generate flavone backbone.¹⁴⁷

A few other methods have also been used for tricin synthesis, such as demethylation of 3',4',5'-trimethyltricetin by sulfuric acid¹⁴⁸ and condensation of phloracetophenone with 4-hydroxy-3,5-dimethybenzaldehyde in the presence of boric acid (H₃BO₃), followed by double bond generation between C2 and C3.¹⁴⁹ An unexpected tricin isomer (i.e., aurone) was synthesized through aldol condensation of α -chloro-2-hydroxy acetophenone with aromatic aldehyde in aqueous alcoholic solution containing 5–10% sodium hydroxide at room temperature.¹⁵⁰ Recently, the flavone backbone was synthesized through Claisen-Schmidt condensation, in which a

REVIEW

double bond was formed between the diprotected triol and benzyl-protected syringaldehyde and tricin was formed following cyclodehydration.¹⁰

Biological functions and potential applications

Like most flavonoid compounds, tricin plays an important role in plant growth.^{14, 151, 152} Tricin and its derivatives were reported to function as an antioxidant against organisms diseases in rice plant⁹¹ and palm.¹²⁹ Moreover, tricin has been found to possess antibacterial, antifungal, anti-insect activity,⁷⁰ and anti-plant-hoppers in deviltree,¹⁰⁴ arundo grass⁵² and rice plant.^{40, 85-87, 150} The antifungal activity (related with antioxidant activity) of tested flavonoids was enhanced due to the increased number of hydroxyl groups per molecule compound.¹⁵³ Other reported functional activities of tricin derivatives include anti-weeds,^{78, 120} anti-herbicide,⁴¹ special genes inducer,⁸⁸ biotic and abiotic stress protection.¹⁵⁴ The released tricin from the root of allelopathic rice plant interferes with weeds and microbes in paddy soil.¹²⁰

Tricin and its derivatives are also reported potentially applicable in pharmaceutical due to its preventive efficacy, low toxicity, and reasonable bioavailability. 57, 155 The bioavailability of tricin can be enhanced by modifications such as glycosylation¹⁵⁶ and coupling with amino acid as prodrugs.¹⁴⁵
Table 7 summarizes the potential pharmaceutical applications
 of tricin related compounds. Tricin exhibits higher radical scavenging activity (e.g. EC50 values) in comparison with commonly used compounds such as quercetin, myricetin, and catechin.¹⁵⁷ Its potential as an anti-inflammatory agent has been suggested due to the antioxidant ability of tricin and its derivatives.^{73, 83, 93, 129, 130, 158, 159} Tricin also showed inhibitory activity toward exocytosis from antigen-stimulated rat leukemia basophils $^{\rm 38}$ and hepatitis B virus $^{\rm 72}.$ Recently, tricin derived extracts were considered as a potential chemoprevention candidate against cancer due to its intestinal carcinogenesis interference and inhibition of breast cancer cells.^{29, 43, 75} The dihydrotricin extracted from palm was reported to exhibit significant blood vessels widening potencies at 100 μ M with 80.3% relaxation.⁹⁴ Other functions such as proliferation inhibition,¹⁶⁰ anti-influenza virus activity in vivo,¹⁴⁶ anti-human cytomegalovirus (HCMV) activity,^{60, 61}

intestinal adenomas reduction,¹⁶¹ superior gastro-intestinal availability,¹⁶² and tyrosinase inhibitor,¹⁶³ have also been reported which could expand its potential pharmaceutical applications.

Table 7 Pharmaceutical functions of tricin and its derivatives					
Compound	Functions				
Tricin	Anti-allergy activities38, 93				
	Anti-HIV activity63				
	Anti-inflammatory activity 43, 73, 83, 93, 158, 159, 164				
	Antioxidant ^{43, 63, 67, 91, 157}				
	Anti-tumor activity ^{39, 46, 62, 75, 155, 160-162, 165-170}				
	Anti-ulcerogenic activity ⁷⁶				
	Anti-virus activity ^{59-61, 72, 145, 146}				
	Potential diabetes suppression78, 100				
	Pigmentation inhibition ^{66, 163}				
Tricin-glycosides	Antioxidant ^{43, 71, 80}				
	Anti-ulcerogenic activity'				
	Anti-virus activity ²				
	Immunomodulatory ^{36, 69}				
	Neuroprotective effects ¹¹⁷				
Tricin-lignans	Anti-allergy activities				
	Anti-inflammatory activity 3, 05, 127, 172				
	Antioxidant				
	Antiplatelet aggregation activities				
	Antitumor activities				
Tricin lignon glucosidos	Antiovascular protection				
r rem-nghan-grucosides	Antitumor activity ¹⁸ , ¹²⁹				
	Allthumor activity				

Structure identification

Ultraviolet (UV)-visible spectroscopic analysis

UV spectroscopy has been broadly used for tricin identification. With a backbone of 4',5,7-trihydroxy flavone, tricin is characterized by two strong adsorptions in the region 240-400 nm: band I at 300-380 nm corresponding to the cinnamoyl system of ring-B and band II at 240-280 nm corresponding to the benzoyl system of ring-A.¹⁷³ In methanol, band I of tricin peaks around 348 nm, and band II peaks near 244 and 269 nm. Reagents such as sodium methoxide (NaOMe), aluminium chloride (AlCl₃), AlCl₃/HCl, sodium acetate (NaOAc), and NaOAc/H₃BO₃ have been used and added to methanol resulting in a diagnostic shift of UV spectra of tricin.^{50, 71, 141} The absorption peaks were observed to vary on chemical changes that occurred on the flavone backbone.¹⁷³ The typical absorption peaks of tricin and its derivatives detected by UV are summarized in **Table 8**.

Table 8 Absorption bands of trici	n and its derivatives in UV spectra
-----------------------------------	-------------------------------------

Compounds	UV (λ /nm) in reagents							
•	МеОН	NaOMe	AlCl ₃	NaOAc	AlCl ₃ /HCl	NaOAc/H ₃ BO ₃		
Tricin	269, 346-349 56, 63, 70, 72, 81, 88, 89, 141	264, 275sh, 418sh ^{71, 96, 141}	259sh, 277, 303, 370, 394 ¹⁴¹	275, 321sh, 362 ^{71, 96}	259sh, 278, 303, 362, 387 ¹⁴¹	271, 343 71, 96, 141		
Tricin-7- <i>O</i> -glucoside	253, 269, 341 ^{70, 71, 111}	260, 294, 427* 71	248, 341, 380 71	253, 269, 34171, 111	-	-		
Tricin-5-O-glucosides	247, 268sh, 351	247sh, 261, 399	272, 303sh, 364sh, 403	258, 422	- 257sh, 275, 300,	- 267sh, 360, 385sh		
Tricin-disaccharides ^{111,}	265-270, 351	-	265-270, 383	265-270, 340sh, 351	-	-		
Tricin-lignan	271, 288sh, 305sh, 335 ^{30, 131, 132}	279, 298sh,367 ³⁰	$280,303,351,393 sh^{30}$	279, 312sh, 367 ³⁰	280, 303, 345, 393sh ³⁰	272, 334 ³⁰		
Tricin-lignan-glycosides T- <i>C</i> -glycoside ⁵⁴	272, 345 ¹⁸ 270, 350	272, 398 ¹⁸	270, 382 ^{30, 122}	272, 348, 430 ¹⁸	-265, 350 ¹³³	-		

Note: *NaOH used as diagnostic shift reagent; ⁺ EtOH; sh: shoulder; - data not reported.

This journal is © The Royal Society of Chemistry 20xx

Infrared (IR) spectroscopic analysis

The characteristics of functional groups in tricin and its derivatives including hydroxyl, aromatic rings, conjugated ketone group, double bond, C-O bond, and aromatic hydrogen, can be identified by IR (**Table 9**). The strong and broad absorbance in the region 3300-4000 cm⁻¹ is assigned to hydroxyl group (O-H). The bands at 1653, 1247, and 1055 cm⁻¹ were assigned to the conjugated carbonyl group, double bond, and C-O in ring-C, respectively.^{96, 134} The region of 1490-1510 cm⁻¹ was reported to correspond to aromatic hydrogens, while absorbance band around 1160 cm⁻¹ was assigned to the aromatic ether linkage.^{18, 64, 70} A broad band at 1128 was attributed to *O*-glycosylation.¹³³

Liquid chromatography-mass spectrometric (LC-MS) analysis

Tricin and its derivatives display characteristic mass to charge ratio (m/z) using LC-MS analysis (**Table 10**). Considering both the protonated and deprotonated capability of tricin and its derivatives, MS in either positive or negative mode has been used to study the fragmented ions.^{174, 175} The m/z of 331 (at positive mode) and 329 (at negative mode) has been usually used to identify tricin. Fragments at $m/z [M+H]^{+}$ 153 and 178 correspond to the ring-A and ring-B fragment, respectively.^{104,} ¹³³ Signals at m/z 315 and 300 are suggestive of cleavage of one and two molecular methyl groups^{18, 133} from tricin. The fragmentation of tricin-glycosides and tricin-lignans gives rise to a substituted carbohydrate and phenylpropanoid moiety besides tricin ion.^{70, 94, 106} The characteristic fragments from tricin derivatives are glucosyl (-162 u),¹²⁰ rhamnosyl (-146 u),⁷⁰ glucuronyl (-176 u),¹⁰⁶ sinapic acid (-206 u),¹⁰⁶ ferulic acid (-176 u), coumaric acid (-146 u), and methyl (-15 u).¹⁸ Recently, LC coupled with tandem mass spectrometry (LC-MS/MS) has been used to strengthen the qualitative analysis of tricin derivatives by providing further structure characterization information.⁹²

Nuclear magnetic resonance (NMR) spectroscopic analysis

NMR spectroscopy is another powerful tool employed to investigate the structure of tricin and its derivatives. The signal assignments in ¹H-NMR and ¹³C NMR spectra of tricin are summarized in **Table 11** and **12**, respectively. A characteristic peak around δ 13.0 was assigned to hydroxyl proton (5-OH).^{86, 96} The presence of glucose moiety at C7 leads to a downfield shift of 0.36 and 0.31 ppm for H6 and H8, respectively.⁷⁰

¹³C NMR analysis provides characteristic differences between free tricin and the aglycone of tricin derivatives (**Table 12**). For example, the tricin-5-*O*-glucoside had a 4.5 ppm shift on the carbonyl carbon (C4)^{28, 85} as a result of loss of hydrogen bond between H5 and O4, which was not observed on C7 from tricin-7-*O*-glucoside.⁸⁸ Notable chemical shifts of C1', 3', and 5' (δ125.4, 153.1, and 153.1 ppm)¹⁰¹ toward downfield were observed on 4'-*O*-guaiacylglyceryl tricin as compared to free tricin (δ120.7, 148.6, and 148.6 ppm).⁷² A similar difference has also been detected on 4'-*O*hydroxyphenylglyceryl tricin, 4'-*O*-methylguaiacylglyceryl tricin, and 4'-*O*-coumaroyl-guaiacylglyceryl tricin (**Table 12**). Table 9 IR absorbance bands of tricin and its derivatives

Wavelength (cm ⁻¹)	Assignment/functional group
3300-4000	O-H ^{59, 64, 79, 83, 90, 120, 121, 129}
2926	C-H ⁹⁹
2917	-OCH3 ⁵⁴
1643-1687	Conjugated C=O ^{71, 90, 130, 132}
1605-1615	C=C ^{18, 89, 94, 104}
1430-1598	Aromatic C=C ^{18, 54, 64, 70, 72, 89, 94, 132, 133}
1368	Aromatic C=C ⁹⁹
1247	Aromatic C=C ¹³⁴
1152, 1128	C-O ^{99, 133}
1055-1060	C-O ^{71, 96, 133}

Table 10 The common moie	ties and their characteristic
product ions of tricin and	l its derivatives in LC-MS

Assignment	Characteristic fragments	Ref
Tricin	$[M + H]^+$ at m/z 331	46, 67, 71, 90, 120
	[M – H] ⁻ at m/z 329	18, 40, 55, 56, 83, 90, 125
	$[M]^+$ at m/z 330	41, 70, 72, 86-90
	$[M + Na]^+$ at m/z 353	65, 79
Tricin-glucoside	$[M + H]^+$ at m/z 493	71, 72, 85, 110, 114, 119, 124
	$[M - H]^{-}$ at m/z 491	79, 85, 119, 121, 123
	$[M - H]^{-}$ at $m/z 507^{*}$	80
Tricin-glucuronide	$[M + H]^+$ at m/z 507	110
0	[M - H] at m/z 505	48
Tricin-diglycoside	$[M + H]^+$ at m/z 639	111, 124
0.	$[M - H]^{-}$ at m/z 637	126
Hydroxyphenylglyceryl tricin	[M – H] ⁻ at m/z 495	94
Guaiacylglyceryl tricin	$[M - H]^{-}$ at m/z 525	83, 93, 130-132
	$[M + H]^+$ at m/z 527	82, 176
	$[M - H]^{-}$ at m/z 553	129
	$[M + H]^+$ at m/z 569, 583, 695	64
	$[M]^+$ at m/z 540	93, 130
	[M] ⁺ at m/z 638	133
Tricin-lignan-glucoside	$[M + H]^+$ at m/z 689	134, 176
	$[M - H]^{-}$ at m/z 687	121
Methyl	[M – H – CH ₃] ⁻ : –15 u	18
Methoxy	$[M + H - methoxy]^+$: -30 u	124
Glucosyl	$[M + H - hexose]^+$: -162 u	72, 111, 118, 120, 124
Rhamnosyl	$[M + H - rhamnose]^+$: -146 u	70, 104, 124
Glucuronyl	[M - H - Glucuronic acid] -: -176 u	48, 106
Feruloyl	[M – H – ferulic acid] ⁻ : –176 u	106
Sinapoyl	[M – H – sinapic acid] ⁻ : –206 u	106
Coumaroyl	[M - H - coumaric acid] -: -146 u	106
Note: * an extra –OH was presen	t in the 3C of tricin.	

Table 11 ¹H NMR chemical shift assignment and coupling constant data for tricin

Solvent	¹ H-NMR (δ)	Assignment	Ref		
DMSO-d ₆	6.93-6.98 (s, 1)	H3	56, 67, 96, 128		
	6.19-6.21 (d, 1, J=2 Hz)	H6			
	6.54-6.56 (d, 1, J=2 Hz)	H8			
	7.30-7.33 (s, 2)	H2', H6'			
	3.87-3.90 (s, 6)	MeO3', MeO5'			
	12.96 (s, 1)	5-OH			
Acetone-d ₆	6.729 (s, 1)	H3	86		
	6.253 (d, 1, J=2 Hz)	H6			
	6.551 (d, 1, J=2 Hz)	H8			
	7.382 (s, 2)	H2', H6'			
	3.972 (s, 6)	MeO3', MeO5'			
	13.006 (s, 1)	5-OH			

The presence of a carbohydrate moiety can be deduced from the anomeric signal in the ¹H-NMR (δ 5.27 ppm) and ¹³C NMR spectra (δ 98.2 ppm) together with heteronuclear multiple bond correlation (HMBC) analysis.^{18, 58} The 4'-*O*- β linkage between C4' of tricin and C- β of phenylpropanoid was identified by HMBC and ¹H-¹H rotating frame Overhauser effect spectroscopy (ROESY).³⁰ In addition, the ether linkage between tricin flavone backbone and phenylpropanoid was also confirmed by HMBC and nuclear Overhauser effect spectroscopy (NOESY).^{94, 129} Moreover, a new tricin-lignan was reported in stoneshrub by using HMBC and ¹H-¹H correlated spectroscopic (COSY) spectra suggesting that tricin was etherified to the α -position of the phenylpropanoid unit.³⁹

REVIEW

	Tricin Tricin-glycosides						Tricin-lignans					Tricin-lignan-glycosides					
	Т	Т	T7	Т5	Т4'	T7Glur	T7neo		T4'G		Т4'Н	T4'mG	T4'CG	а	b	c	d
Solvent	D	А	D	D	D	D	D	М	D	Р	М	М	М	D	М	D	Р
C2	164.1	165.1	164.1	161.7	163.2	164.2	166.5	165.2	164.4	164.2	165	162.9	165	164.1	165.2	165	165
C3	103.9	104.7	105.9	107	104.8	103.9	105.7	105.9	104	105.9	105.7	105.5	105.4	103.8	105.9	101.5	107
C4	182.7	183.1	182	177.8	182	182.1	184	183.8	182	182.7	183.6	183.4	183.7	182	183.8	182.8	183.9
C5	161.8	163.4	160.8	159.3	161.1	161.2	163	163.3	161.5	163.6	163.2	162.9	163.2	161.2	163.3	161.8	164.3
C6	99.1	99.7	99.5	105.2	98.1	99.3	102	100.7	99.1	100.3	100.6	100.1	100.4	99.2	100.7	100.2	101.3
C7	163.6	164.9	163	161.7	165.3	162.6	164.7	167.4	163.2	166.5	167.8	165.9	166.5	162.2	167.4	163.3	167.3
C8	94.4	94.9	95.4	99.3	92.9	95.1	96.4	95.5	94.4	95.2	95.5	95.1	95.2	95.2	95.5	95.3	96.3
С9	157.8	158.8	156.9	159.1	157.4	156.9	158.9	159.6	157.5	158.9	159.5	159.1	159.4	156.8	159.6	157.6	159.7
C10	103.9	105.3	105.4	108.5	104.8	105.5	104.9	105.2	104.9	105.3	105	105.3	105.7	105.5	105.2	105.2	106.3
C1'	120.7	122.4	120.2	121.1	125.6	120.2	122.5	128	125.4	127.2	127.9	127.3	126.7	120.3	128	120.9	127.9
C2'	104.6	105.3	104.5	104.7	105	104.6	104.9	105.2	104.4	105.2	105	104.7	105.0	104.5	105.2	104.7	105.9
C3'	148.6	149.1	148.2	148.9	152.9	148.2	149.7	154.9	153.1	154.3	154.8	154.5	154.8	148.2	154.9	149	155.1
C4'	140.2	141	139.9	140	137.7	140.1	141	140.7	140	140.9	140.4	141.4	141.4	140	140.7	140.9	141.3
C5'	148.6	149.1	148.2	148.9	152.9	148.2	149.7	154.9	153.1	154.3	154.8	154.5	154.8	148.2	154.9	149	155.1
C6'	104.6	105.3	104.5	104.7	105	104.6	105.7	105.2	104.4	105.2	105	104.7	105.0	104.5	105.2	104.7	105.9
2*OCH3	56.4	57	56.4	57	56.8	56.4	57.2	57	56.6	56.6	56.9	57.1	56.9	56.4	57	57.1	57.2
Ref	72	94	88	28	58, 115	106	70	30	101	131	94	130	64	106	30	18	121

12

T: tricin; T7: tricin-7-O-glycoside; T5: tricin-5-O-glycoside; T7Glur: Tricin-7-O-glucuronide; T7neo: tricin-7-O-neohesperidoside; T4': tricin-4'-O-glycoside; T4'G: 4'-O-guaiacylglyceryl tricin; T4'H: 4'-O-hydroxyphenylglyceryl tricin; T4'me: 4'-O-methylguaiacylglyceryl tricin; T4'C6: 4'-O-coumaroyl-guaiacylglyceryl tricin; a:tricin-7-O-[2'-O-sinapoyl-glucuro(1-2)-O-glucuronide]; b: tricin-7-O-[4'guaiacylglyceryl)-glucoside; c: tricin 7-O-[6''-methoxycinnamic)-glucoside; d: tricin-4'-O-(α-glucono)-guaiacylglyceryl ether. Solvent: D: DMSO-d₆; A: acetone-d₅; M: C0₃OD; P: pyridine-d₅

Table 13 ¹³C⁻¹H HSQC correlation of chemical shift of tricin moiety in lignin

Lignin source	Chemical shift of assigned position ($\delta C/\delta H$)							
	T2', T6'	Т3	T8	T6				
Arundo grass	103 9/7 3	104 7/7 03	94 4/6 64	98 9/6 28	19			
Bamboo stem	103.9/7.34	106.2/7.07	94.2/6.6	98.9/6.23	25			
Barley	103.9/7.3	104.5/7.03	94.1/6.56	98.7/6.22	27			
Coconut coir fibers	N/D	N/D	94.1/6.56	98.8/6.2	136			
Corn stover	104.3/7.31	104.9/7.05	94.4/6.57	99/6.21	10			
Maize plant	103.9/7.30	104.5/7.03	94/6.56	98.7/6.22	23			
Rice straw	103.8/7.29	104.2/7.04	93.8/6.58	98.8/6.26	21			
Sugarcane	103 9/7 30	104 5/7 03	94 0/6 56	98 7/6 22	26			
Wheat straw	103 9/7 31	104 5/7 04	94 1/6 56	98 8/6 2	9			
vincut strutt	104 04/7 3	104 65/7 03	94 1/6 56	98 8/6 22	138			
	104/73	104/7 1	94/6.6	98/6.2	135			
	104.04/7.3	104.65/7.03	94.1/6.56	98.8/6.22	137			
	103 9/7 29	104 5/7 02	94 1/6 56	98 7/6 21	22			
Wula sedge	N/D	104 1/7 31	94 5/6 56	98 8/6 23	20			

Recently, Del Río et al. have documented that tricin is covalently incorporated into lignin by using heteronuclear single-quantum correlation (HSQC) NMR analysis.⁹ The HSQC correlation data of the tricin component in lignin are listed in Table 13. Two strong and well-resolved C/H signals at the 6 and 8 position of tricin were readily observed at $\delta 98.8/6.20$ and δ 94.1/6.56 ppm in the aromatic region, respectively (Fig. 2). The two phenolic hydroxyl groups at C5 and C7 showed proton signals at δ 12.86 and 10.88 ppm which were correlated with C5 and C7 by HMBC. The structure of tricin etherified with lignin through guaiacyl (G) unit has also been elucidated by HMBC analysis.⁹ The etherified position on C4' was also confirmed by phosphorylation followed by $^{\rm 31}{\rm P}$ NMR analysis with significantly reduced signal at 4'-OH compared to 5 and 7-OH positions.²² Using HSQC and HMBC spectroscopic analysis, Lan et al. has observed the coupling of tricin and

monolignols.¹⁰ It should be noted that tricin was reported to link with syringyl (S) unit in rice straw²¹ and corn stover¹⁰ lignin, while other reports indicated a linkage with G-unit.

Biosynthesis of tricin

Although the major flavonoid biosynthetic pathway has been extensively studied, there is still a lack of information about enzymatic engineering of flavones.¹⁵¹ The precursors for tricin biosynthesis have been reported to be p-coumaroyl-CoA derived from general phenylpropanoid pathway and malonyl-CoA derived from carbohydrate metabolism-polyketide pathway (Fig. 3).¹⁷⁷ The initial step of tricin biosynthesis is catalyzed by chalcone synthase (CHS) to yield tetrahydroxylchalcone.¹⁷⁸ Naringenin (a flavanone compound) is then rapidly formed by chalcone isomerase (CHI).¹⁵¹ The subsequent hydroxylation in C3 by flavanone 3-hydroxylase (F3H) leads to the formation of dihydrokaempferol, followed by generation of dihydroguercetin or dihydromyricetin through adding hydroxyl group by flavanone 3'-hydroxylase (F3'H) and flavanone 3',5'-hydroxylase (F3'5'H).¹⁵¹ Presumably, a double bond between C2 and C3 in dihydromyricetin is formed by the action of flavone synthase (FNS) and this reaction gives rise to tricetin ultimately.¹⁴ Tricin is then produced following a sequential O-methylation of tricetin through flavone O-methyltransferase (FOMT).¹⁴ However, Lam et al. have proposed a reconstructed biosynthesis pathway of tricin from naringenin in rice without formation of tricetin. The authors suggested that tricin is formed in the order of desaturation between C2 and C3, hydroxylation on C3', methylation on C3', hydroxylation on C5', and methylation on C5'.179

In addition to the biosynthesis of tricin from *p*-coumaroyl-CoA, a type of monolignols (i.e., lignin precursors) are biosynthesized through a series of side modifications, ring hydroxylations, and O-methylations (Fig. 3).^{5, 180} The pcoumaryl, coniferyl, 5-hydroxyconiferyl, and sinapyl alcohol are formed from *p*-coumaroyl-CoA either via subsequent enzyme catalysis of *p*-coumaraldehyde or via caffeoyl-CoA.⁵ The aromatic lignin polymers were then generally believed to form in plants resulting from oxidative combinatorial coupling of these monolignols.⁴ Recent studies, especially in transgenic and mutant plants, have indicated that lignin can be derived from several new monomers such as hydroxycinnamyl alcohols,^{6-8,} 181-183 aldehyde,184 hydroxycinnamyl hydroxycinnamic acid,^{185, 186} 4-hydroxycinnamyl acetates,¹⁸¹ and others.⁵ These newly reported lignin monomers as well as genetic perturbation of lignification indicate the flexibility of lignification in plants. Although the biosynthesis of tricin was not considered to involve in the process of lignification, the incorporation of tricin into lignin through β -O-4 linkage has been recently reported in biomimetic coupling reactions.¹⁰ The results suggested that tricin could act as a nucleation or initiation site for lignification, through which other monolignols cross-coupled to form lignin polymer. The evidence of tricin covalently incorporating into lignin imply a potential association between biosynthetic pathway of tricin and lignin, which could help redefine the lignin related phenylpropanoid metabolism inducing from the regulation of lignin biosynthesis genes.⁵

Fig. 3 Schematic overview of biosynthesis pathway for tricin and lignin. Adapted from previous literatures.^{5, 13} PAL: Phe ammonialyase; C4H: cinnamate-4-hydroxylase; 4CL: *p*-coumaroyl:CoA-ligase; STS: stilbene synthase; CHS: chalcone synthase; CHI: chalcone isomerase; F3H: flavanone 3-hydroxylase; F3'H: flavonoid 3' hydroxylase; F3'S'H: flavonoid 3',5'-hydroxylase; CCR: cinnamoyl-CoA reductase; CAD: cinnamyl alcohol dehydrogenase; COMT: caffeic acid *O*-methyltransferase; CCAOMT: caffeoyl-CoA *O*-methyltransferase; F5H: ferulate 5-hydroxylase; F0MT: flavone *O*methyltransferase.

Conclusion and perspectives

Tricin, a flavonoid type compound from the secondary metabolic pathways in plants, possesses significant importance to plant growth by defending against disease, weeds, and microbes. It is widely distributed in herbaceous and cereal plants, and exists as free tricin and its derivatives such as tricin-glycosides, tricin-lignans, and tricin-lignan-glycosides. Tricin and its derivatives show potential pharmaceutical applications due to low toxicity, antioxidative activity, and cancer preventive activity. The structures of tricin and its derivatives conjugating with carbohydrates and phenylpropanoid were identified by various analytical methods. In particular, the incorporation of tricin into lignin was evidenced by NMR spectra. The presence of tricin in lignin in certain plants suggests a possible association between biosynthetic tricin and lignification and can provide a new insight into lignin biosynthesis.

28.

35.

37.

40.

41.

42.

43.

44.

45.

47.

Green Chemistry

REVIEW

Acknowledgements

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The work was supported and performed as part of the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Notes and references

- J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M. 1. Weckhuysen, Chem. Rev., 2010, 110, 3552-3599.
- 2. A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna and M. Keller, Science, 2014, 344, 1246843.
- 3. R. Vanholme, B. Demedts, K. Morreel, J. Ralph and W. 29. Boerjan, Plant Physiol., 2010, 153, 895-905.
- 4. J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P. F. 30. Schatz, J. M. Marita, R. D. Hatfield, S. A. Ralph and J. H. Christensen, Phytochem. Rev., 2004, 3, 29-60.
- 5. W. Boerjan, J. Ralph and M. Baucher, Annu. Rev. Plant Biol., 2003, 54, 519-546.
- 6. F. Chen, Y. Tobimatsu, L. Jackson, J. Nakashima, J. Ralph and R. A. Dixon, The Plant Journal, 2013, 73, 201-211.
- 7. F. Chen, Y. Tobimatsu, D. Havkin-Frenkel, R. A. Dixon and J. Ralph, Proc. Natl. Acad. Sci., 2012, 109, 1772-1777.
- 8. A. Wagner, Y. Tobimatsu, L. Phillips, H. Flint, K. Torr, L. Donaldson, L. Pears and J. Ralph, The Plant Journal, 2011, 67.119-129.
- 9. J. C. Del Río, J. Rencoret, P. Prinsen, A. n. T. Martínez, J. Ralph and A. Gutiérrez, J. Agric. Food. Chem., 2012, 60, 36. 5922-5935.
- 10. W. Lan, F. Lu, M. Regner, Y. Zhu, J. Rencoret, S. A. Ralph, U. I. Zakai, K. Morreel, W. Boerjan and J. Ralph, Plant Physiol., 2015, 167, 1284-1295.
- J. B. Harborne and H. Baxter, The Handbook of Natural 11. Flavonoids., John Wiley & Sons, 1999.
- 12. S. Martens and A. Mithöfer, Phytochemistry, 2005, 66, 2399-2407.
- 13 B. Winkel-Shirley, Plant Physiol., 2001, 126, 485-493.
- J.-M. Zhou and R. K. Ibrahim, Phytochem. Rev., 2010, 9, 14. 413-424.
- 15. E. Wollenweber and M. Doerr, Nat. Prod. Commun., 2008, 3, 1293-1298.
- 16. C. A. Williams, J. B. Harborne and H. T. Clifford, Phytochemistry, 1973, 12, 2417-2430.
- 17. J. Ø. Moskaug, H. Carlsen, M. C. W. Myhrstad and R. Blomhoff, Am. J. Clin. Nutr., 2005, 81, 277S-283S.
- 18. J. M. Duarte-Almeida, G. Negri, A. Salatino, J. E. de Carvalho and F. M. Lajolo, Phytochemistry, 2007, 68, 1165-1171.
- 19. T.-T. You, J.-Z. Mao, T.-Q. Yuan, J.-L. Wen and F. Xu, J. Agric. Food. Chem., 2013, 61, 5361-5370.
- 20. J.-Z. Mao, X. Zhang, M.-F. Li and F. Xu, BioResources, 2013, 48. 8, 3869-3883.
- 21. M. Wu, J. Pang, F. Lu, X. Zhang, L. Che, F. Xu and R. Sun, 49. Ind. Crop Prod., 2013, 50, 887-895.

- 22. H. Heikkinen, T. Elder, H. Maaheimo, S. Rovio, J. Rahikainen, K. Kruus and T. Tamminen, J. Agric. Food. Chem., 2014, 62, 10437-10444.
- 23. S. Fornalé, J. Rencoret, L. Garcia-Calvo, M. Capellades, A. Encina, R. Santiago, J. Rigau, A. Gutiérrez, J.-C. del Río and D. Caparros-Ruiz, Plant Sci., 2015, 236, 272-282.
- 24. C. G. Yoo, H. Kim, F. Lu, A. Azarpira, X. Pan, K. K. Oh, J. S. Kim, J. Ralph and T. H. Kim, BioEnergy Research, 2015, 1-10.
- 25. J.-L. Wen, S.-L. Sun, B.-L. Xue and R.-C. Sun, Holzforschung, 2013, 67, 613-627.
- 26. C. José, A. G. Lino, J. L. Colodette, C. F. Lima, A. Gutiérrez, Á. T. Martínez, F. Lu, J. Ralph and J. Rencoret, Biomass Bioenergy, 2015, 81, 322-338.
- 27. J. Rencoret, P. Prinsen, A. Gutierrez, A. T. Martinez and J. C. Del Rio, J. Agric. Food. Chem., 2015.
 - L. Van Hoyweghen, I. Karalic, S. Van Calenbergh, D. Deforce and A. Heyerick, J. Nat. Prod., 2010, 73, 1573-1577.
 - S. Mohanlal, S. K. Maney, T. R. Santhoshkumar and A. Jayalekshmy, J. Nat. Med., 2013, 67, 528-533.
 - M. Bouaziz, N. C. Veitch, R. J. Grayer, M. S. J. Simmonds and M. Damak, Phytochemistry, 2002, 60, 515-520.
- 31. J. A. Anderson and A. G. Perkin, J. Chem. Soc. (Resumed), 1931, 2624-2625.
- J. B. Harborne and C. A. Williams, Biochem. Syst. Ecol., 32. 1976, 4, 267-280.
- N. A. M. Saleh, C. Nozzolillo and I. Altosaar, Biochem. Syst. 33. Ecol., 1988, 16, 597-599.
- 34. J. B. Harborne, C. A. Williams and K. L. Wilson, Phytochemistry, 1985, 24, 751-766.
 - I. El-Habashy, R. M. A. Mansour, M. A. Zahran, M. N. El-Hadidi and N. A. M. Saleh, Biochem. Syst. Ecol., 1989, 17, 191-195.
 - J. B. Harborne and E. Hall, Phytochemistry, 1964, 3, 421-428.
 - W. S. Ferguson, d. B. Ashworth and R. A. Terry, Nature, 1949, **163**, 606-606.
- 38. H. Kuwabara, K. Mouri, H. Otsuka, R. Kasai and K. Yamasaki, J. Nat. Prod., 2003, 66, 1273-1275.
- 39. J. Yan, L. Sun, X. Zhang and M. Qiu, Heterocycles, 2005, 65.661-666.
 - Z. Zhang, B. Cui and Y. Zhang, Entomol. Exp. Appl., 2015.
 - I. Cummins, M. Brazier-Hicks, M. Stobiecki, R. Franski and R. Edwards, Phytochemistry, 2006, 67, 1722-1730.
 - J. B. Harborne, Comparative biochemistry of the flavonoids, Academic Press, London, New York, 1967.
 - S. Mohanlal, R. Parvathy, V. Shalini, A. Helen and A. Jayalekshmy, Plant Food Hum. Nutr., 2011, 66, 91-96.
 - Y. Ogo, K. Ozawa, T. Ishimaru, T. Murayama and F. Takaiwa, Plant Biotechnol. J., 2013, 11, 734-746.
- A. Moheb, PhD, Concordia University, 2012. 46.
 - A. Moheb, M. Grondin, R. K. Ibrahim, R. Roy and F. Sarhan, Food Chem., 2013, 138, 931-937.
 - M. Kanemoto, K. Matsunami, H. Otsuka, T. Shinzato, C. Ishigaki and Y. Takeda, Phytochemistry, 2008, 69, 2517-2522.
 - T. Iwashina and G. Kokubugata, Bul. I Natl. Mus. Nat. Sci. Ser. B, 2010, 36, 117-125.
 - A. Benavides, C. Bassarello, P. Montoro, W. Vilegas, S. Piacente and C. Pizza, Phytochemistry, 2007, 68, 1277-1284.

84.

85.

90.

98.

- 50. A. Wilson, *Phytochemistry*, 1985, **24**, 1685-1691.
- 51. T. W. Goodwin, *Chemistry and biochemistry of plant pigments*, London, New York, Academic Press, 1965.
- D. H. Miles, K. Tunsuwan, V. Chittawong, U. Kokpol, M. I. Choudhary and J. Clardy, *Phytochemistry*, 1993, **34**, 1277-1279.
- 53. J. Cui, Y. Yue, F. Tang and J. Wang, *JPC J. Planar Chromatogr. Mod. TLC*, 2011, **24**, 394-399.
- 54. J. Sun, Y.-D. Yue, F. Tang, X.-F. Guo, J. Wang and X. Yao, *Chem. Nat. Compd.*, 2013, **49**, 822-825.
- 55. X. F. Guo, Y. D. Yue, F. Tang, J. Wang, X. Yao and J. Sun, *J. Food Biochem.*, 2013, **37**, 748-757.
- 56. J. Jiao, Y. Zhang, C. Liu, J. e. Liu, X. Wu and Y. Zhang, J. Agric. Food. Chem., 2007, **55**, 10086-10092.
- 57. B. Lu, X. Wu, X. Tie, Y. Zhang and Y. Zhang, *Food Chem. Toxicol.*, 2005, **43**, 783-792.
- 58. H.-B. Wang, H. Yao, G.-H. Bao, H.-P. Zhang and G.-W. Qin, *Phytochemistry*, 2004, **65**, 969-974.
- A. Sakai, K. Watanabe, M. Koketsu, K. Akuzawa, R. Yamada, Z. Li, H. Sadanari, K. Matsubara and T. Murayama, *Antiviral Chem. Chemother.*, 2008, 19, 125-132.
- K. Akuzawa, R. Yamada, Z. Li, Y. Li, H. Sadanari, K. Matsubara, K. Watanabe, M. Koketsu, Y. Tuchida and T. Murayama, *Antiviral Res.*, 2011, **91**, 296-303.
- T. Murayama, Y. Li, T. Takahashi, R. Yamada, K. Matsubara, Y. Tuchida, Z. Li and H. Sadanari, *Microb. Infect.*, 2012, 14, 1086-1092.
- Y. H. Jeong, S. Y. Chung, A. R. Han, M. K. Sung, D. S. Jang, J. Lee, Y. Kwon, H. J. Lee and E. K. Seo, *Chem. Biodivers.*, 2007, 4, 12-16.
- T. Matsuta, H. Sakagami, K. Satoh, T. Kanamoto, S. 91. Terakubo, H. Nakashima, M. Kitajima, H. Oizumi and T. Oizumi, *In Vivo*, 2011, 25, 757-762.
- 64. Y. Nakajima, Y. S. Yun and A. Kunugi, *Tetrahedron*, 2003, **59**, 8011-8015.
- 65. H. Nakano, N. Kawada, M. Yoshida, H. Ono, R. Iwaura and T. Tonooka, *J. Agric. Food. Chem.*, 2011, **59**, 9581-9587.
- 66. T. X. Meng, N. Irino and R. Kondo, J. Nat. Med., 2015, 1-5.
- 67. M. Watanabe, J. Agric. Food. Chem., 1999, **47**, 4500-4505.
- B.-L. Guo, W.-K. Li, J.-G. Yu and P.-G. Xiao, *Phytochemistry*, 1996, **41**, 991-992.
- 69. H. R. Liang, P. Vuorela, H. Vuorela and R. Hiltunen, *Planta Med.*, 1997, **63**, 316-319.
- Y. Ju, J. N. Sacalis and C. C. Still, J. Agric. Food. Chem., 1998, 46, 3785-3788.
- 71. Y. S. Kwon, E. Y. Kim, W. J. Kim, W. K. Kim and C. M. Kim, *Arch. Pharmacal Res.*, 2002, **25**, 300-305.
- H. Li, C. Zhou, Y. Pan, X. Gao, X. Wu, H. Bai, L. Zhou, Z. Chen, S. Zhang and S. Shi, *Planta Med.*, 2005, **71**, 1128-1133.
- 73. V. Moscatelli, O. Hnatyszyn, C. Acevedo, J. Megías, M. J. Alcaraz and G. Ferraro, *Planta Med.*, 2006, **72**, 72-74.
- M. Shang, S. Cai, J. Han, J. Li, Y. Zhao, J. Zheng, T. Namba,
 S. Kadota, Y. Tezuka and W. Fan, *China Journal of Chinese Materia Medica*, 1998, 23, 614-616.
- E. A. Hudson, P. A. Dinh, T. Kokubun, M. S. J. Simmonds and A. Gescher, *Cancer Epidemiol. Biomarkers Prev.*, 2000, 9, 1163-1170.
- 76. A. S. Awaad, N. H. Mohamed, D. J. Maitland and G. A. Soliman, *Rec Nat Prod*, 2008, **2**, 76-82.

- 77. Z. Guo, Q. Guo, S. Zhang, C. Li, X. Chai and P. Tu, *Biochem.* Syst. Ecol., 2014, **55**, 329-332.
- M. M. Hegab, H. Abdelgawad, M. S. Abdelhamed, O. Hammouda, R. P. V. Kumar and G. Zinta, *Allelopathy J.*, 2013, **31**, 345-354.
- 79. W.-K. Zhang, X. U. Jie-Kun, L. Zhang and D. U. Guan-Hua, *Chin. J. Nat. Med.*, 2012, **10**, 110-114.
- O. A. Eldahshan, N. A. Ayoub, A.-N. B. Singab and M. M. Al-Azizi, *Afr. J. Pharm. Pharmacol.*, 2009, **3**, 158-164.
- V. S. Nambiar, N. Sareen, M. Daniel and E. B. Gallego, Functional Foods in Health and Disease, 2012, 2, 251-264.
- H. Huang, Y. Liu, Q. Meng, S. Wei, H. Cui and C. Zhang, Biochem. Syst. Ecol., 2010, 38, 656-658.
- Y.-J. Jung, J.-H. Park, J.-G. Cho, K.-H. Seo, D.-S. Lee, Y.-C. Kim, H.-C. Kang, M.-C. Song and N.-I. Baek, Arch. Pharmacal Res., 2014, 38, 178-185.
 - X. Liu, A. M. Yang and Y. P. Shi, J. Anal. Chem., 2008, 63, 472-476.
 - F. Adjei-Afriyie, C.-S. Kim, M. Takemura, M. Ishikawa and M. Horiike, *Biosci., Biotechnol., Biochem.*, 2000, **64**, 443-446.
- L. Bing, D. Hongxia, Z. Maoxin, X. Di and W. Jingshu, Acta Ecologica Sinica, 2007, 27, 1300-1306.
- C. Kong, X. Xu, B. Zhou, F. Hu, C. Zhang and M. Zhang, *Phytochemistry*, 2004, 65, 1123-1128.
- D. Xu, B. Li, Y. Liu, Z. Huang and L. Gu, *Sci. Sinica Vitae*, 1996, **39**, 8-16.
- C. Kong, W. Liang, X. Xu, F. Hu, P. Wang and Y. Jiang, J. Agric. Food. Chem., 2004, 52, 2861-2865.
 - I.-M. Chung, S.-J. Hahn and A. Ahmad, *J. Chem. Ecol.*, 2005, **31**, 1339-1352.
 - R. R. Devi, A. Jayalekshmy and C. Arumughan, Food Chem., 2007, **104**, 658-664.
- 92. X. Dong, W. Chen, W. Wang, H. Zhang, X. Liu and J. Luo, J. Integr. Plant Biol., 2014, 56, 876-886.
- S.-S. Lee, Y.-S. Baek, C.-S. Eun, M.-H. Yu, N.-I. Baek, D.-k. Chung, M.-H. Bang and S.-A. Yang, *Biosci., Biotechnol., Biochem.*, 2015, **79**, 700-706.
- C.-L. Chang, G.-J. Wang, L.-J. Zhang, W.-J. Tsai, R.-Y. Chen, Y.-C. Wu and Y.-H. Kuo, *Phytochemistry*, 2010, **71**, 271-279.
- O. G. El-Dien, E. Shawky, A. H. Aly, R. M. Abdallah and N. A. Abdel-Salam, Am. J. Anal. Chem., 2013, 2013.
- 96. Y. S. Kwon and C. M. Kim, *Arch. Pharmacal Res.*, 2003, **26**, 535-539.
- 97. H. Aimin and W. Mingshi, *Chinese Traditional and Herbal* Drugs, 1997, **9**, 001.
 - J. M. Duarte-Almeida, A. Salatino, M. I. Genovese and F. M. Lajolo, *Food Chem.*, 2011, **125**, 660-664.
- P. Karambelkar, V. M. Jadhav and V. Kadam, Indo American Journal of Pharmaceutical Research, 2014, 4, 2620-2627.
- Y.-S. Jin, J.-L. Du, Y. Yang, L. Jin, Y. Song, W. Zhang and H.-S. Chen, *Chem. Nat. Compd.*, 2011, **47**, 257-260.
- A. I. Syrchina, A. G. Gorshkov, V. V. Shcherbakov, S. V. Zinchenko, A. L. Vereshchagin, K. L. Zaikov and A. A. Semenov, *Chem. Nat. Compd.*, 1992, 28, 155-158.
- F. Ferreres, A. Gil-Izquierdo, P. B. Andrade, P. Valentão and F. A. Tomás-Barberán, J. Chromatogr. A, 2007, 1161, 214-223.
- 103. R. Theodor, H. D. Zinsmeister, R. Mues and K. R. Markham, *Phytochemistry*, 1981, **20**, 1851-1852.

130.

Green Chemistry

- 104. M. Parveen, Z. Khanam, A. Ali and S. M. Ahmad, *Chin. Chem. Lett.*, 2010, **21**, 593-595.
- G. Popovici, G. Weissenböck, M.-L. Bouillant, G. Dellamonica and J. Chopin, *Z. Pflanzenphysiologie*, 1977, 131.
 85, 103-115.
- 106. A. Stochmal, A. M. Simonet, F. A. Macias and W. Oleszek, *J. Agric. Food. Chem.*, 2001, **49**, 5310-5314.
- 107. S. Goławska, I. Łukasik, I. Kapusta and B. Janda, *Pol J Environ Stud*, 2012, **21**, 1613-1619.
- 108. Ł. Cieśla, I. Kowalska, W. Oleszek and A. Stochmal, *Phytochem. Anal*, 2013, **24**, 47-52.
- 109. A. Stochmal and W. Oleszek, *J. Food Agric. Environ.*, 2007, **5**, 170.
- 110. P. D. Marin, R. J. Grayer, S. Grujic-Jovanovic, G. C. Kite and N. C. Veitch, *Phytochemistry*, 2004, **65**, 1247-1253.
- 111. R. Colombo, J. H. Yariwake, E. F. Queiroz, K. Ndjoko and K. Hostettmann, *Phytochem. Anal*, 2006, **17**, 337-343.
- 112. C. A. Williams, J. B. Harborne and P. Smith, *Phytochemistry*, 1974, **13**, 1141-1149.
- R. Nørbæk, D. B. F. Aaboer, I. S. Bleeg, B. T. Christensen, T. Kondo and K. Brandt, J. Agric. Food. Chem., 2003, 51, 809-813.
- 114. H.-S. Park, J. H. Lim, H. J. Kim, H. J. Choi and I.-S. Lee, *Arch. Pharmacal Res.*, 2007, **30**, 161-166.
- 115. T. Hasegawa, A. Tanaka, A. Hosoda, F. Takano and T. Ohta, *Phytochemistry*, 2008, **69**, 1419-1424.
- 116. J. Chen, S. L. Li, P. Li, Y. Song, X. Y. Chai and D. Y. Ma, *J. Sep. Sci.*, 2005, **28**, 365-372.
- 117. Y.-P. Lin, T.-Y. Chen, H.-W. Tseng, M.-H. Lee and S.-T. 142. Chen, *Phytochemistry*, 2009, **70**, 1173-1181.
- 118. B. Dai, Z. Hu, H. Li, C. Yan and L. Zhang, *J. Chromatogr. B*, 2015, **978**, 54-61.
- F. Adjei-Afriyie, C.-S. Kim, M. Takemura, M. Ishikawa, S.-i. Tebayashi and M. Horiike, *Z. Naturforsch., C: Biosci.*, 2000, 55, 1038-1044.
- 120. C. H. Kong, H. Zhao, X. H. Xu, P. Wang and Y. Gu, *J. Agric. Food. Chem.*, 2007, **55**, 6007-6012.
- 121. S.-S. Lee, N.-I. Baek, Y.-S. Baek, D.-K. Chung, M.-C. Song and M.-H. Bang, *Molecules*, 2015, **20**, 5616-5624.
- 122. R. Colombo, J. H. Yariwake, E. F. Queiroz, K. Ndjoko and K. Hostettmann, J. Chromatogr. A, 2005, **1082**, 51-59.
- 123. L. Zhu, Z. Zhao, S. Yu and S. Zhu, *Int. Sugar J.*, 2010, **112**, 24.
- 124. R. Colombo, J. H. Yariwake and M. McCullagh, *Journal of the Brazilian Chemical Society*, 2008, **19**, 483-490.
- A. Bottcher, I. Cesarino, A. B. dos Santos, R. Vicentini, J. L.
 S. Mayer, R. Vanholme, K. Morreel, G. Goeminne, J. C. M.
 S. Moura and P. M. Nobile, *Plant Physiol.*, 2013, 163, 1539-1557.
- 126. Y. Zhao, L. Zhu, S. Yu and Z. Zhao, *Sugar Ind.-Zuckerindustrie*, 2013, **138**, 525-531.
- 127. S. A. Begum, M. Sahai and A. B. Ray, in *Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products, Vol. 93*, Springer, 2010, pp. 1-70.
- 128. R. Cooper, H. E. Gottlieb and D. Lavie, *Isr. J. Chem.*, 1977, **16**, 12-15.
- C.-L. Chang, L.-J. Zhang, R.-Y. Chen, C.-C. Wu, H.-C. Huang, M. C. Roy, J.-P. Huang, Y.-C. Wu and Y.-H. Kuo, *Biorg. Med. Chem.*, 2010, **18**, 518-525.

- R.-H. Jeong, D.-Y. Lee, J.-G. Cho, S.-M. Lee, H.-C. Kang, W.-D. Seo, H.-W. Kang, J.-Y. Kim and N.-I. Baek, *J. Korean Soc. Appl. Bi.*, 2011, **54**, 865-870.
- E. Wenzig, O. Kunert, D. Ferreira, M. Schmid, W. Schühly, R. Bauer and A. Hiermann, *J. Nat. Prod.*, 2005, 68, 289-292.
- 132. G.-c. Gao, Z.-x. Lu, H.-x. Xu, X.-s. Zheng and Y.-j. Yang, *Chem. Nat. Compd.*, 2012, **48**, 128-129.
- 133. Z. Khanam, F. Adam, O. Singh and J. Ahmad, *BioResources*, 2011, **6**, 2932-2940.
- 134. R.-H. Jeong, D.-Y. Lee, J.-G. Cho, K.-H. Seo, J.-W. Lee, M.-H. Lee, W.-D. Seo, H.-C. Kang, G.-S. Kim and H.-J. Noh, *Chem. Nat. Compd.*, 2014, **49**, 1003-1005.
- 135. F. Zikeli, T. Ters, K. Fackler, E. Srebotnik and J. Li, *Ind. Crop Prod.*, 2014, **61**, 249-257.
- J. Rencoret, J. Ralph, G. Marques, A. Gutiérrez, A. n. T. Martínez and J. C. del Río, *J. Agric. Food. Chem.*, 2013, 61, 2434-2445.
- 137. J. Zeng, D. Singh, D. Gao and S. Chen, *Biotechnology for Biofuels*, 2014, **7**, 161.
- 138. J. Zeng, G. L. Helms, X. Gao and S. Chen, J. Agric. Food. *Chem.*, 2013, **61**, 10848-10857.
- 139. I. Molnár-Perl and Z. Füzfai, *J. Chromatogr. A*, 2005, **1073**, 201-227.
- 140. S. S. Ebada, R. A. Edrada, W. Lin and P. Proksch, *Nature Protocols*, 2008, **3**, 1820-1831.
- M. Estiarte, J. Peñuelas, S. Cañigueral and I. Casals, *Cereal Chem.*, 1997, 74, 495-496.
 - . K. C. Gulati and K. Venkataraman, J. Chem. Soc. (Resumed), 1933, 942-943.
- 143. W. Baker, J. Chem. Soc. (Resumed), 1933, 1381-1389.
- 144. D. Nagarathnam and M. Cushman, *The Journal of Organic Chemistry*, 1991, **56**, 4884-4887.
- 145. M. Ninomiya, K. Tanaka, Y. Tsuchida, Y. Muto, M. Koketsu and K. Watanabe, *J. Med. Chem.*, 2011, **54**, 1529-1536.
- K. Yazawa, M. Kurokawa, M. Obuchi, Y. Li, R. Yamada, H. Sadanari, K. Matsubara, K. Watanabe, M. Koketsu and Y. Tuchida, *Antiviral Chem. Chemother.*, 2011, **22**, 1-11.
- 147. N. Pandurangan, *Lett. Org. Chem.*, 2014, **11**, 225-229.
- 148. J. A. Anderson, *Can. J. Res.*, 1933, **9**, 80-83.
- 149. W. L. Chan, Y. C. Lin, W. H. Zhang, P. L. Tang and Y. S. Szeto, *Heterocycles*, 1996, **43**, 551-554.
- C. H. Kong, X. H. Xu, M. Zhang and S. Z. Zhang, *Pest Manage. Sci.*, 2010, 66, 1018-1024.
- 151. E. G. W. M. Schijlen, C. H. R. De Vos, A. J. van Tunen and A. G. Bovy, *Phytochemistry*, 2004, **65**, 2631-2648.
- 152. M. S. J. Simmonds, *Phytochemistry*, 2003, **64**, 21-30.
- 153. P. E. Laks and M. S. Pruner, *Phytochemistry*, 1989, **28**, 87-91.
- A. Moheb, Z. Agharbaoui, F. Kanapathy, R. K. Ibrahim, R. Roy and F. Sarhan, *Plant Sci.*, 2013, **201**, 115-120.
- R. D. Verschoyle, P. Greaves, H. Cai, A. Borkhardt, M. Broggini, M. D'Incalci, E. Riccio, R. Doppalapudi, I. M. Kapetanovic and W. P. Steward, *Cancer Chemo. Pharm.*, 2006, **57**, 1-6.
- H. Cai, S. Sale, R. G. Britton, K. Brown, W. P. Steward and A. J. Gescher, *Cancer Chemo. Pharm.*, 2011, 67, 255-263.
- M. J. Ajitha, S. Mohanlal, C. H. Suresh and A. Jayalekshmy, J. Agric. Food. Chem., 2012, 60, 3693-3699.
- 158. V. Shalini, A. Jayalekshmi and A. Helen, *Mol. Immunol.*, 2015, **66**, 229-239.

- **Green Chemistry**
- 159. T. Oyama, Y. Yasui, S. Sugie, M. Koketsu, K. Watanabe and T. Tanaka, *Cancer Prev. Res.*, 2009, **2**, 1031-1038.
- 160. M. Ninomiya, K. Nishida, K. Tanaka, K. Watanabe and M. Koketsu, *J. Nat. Med.*, 2013, **67**, 460-467.
- H. Cai, M. Al-Fayez, R. G. Tunstall, S. Platton, P. Greaves, W. P. Steward and A. J. Gescher, *Mol. Cancer Ther.*, 2005, 4, 1287-1292.
- 162. H. Cai, D. J. Boocock, W. P. Steward and A. J. Gescher, *Cancer Chemo. Pharm.*, 2007, **60**, 257-266.
- Y. Mu, L. Li and S.-Q. Hu, Spectrochim. Acta, Pt. A: Mol. Biomol. Spectrosc., 2013, 107, 235-240.
- V. Shalini, S. Bhaskar, K. S. Kumar, S. Mohanlal, A. Jayalekshmy and A. Helen, *Int. Immunopharmacol.*, 2012, 14, 32-38.
- 165. H. Cai, W. P. Steward and A. J. Gescher, *Biomed. Chromatogr.*, 2005, **19**, 518-522.
- 166. M. Al-Fayez, H. Cai, R. Tunstall, W. P. Steward and A. J. Gescher, *Cancer Chemo. Pharm.*, 2006, **58**, 816-825.
- H. Cai, S. Sale, R. Schmid, R. G. Britton, K. Brown, W. P. Steward and A. J. Gescher, *Cancer Prev. Res.*, 2009, 2, 743-750.
- H. Cai, E. A. Hudson, P. Mann, R. D. Verschoyle, P. Greaves, M. M. Manson, W. P. Steward and A. J. Gescher, *Br. J. Cancer*, 2004, **91**, 1364-1371.
- K. Plochmann, G. Korte, E. Koutsilieri, E. Richling, P. Riederer, A. Rethwilm, P. Schreier and C. Scheller, *Arch. Biochem. Biophys.*, 2007, 460, 1-9.
- N. Seki, U. Toh, K. Kawaguchi, M. Ninomiya, M. Koketsu, K. Watanabe, M. Aoki, T. Fujii, A. Nakamura and Y. Akagi, J. Cell. Biochem., 2012, 113, 2346-2355.
- 171. W.-L. Jiang, Y. Xu, S.-P. Zhang, H.-B. Zhu and J. Hou, *Eur. J. Pharm. Sci.*, 2012, **45**, 50-57.
- Y.-S. Jung, D. H. Kim, J. Y. Hwang, N. Y. Yun, Y.-H. Lee, S. B. Han, B. Y. Hwang, M. S. Lee, H.-S. Jeong and J. T. Hong, *Toxicol. Appl. Pharmacol.*, 2014, **277**, 67-76.
- T. J. Mabry, K. R. Markham and M. B. Thomas, *The* Systematic Identification of Flavonoids Springer, Berlin, 1970.
- 174. M. Stobiecki, *Phytochemistry*, 2000, **54**, 237-256.
- 175. F. Cuyckens and M. Claeys, J. Mass Spectrom., 2004, **39**, 1-15.
- E. F. Queiroz, J. R. Ioset, K. Ndjoko, A. Guntern, C. M. Foggin and K. Hostettmann, *Phytochem. Anal*, 2005, 16, 166-174.
- 177. D. Barton and O. Meth-Cohn, *Comprehensive natural* products chemistry, Newnes, 1999.
- 178. T. A. Holton and E. C. Cornish, *The Plant Cell*, 1995, **7**, 1071.
- 179. P. Y. Lam, H. Liu and C. Lo, *Plant Physiol.*, 2015, pp-00566.
- 180. C. M. Fraser and C. Chapple, *The Arabidopsis Book/American Society of Plant Biologists*, 2011, **9**.
- 181. J. Ralph, J. Nat. Prod., 1996, **59**, 341-342.
- J. Ralph, C. Lapierre, F. Lu, J. M. Marita, G. Pilate, J. Van Doorsselaere, W. Boerjan and L. Jouanin, J. Agric. Food. Chem., 2001, 49, 86-91.
- L. Jouanin, T. Goujon, V. de Nada

 M.-T. Martin, I. Mila, C. Vallet, B. Pollet, A. Yoshinaga, B. Chabbert and M. Petit-Conil, *Plant Physiol.*, 2000, **123**, 1363-1374.
- J. Ralph, C. Lapierre, J. M. Marita, H. Kim, F. Lu, R. D. Hatfield, S. Ralph, C. Chapple, R. Franke and M. R. Hemm, *Phytochemistry*, 2001, 57, 993-1003.

- J. Ralph, R. D. Hatfield, S. Quideau, R. F. Helm, J. H. Grabber and H.-J. G. Jung, J. Am. Chem. Soc., 1994, **116**, 9448-9456.
- J. Ralph, J. H. Grabber and R. D. Hatfield, *Carbohydr. Res.*, 1995, **275**, 167-178.

