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Personal Care Products (PCPs) ingredients, widely used all over the world, during last years became chemicals of increasing 

environmental concern, mainly because they are detected in water and may harm wildlife. Due to their high structural 

heterogeneity, to the big number of end-points and the huge lack of experimental data it is very important to have tools able to 

quickly highlight the most hazardous and toxic compounds, focusing the experiments on the prioritized chemicals. In silico tools, 

like QSAR models based on structural molecular descriptors, can predict missing data for activities and properties necessary to 

prioritize existing or even not yet synthesized chemicals for their potential hazard. In the present study, new externally validated 

QSAR models, specific to predict acute PCPs’ toxicity in three key organism of aquatic trophic level, i.e. algae, crustacean and 

fish, were developed according to the OECD principles for the validation of QSARs, using the QSARINS software. These OLS 

models are based on theoretical molecular descriptors calculated by free PaDEL-Descriptor, selected by Genetic Algorithm: are 

statistically robust, externally predictive and characterized by a wide structural applicability domain. They were applied to 

predict acute toxicity for over 500 PCPs  without experimental data; a trend of acute aquatic toxicity was highlighted by PCA 

allowing the ranking of inherently more toxic compounds, using also a MCDM approach for prioritization purposes. Additionally, 

a QSAR model for the prediction of this aquatic toxicity index (ATI) was proposed to be applicable in QSARINS for the a priori 

chemical design of not environmentally hazardous PCPs. 
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Introduction 

 

Personal care products (PCPs) and their ingredients include a broad number of compounds that are used in daily lives, such as 

soaps, perfumes, detergents, cleaning agents, disinfectants, sunscreens, deodorants, sprays, etc. During the last years, an 

increasing attention was paid to the concerns related to the environmental occurrence and possible harmful impact of PCPs, 

which became now a widely and well recognized class of emerging environmental pollutants.
1
 

PCPs are detected with a greater frequency mainly in the aquatic environments, where they are continually released by either 

being rinsed from human bodies and washed down drains and sewer systems. In fact, they are among the most frequently 

detected chemicals in surface waters,
2
 but they have been also found in drinking and ground water, seawater, sewage and 

wastewater treatment plants (STP, WWTP).
3–7

 In addition, they are detected also in soil and sediments.
3–6,8,9

 The measured 

concentrations of PCPs in surface waters around the world mainly range from μg/L to tens/thousands of ng/L, similar to those 

measured in sediments.
4
 High concentrations of synthetic musk fragrances were found in WWTPs worldwide.

10
 

Even though the environmental concentrations of these contaminants could be considered relatively low, their regular input to 

aquatic ecosystems imparts them with ‘pseudo-persistence’, leading to the long-term exposure of aquatic communities,
11

 

raising concerns for their potential adverse effects for wildlife and environmental health. The occurrence of UV filters and 

stabilizers is reported in fish, mussels, crustaceans and marine mammals like dolphins, with concentrations that range 

from tens to thousands of ng/g.
9,12–18

 

Recently, the number of (eco)toxicity studies on PCPs, which have assessed both acute and sub- lethal effects, has 

significantly grown. The primary issues of concern for PCPs are their ability to bioaccumulate as well as the propensity 

to cause estrogenic and endocrine effects.
8
 In fact, some of these PCPs ingredients, like UV filters and polycyclic 

musks, have a high potential for bioaccumulation, due to their lipophilic characteristics. Bioconcentration factors (BCF) 

of some UV filters are greater than 5000 in fish,
8
 leading to consider them as B or vB substances, also following REACH 

criteria for bioaccumulative compounds. Recently, in our screening work on PCPs for PBT (Persistence 

Bioaccumulation and Toxicity) behavior some UV sun-screeners were identified as potential PBTs.
19

 Some UV filters 

have shown decreased reproduction and increased mortality rates of benthic organisms,
20

 as well as a high acute and 

chronic toxicity towards green algae and Daphnia magna.
21

  

In regard to synthetic musks, they have been shown to bioaccumulate to a great extent in aquatic wildlife, including 

marine mussels, different fish species and mammals.
10,17,22

 Concentrations of galaxolide and tonalide, two widely used 

synthetic fragrances frequently found in aquatic compartments, induce oxidative and genetic damage in the zebra 

mussel, suggesting the involvement of oxidative stress in the mechanism of action of these aquatic pollutants to this 

freshwater bivalve.
10

 

Additionally, it has been demonstrated that, among PCPs, UV filters, polycyclic musks, parabens and phthalates showed 

potential endocrine disruption.
17,23

 

However, information about ecotoxicity is not so extensive if compared with other pollutants, especially regarding 

primary producers (algae) and consumers (aquatic invertebrates),
1
 and in general little is known about the 

ecotoxicological characteristics of these substances. QSAR (Quantitative Structure Activity Relationship) modelling is 

an important and useful structural tool for discovering the potential inherent hazard of chemicals. QSAR models can 

predict missing experimental data, finding out the relationship between chemical structure and biological activity, 
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only on the existing experimental data. The aims of the present study are: a) to fill the data gaps of ecotoxicity on 

aquatic organisms by QSAR models, specifically developed for PCPs; b) to compare our results with the predictions 

obtained by a widely applied online modelling tool such as ECOSAR;
24

 c) to apply our models for the ranking of a big 

set of more than 500 PCPs, collected in our previous study;
19

 d) to highlight and prioritize the most hazardous PCPs, 

ranking them by tools able to combine toxicity data from multiple sources, such as Principal Component Analysis (PCA) 

and Multi-Criteria Decision Making (MCDM); and e) to propose a final QSAR model of the obtained cumulative aquatic 

toxicity trend, defined as an aquatic toxicity index (ATI). All the proposed QSAR models will be applicable by using the 

QSARINS-Chem module in the software QSARINS.
25,26

 

The whole goal of this work is to propose a comprehensive framework for identifying a priori the potentially more 

toxic PCPs, an approach useful also for avoiding the synthesis, and subsequent introduction to the market and into the 

environment, of harmful compounds, as supposed “safer alternatives”. This can be done by combining QSAR models 

and chemometric methods, exploiting the fundamental information inherent in the chemical structure, in the benign 

by design approach of the Green Chemistry.  

 

Materials and Methods 

 

Dataset and data curation 

 

Experimental data for the acute toxicity of the whole set of 534 PCPs,
19

 in the three organisms studied (i.e. algae, Daphnia, fish), 

were mainly harvested from the ECOTOX database.
27

 Great attention was devoted in collecting homogeneous data, because this 

is the first care that QSAR modellers must apply in preparing the input datasets for their modelling.  Only a careful data curation 

for obtaining homogeneous data sets can guarantee reliable QSAR models.
28

 Experimental data were specifically filtered for the 

species  (only data obtained on a single specific species for each trophic level were selected), defined time of exposure (only 

data obtained at the same exposure time were collected), endpoint and measured effect , trying  to ensure the highest degree 

of homogeneity in experimental measures, that derive from different sources. If different and multiple values were found for a 

specific chemical, the minimum LC/EC50 value was taken and modelled, considering the “worst case scenario” (i.e. the most 

toxic value). 

Once these experimental values were selected and filtered, the data were additionally carefully checked, removing duplicates 

and measures reported as “nominal concentration”. All the values, selected as input responses,  were converted to mol/l and 

then expressed as negative logarithm of the concentration “-log(mol/l)” (or pEC50/LC50).  

Out of the 534 PCPs ingredients in our study, experimental ecotoxicological data, which satisfied the filters for homogeneity 

previously reported,  were found only for 107 molecules (20%) and only 11 chemicals (2%) possess experimental data for all the 

three studied trophic levels, 

For Pseudokirchneriella subcapitata only 20 PCPs with consistent data for growth rate inhibition at 96h (EC5096h), according to 

the OECD test 201,
29

were found . 

For Daphnia magna 54 data immobilization at 48h ( EC5048h) were collected from ECOTOX database, while the remaining 18 

data, for the same end point,were taken from different sources, including literature
30

 
28

 and safety data sheets, verifying their 

consistency with the studied endpoint, for a final data set of 72 PCPs with homogeneous data according the OECD test 202.
31

 

For Pimephales promelas homogeneus data for mortality at 96h (LC5096h), according to the OECD test 203
32

, for 67 PCPs were 

taken from the ECOTOX database. 
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Chemical structures and molecular descriptors 

 

The chemical structures for all the studied PCPs ingredients were carefully verified and drawn in HyperChem software.
33

 The 

structures, saved as .hin files, were then converted by OpenBabel (ver. 2.3.2)
34

 into MDL MOL (.mol), which is the recommended 

input format in PaDEL-Descriptor software.
35

 Various molecular descriptors (only mono- and bi-dimensional to avoid the 

complexity of 3D- conformation), that encode for the different structural features of the chemicals, including various calculated 

logP such as XlogP, MlogP, AlogP and CrippenLogP, were then calculated using PaDEL-Descriptor (ver. 2.21), implemented in 

QSARINS ver. 2.2.1.
25,26

 In order to minimize redundant and not useful information, constant and semi-constant (80%) values 

and descriptors found to be pair-wise correlated more than 0.98 were excluded in QSARINS.  

A total of 453, 623, and 602 descriptors, respectively for algae, Daphnia and fish toxicity datasets, were used as input variables 

for QSAR modelling. Finally, a total of 481 descriptors were used as a structural input for the development of the QSAR model 

related to the Aquatic Toxicity Index (ATI) of PCPs. 

 

 QSAR Modelling and ranking 

 

QSAR models were developed by Multiple Linear Regression (MLR) using the Ordinary Least Squares (OLS) method and the 

Genetic Algorithm-Variable Subset Selection (GA-VSS),
 
included in QSARINS,

25,26
 was applied for the selection of modelling 

descriptors. Following the OECD principles for QSAR validation,
36

 
 
several statistical parameters were used to verify the internal 

stability and the external predictivity of the developed QSAR models.
37,38

 The coefficient of determination R
2
 was used as a 

measure of the goodness-of-fit, while internal robustness was verified by the cross-validation coefficient Q
2

LOO (leave-one-out, 

used also as fitness function in GA) and Q
2

LMO (leave-many-out, 30 %). In order to exclude chance correlation between the 

selected descriptors  and the modelled endpoint, the Y-Scrambling method was applied.
37,39

 The external validation of the 

models was performed by calculating different parameters, i.e. Q
2
ext-F1,

40
 Q

2
ext-F2,

41
 Q

2
ext-F3,

42
 and external CCC (CCCext, 

Concordance Correlation Coefficient).
43–45

 In addition, the Root Mean Squared of Errors (RMSE), that summarizes the overall 

error, was used to measure and compare the accuracy of the reproduced data in the training set (RMSETR) and predicted data in 

the prediction set (RMSEP). In order to verify the actual predictive capability of the selected models, the datasets were split a 

priori, before model development, into a training  set (~70% of compounds) used for model development, and a prediction set 

(~30% of compounds) used for external validation. The chemicals included in the prediction sets were never used in the model 

development step to select the modelling descriptors.
37,38

  Three different splitting techniques, all available in QSARINS,
25,26

 were 

applied: a) randomly b) by ordered response, and c) by structural similarity.
39

 

In the first splitting, compounds were randomly divided into training and prediction set, using the randomization algorithm 

included in QSARINS,
25,26

 always setting 30% of chemicals for the inclusion in the prediction set. In the split by ordered response, 

molecules were ordered according to their increasing toxicity value (pEC50 or pLC50), and one out of every three chemicals was 

put in the prediction set (including always the most and the least toxic compounds in the training sets, to cover the response 

range).  

The splitting of the data set, based on structural similarity, is realized by Principal Component Analysis (PCA) on the available 

molecular descriptors. The chemicals were sorted by PC1 score that explain the majority of the total structural variance; then, 

again, one out of every three chemicals was put in the prediction set. In this way, the selection of a structurally meaningful 

training set and an equally representative prediction set was realized. 
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Finally, the same set of structural descriptors, which had demonstrated their modelling ability for the prediction of chemicals not 

used in model development (i.e. compounds in the prediction sets) in all three independent splitting procedures, was applied to 

derive a full model from the whole data set, in order to exploit, at the end, all the available information and ensuring a wider 

applicability domain of this full model. 

Principal Component Analysis of the three modelled end-points (i.e. pEC50 in algae and Daphnia and pLC50 in fish) was finally 

performed on the available experimental data implemented with the toxicity values predicted by our specific QSAR models, in 

order to rank the studied PCPs according to their cumulative acute aquatic toxicity. 

The Multi-Criteria Decision Making (MCDM) method included in QSARINS-Chem
26

  was used to highlight the most toxic 

chemicals within the studied simplified aquatic scenario.  MCDM is a technique that summarizes the performances of a certain 

number of criteria simultaneously, as a single number (score) between 0 and 1. This is done associating to every criteria, in our 

case different predictions for the studied endpoints, a desirability function which values range from 0 to 1 (where 0 represents 

the less toxic compound and 1 the most toxic), and giving different weights to the selected criteria. The sum of the weights of 

the criteria must be 1, and in our case, we used the same weight for each criteria: 0.333, which is 1/3 (total/number of criteria). 

The geometric average of all the values obtained from the desirability functions gives the MCDM value (i.e. the ranking).  

 

 Applicability Domain assessment  

 

The Applicability Domain (AD) assessment of the new proposed models for PCPs was performed, at the model development 

step, following the leverage approach.
37,39

 The leverage method is based on the calculation of the hat matrix: the diagonal 

values of this matrix (the leverage values: h) are used to verify the presence of structural outliers, i.e. those compounds with h 

greater than the cut off values h*. The h* value is here calculated as 3p’/n, where p’ is the number of the model variables plus 

one, and n is the number of training compounds. Response outliers (i.e. the chemicals badly predicted by the models) are 

identified as those compounds with cross-validated standardized residuals greater than 2.5 standard deviation units. Both types 

of outliers have been detected using the Williams plot, i.e. the plot of the diagonal values of the hat matrix (h, diagonal values 

of the hat matrix) which represent the similarity of a given compound to the training set versus the differences between 

predicted and observed values(standardized residuals).  

When the developed models were applied to the whole set of 534 PCPs, to define more rigorously the degree of extrapolation 

of the obtained predictions, three different and complementary approaches for the study of AD were performed, based on: 

leverage (hat), range of modelling descriptors and PCA bounding box.  

In leverage approach, again, chemicals with h greater than the cut off value h* were considered out of the AD, as can be 

observed in the pertinent Insubria Graphs.
39

 In this graph the h values for each chemical (the leverages) together with the h* 

cut off value  (vertical line) are reported on the abscissa axis against the predictions, reported on the axis of ordinates. The 

training set values are delimited by horizontal lines. 

For the range of descriptors, if a compound shows a descriptor value out of the range of the modelling descriptors, different in 

any model, it is considered out of the model AD for this approach. Within the PCA approach, a sub-structural box space (based 

on the PC1 and PC2 scores of the modelling descriptors) was defined, delimited by the training chemicals; if a predicted 

chemical fell into this chemical space box was considered inside the AD. 

The chemicals “view” inside the AD for all the three approaches altogether were defined as “In AD” (into the AD), with more 

reliable predictions due to their high interpolation degree; the chemicals “view” outside the AD for all the approaches 

considered, were defined as “Out AD” (out the AD), with predictions that could be also corrected but less reliable due to their 
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extrapolation degree; the chemicals view inside the AD for at least one method, were considered “Bor AD” (borderline the AD).  

 

 

Results  

 

Development of QSAR models for PCP acute aquatic toxicity 

 

Before to present and discuss the results of the QSAR modelling performed in this study, it is important to highlight that the 

quality of QSAR models cannot be better that the input data on which they are developed on. For this reason, the first 

important aspect that QSAR modellers must deal with is the preparation of a reliable data set on which to develop QSAR models 

for finding the relationship between chemical structure and biological activity . Therefore, the preliminary careful data curation 

for the preparation of input data, to be used as training set, is a very important point, highlighted also in the “OECD guidance 

document on the validation of (Quantitative) Structure Activity Relationships [(Q)SAR] models”
46

 and in literature.
28,39

 The 

chemical structure must be carefully verified and experimental data must be selected specifically to prepare an homogenous 

data set. The biological end points to be modelled by QSAR must have been obtained on the same species measuring the same 

toxicological response, applying the same experimental conditions, preferably following the OECD protocols. Otherwise QSARs 

will model mainly the variability present in the biological data, due to the different experiments, instead to model the variance 

of the studied biological activity which is related to the chemical variance, i.e. the differences in the molecular structure which 

influence the specific end point of interest. This is the only variance that must be modelled by QSARs. 

For this reason, careful selection and filter of experimental data must be a preliminary step  and the derived availability of 

experimental data, useful for reliable QSAR modelling, is generally limited for some species, as in our study  for algae. 

 

Pseudokirchneriella subcapitata. The dataset for acute toxicity of PCPs ingredients on P. subcapitata was composed of 20 

chemicals, for which homogeneous experimental data satisfying the condition of reliable QSAR modelling are available. Thus, a 

QSAR model based only on two theoretical molecular descriptors is here selected as the best predictive for this endpoint, 

among the GA population of models. Even if the available homogeneous experimental data are limited, the input data set was 

split before the model development to verify the model external predictivity. Three different training sets of 12 chemicals, 

obtained by the splitting techniques (explained in Materials and Methods paragraph) were used for this purpose, and the 

developed models were externally validated on the respective three prediction sets (8 chemicals). The finally proposed QSAR 

model (full), here developed for the prediction of acute toxicity of PCPs ingredients in P. subcapitata, based on two molecular 

descriptors, was the best combination of variables selected by the GA-Variable Subset-Selection (VSS) procedure in the three 

different and independent populations of split models. In Table 1, the statistical parameters related to internal and external 

validation of the split models are reported, as well as the equation of the final full model, recalibrated using all the 20 

experimental data, once the descriptors selected in the split models had guarantee external predictivity. 

 

Table 1: statistical parameters, related to internal and external validation, of the QSAR model for algae toxicity of PCPs. The 

equation of the full model is reported.  

Model NTR NPRED R
2
 Q

2
LOO Q

2
LMO R

2
Yscr CCCEXT Q

2
EXT Fn RMSEtr RMSEp 

AD to 534 
PCPs 

Split by random 12 8 0.93 0.89 0.88 0.19 0.94 0.88-0.90 0.38 0.50  - 

Split by ordered response 12 8 0.95 0.92 0.91 0.18 0.95 0.89-0.89 0.34 0.50  - 

Split by structural similarity 12 8 0.94 0.89 0.88 0.18 0.94 0.87-0.90 0.40 0.50  - 
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pEC50 P.subcapitata = -10.580 
+ 13.045 GGI8 + 21.881 Mp 

20  - 0.93 0.91 0.90 0.11 0.95cv  - 0.40 0.45cv 98% 

 

All the models demonstrated high statistical performances: they were internally stable and robust (high Q
2

LOO and Q
2

LMO), not 

given by chance correlation (low R
2

Yscr), and externally predictive (high values of CCCext and Q
2

extFn) also on chemicals never seen 

during the model development (i.e. chemicals in different prediction sets)., The good predictive ability of these two, simple 

descriptors in each split model is a proof of the validity of the encoded structural information, regardless of the different 

composition of the three different training sets. The errors in predicting chemicals in training (Root Mean Squared Error RMSEtr) 

are similar to those in predicting external chemicals, not used in model development. 

It is particularly interesting to note that the finally proposed full model, even if developed on the limited amount of 

experimentally available data, has a large structural applicability domain (AD) to the big heterogeneous set of 534 PCPs ; in fact,  

the coverage of the full model AD, verified with the methods explained in the Methods paragraph and with the results 

commented in the specific  following section,  is near to 100%.  This could be considered as a guarantee of the reliability and 

generalizability of this QSAR model. 

To help the evaluation of the proposed QSAR model, in Figure 1 the graph of experimental vs. predicted values and the Williams 

Plot for model AD, related to the split model by ordered response, are reported. The equations and the remaining plots, related 

to other splitting schemes and the full model, are reported in ESI (Figures ES1-ES3). 

 

Fig. 1. Graph of experimental vs. predicted values (on the left) and Williams Plot (on the right) for the P.subcapitata toxicity 

model (splitting by ordered response).  

 

As can be seen in the right part of Figure 1, chemical with CAS 3380-34-5 (triclosan, a widely used antibacterial agent) is the 

unique, borderline, structural outlier (on the cut –off value of h*).This is most evident in the full model (see Figure ES3), and thus 

triclosan can be considered a relatively high leverage compound, influent for the selection of the two modelling variables when 

it is included in the training set. Regarding outliers for the response, the compound on the upper limit for the response outliers 

in Figure 1 is not an outlier in the other splitting and in the full model. Concerning the modelling descriptors, it is interesting to 

note that none of the various LogP descriptors was selected by the GA-VSS procedure as good modelling variable for this end-

point, even though they were available as input variables. The two selected descriptors, both positively correlated with the 

modelled response and therefore with an increasing incidence on this specific toxicity, are the mean atomic polarizability (Mp, 
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the most important) and a topological index (GGI8, the Topological charge index of order 8,
47

 which represents the total charge 

transfer between atoms). Both are related not only to molecular dimension, but mainly to the electronic distribution in the 

chemical structure, represented by polarizability and charges, features probably not adequately taken into account by the 

various calculated LogP parameters.  

 

 Daphnia magna. The dataset for acute toxicity of PCPs ingredients on D. magna was composed of 72 compounds, and a QSAR 

model based on three molecular descriptors was chosen as the best for predictivity. The whole set was split into three training 

sets used for model development and internal validation, and three prediction sets used for external validation of the proposed 

model. Random splitting gave a training set of 50 PCPs and a prediction set of 22 PCPs, while the remaining both splitting 

schemes (i.e. ordered response and structural similarity) resulted in training sets of 49 PCPs and prediction sets of 23 PCPs. The 

proposed QSAR model, here developed for prediction of acute toxicity of PCPs ingredients in D.magna, was built on three 

molecular descriptors, selected as the best combination of variables by the GA-VSS procedure on the three independent 

populations of split models. In Table 2, the statistical parameters related to the internal and external validation of the split 

models as well as of the final full model , recalibrated using all the 72 experimental data, once the external predictivity of the 

three split models were evaluated and verified, (with its equation) are reported.    

 

Table 2: statistical parameters, related to the internal and external validation, of the proposed model for Daphnia magna toxicity 

of PCPs. The equation of the full model is reported.  

Model NTR NPRED R
2
 Q

2
LOO Q

2
LMO R

2
Yscr CCCEXT Q

2
EXT Fn RMSEtr RMSEp 

AD to 534 
PCPs 

Split by random 50 22 0.87 0.84 0.84 0.06 0.95 0.85-0.91 0.51 0.54  - 

Split by ordered response 49 23 0.89 0.87 0.86 0.06 0.94 0.87-0.90 0.54 0.50  - 

Split by structural similarity 49 23 0.91 0.89 0.89 0.06 0.89 0.80-0.88 0.50 0.57  - 

pEC50 D.magna = 4.485 
+ 0.015 MW - 3.205 

ATSC0c - 1.518 GATS1p 
72  - 0.89 0.88 0.87 0.04 0.93cv  - 0.52 0.55cv 98% 

 

The statistical parameters show that the models are stable and robust, not given by chance correlation, and also externally 

predictive when applied to the three, different and independent prediction sets. The very similar values of the Root Mean 

Squared Error (RMSE) on training and prediction sets guarantee the great ability of the models to predict the chemicals, which 

are never seen during the modelling step (i.e. in prediction sets) , with similar errors to those obtained in the training sets.. The 

structural coverage of the full model on the whole set of 534 PCP ingredients is very large, again near to 100%, showing a wide 

AD also for this D. magna full model. In Figure 2 the graph of experimental vs. predicted values and the Williams Plot related to 

the Structural similarity split model, to study the model AD, are reported. The equations and the remaining plots, related to 

other splitting schemes and full model, are reported in ESI (Figures ES4-ES6). 
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Fig. 2. Graph of experimental vs. predicted values (on the left) and Williams Plot (on the right) for the D. magna toxicity model 

(splitting by structural similarity)  

 

As can be seen in the whole Figure 2, no response and structural outliers were detected in this model.  

The most important descriptor in this model equation is MW, molecular weight, which is positively correlated with the modelled 

response; it means that, in this training sets, the PCPs of higher MW are the most toxic in D. magna. The remaining descriptors, 

both negatively correlated with this toxicity, are ATSC0c (Centered Broto-Moreau autocorrelation lag0 weighted by charges) and 

GATS1p (Geary autocorrelation lag1 weighted by polarizabilities), belonging to the autocorrelation 2-D descriptors, weighted by 

electronic features.
47

 These descriptors represent the distribution of the electronic properties (polarizability and charges as 

weights) in the molecule. Again, as for algae toxicity, the various LogP descriptors were not selected by the GA-VSS procedure as 

good modelling variable for this end-point, probably because in calculated LogPs, which are mainly related to molecular 

dimension, the features related to the polarity of the chemicals are not sufficiently taken into consideration. 

 

Pimephales promelas. Regarding this endpoint, i.e. acute toxicity on P. promelas, for which we had a whole dataset composed 

of 67 chemicals, two different models were selected as the best for predictivity: with LogP (XLogP calculated in PaDEL-Descriptor 

2.21)
35

 and without logP, “LogPfree” (see Table ES1 and Figure ES7-ES10 for more details of LogPfree model). Every model was 

developed and internally validated on three different training sets and externally validated on the respective three prediction 

sets. Random splitting gave a training set of 47 PCPs and a prediction set of 20 PCPs, while the Ordered by Response and the 

Structural Similarity splitting gave a training set of 46 PCPs and a prediction set of 21 PCPs. The proposed QSAR models, here 

developed for prediction of acute toxicity of PCPs ingredients in P. promelas, were based on different number of modelling 

molecular descriptors, selected as the best combinations of variables by the GA-VSS procedure on the different populations of 

split models; the model with LogP (XlogP) was based on three descriptors, while the LogPfree models was based on four 

descriptors. In Table 3, the statistical parameters related to the internal and external validation of the split models and of the full 

model with LogP descriptor (with the relative equation) are reported. 

 

Table 3: statistical parameters, related to the internal and external validation, of the proposed model for P.promelas toxicity of 

PCPs, with LogP The equation of the full model is also reported.  
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LogP Model NTR NPRED R
2
 Q

2
LOO Q

2
LMO R

2
Yscr CCCEXT Q

2
EXT Fn RMSEtr RMSEp 

AD to 534 
PCPs 

Split by random 47 20 0.81 0.78 0.77 0.07 0.90 0.80-0.85 0.62 0.56  - 

Split by ordered response 46 21 0.84 0.81 0.81 0.07 0.85 0.72-0.81 0.60 0.63  - 

Split by structural similarity 46 21 0.83 0.81 0.80 0.07 0.86 0.73-0.81 0.60 0.63  - 

pLC50 P.promelas = 1.701 + 
0.429 XLogP + 2.356 minHother 

+ 15.379 AVP-7 
67  - 0.81 0.79 0.79 0.04 0.89cv  - 0.60 0.63cv 95% 

XlogP calculated by PaDEL-Descriptor 2.21
35

 in QSARINS
25,26

 

 
The reported parameters show that the models are stable and robust, not given by chance correlation, with a good external 

predictivity when applied to the three independent prediction sets. The predictive ability is similar to the calculation 

performance, as evident from the very similar RMSE values for training and prediction sets The final full model, recalibrated 

using all the 67 experimental data, once the external predictivity of the three split models were evaluated and verified, ensures 

a structural coverage (AD) of the whole set of 534 PCPs of 95%. In Figure 3 the graph of experimental vs. predicted values and 

the Williams Plot related to the Random split model are reported. The equations and the remaining plots, related to other 

splitting schemes and full model, are reported in ESI (Figures ES11-ES13). 

 

 
Fig. 3. Graph of experimental vs. predicted values (on the left) and Williams Plot (on the right) for the P. promelas toxicity model 

(splitting by random)  

 
As can be seen in the Williams Plot in Figure 3, the chemical with CAS 117-81-7 (DEHP, a phthalate) is the unique structural 

outlier, influential for the selection of modelling variables. Furthermore, chemical with CAS 101-20-2 (triclocarban, an 

antibacterial agent) is the only outlier for response, being underestimated by our model. These two compounds are still outliers 

in the full model, as can be seen in the pertinent Williams Plot (see Figure ES11 of the Electronic Supplementary Information). 

The most important descriptor in the model equation is XlogP, a LogP descriptor calculated in PaDEL-Descriptor ver. 2.21.
35

 

As expected, because the most lipophilic compounds are also the most bioaccumulative and potentially toxic into the organism, 

this descriptor has a positive sign in the equation, increasing the predicted acute toxicity of PCPs in P. promelas. Even though 

XlogP is sufficient for reaching a relatively satisfactory modelling of the modelled toxicity in fish (Q2LOO of 0.68), two additional 

descriptors were selected by the GA-VSS to increase the model performance: minHother and AVP-7, both with a positive 

correlation with the acute toxicity in P.promelas. MinHother encodes for the minimum e-state of H on aaCH (aromatic CH), 
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dCH2 (=CH2) or dsCH (=CH-), in our dataset this descriptor mainly discriminates the non-aromatic PCPs (minHother always 0) 

from aromatic PCPs (where the values of this descriptor is different from zero); the least important is AVP-7, an average valence 

path of order 7.
47

 

 

Comparison with ECOSAR 

 

A comparison with the predicted values obtained by applying ECOSAR 1.11, 
24

the widely used QSAR tool for the prediction of 

aquatic toxicity was also performed on the here studied chemicals, and the relative RMSE values were calculated. Firstly, we 

compared the predictions on the entire training sets for the studied endpoints and the results are displayed in Table 4. 

 Then, in order to exclude any bias in this calculation for chemicals that were included in our training sets, we performed the 

comparison only on the prediction sets (Table ES2), generated by the three different splitting (random, ordered by response and 

structural similarity), and thus only on chemicals never seen during the development of our models. In Table 4 and Table ES2, 

the comparison A was made using the Baseline Toxicity prediction in ECOSAR (always available for all the chemicals); the 

comparison B was made using the “worst case” generated by ECOSAR, i.e. the lower prediction available for the studied 

chemical. In fact, ECOSAR can recognize one or more chemical classes within the molecular structure and apply different 

equations, giving thus different predictions for the studied chemicals.  

 

Table 4: Comparison of results from our models and ECOSAR models, with the calculated RMSE of predictions. 

Endpoint N RMSE UI
a
 RMSE A

b
 RMSE B

c
 

P.subcapitata pEC50 20 0.40 2.28 2.51 

D.magna pEC50 72 0.52 1.36 1.20 

P.promelas pLC50 (with LogP) 67 0.60 0.93 0.65 

P.promelas pLC50 (LogP free) 67 0.55 0.93 0.65 
 

a
: RMSE related to the predictions derived from QSAR models (full) presented in this work; 

b
: RMSE related to the predictions 

derived from ECOSAR Baseline Toxicity equation; 
c
: RMSE related to the predictions derived from the ECOSAR worst case 

scenario, i.e. the lower prediction available for the studied compound. 

 

As can be seen from Table 4, the models presented in this work show a lower RMSE, in every case (RMSE-UI), more evident 

mainly for algae and Daphnia. Similar results can be also generally observed in the comparison within the prediction sets 

(Comparison B in Table ES2). Finally, we selected the most represented class recognized within the studied chemicals (i.e. 

Esters), performing a direct comparison (comparison C) only on compounds that show a prediction derived from the Esters 

equation in ECOSAR (Table ES3). Also here, the RMSE of the QSAR models presented in this paper are the lowest, confirming the 

previous results and the good predictive performances of our models. This comparison can demonstrate that local QSAR 

models, specific for PCPs, are more able to give reliable predictions, also for chemicals not included in training set, than more 

general models as those included in ECOSAR. 

 

 

Application of the developed models to 534 PCPs 

 

Once the external predictive capability of our models was verified to be better for PCPs than the widely used ECOSAR tool, we 
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applied our developed QSAR models for algae, Daphnia and fish acute toxicity to the whole set of the studied 534 PCPs, in order 

to fill the big data gaps on these ecotoxicity end-points and also to rank the studied PCPs according to their cumulative 

ecotoxicity, based on the integration of experimental and predicted data. This ranking can highlight potentially more toxic 

compounds, prioritizing them for subsequent experimental tests. 

We carried out a careful  AD assessment of each previous QSAR models, using the three different approaches explained in 

Methods, in order to focus the further steps only on the interpolated (“In AD”) or borderline (“Bor AD”) chemicals, which ensure 

a better reliability of the predictions. The AD assessment was performed according to the three methods proposed in the 

Materials and Methods section. The results are summarized in the following Table (Table 5): 

 
Table 5: AD assessment for the developed models applied to the 534 PCPs 

Model N 
% 534 PCPs into AD % 534 PCPs into AD 

(“in+bor”) Leverage Range Desc. PCA 

P.subcapitata full 20 97 (n=519) 91 (n=486) 89 (n=477) 98 (n=523) 

D.magna full 72 96 (n=514) 95 (n=506) 96 (n=515) 98 (n=521) 

P.promelas full (logP) 67 93 (n=496) 91 (n=486) 93 (n=497) 95 (n=505) 

P.promelas full (logPfree) 67 87 (n=464) 83 (n=443) 93 (n=496) 93 (n=499) 

 

 

Even though the algae model is based on the smallest data set (n=20), its combined AD (In+Bor) is the largest in the whole set of 

models, with a coverage of 98%, as the Daphnia model. Therefore, we are confident on the satisfactory generalizability of this 

“small” model and on the reliability of the QSAR predictions for PCPs without experimental data. The fish models are only 

slightly lower in covering the chemical structure of the entire set of PCPs ingredients, with a percentage of chemicals inside or 

borderline the combined AD of 95% and 93% for model with LogP and LogPfree model respectively. In general, the leverage 

approach and PCA seem the most conservative methods, keeping into the structural AD the largest percentages of chemicals. 

We report here the magnified Insubria graphs
39

 for the analysis of AD of four proposed models on chemicals without 

experimental data (Figure 4), while in SI the original Insubria graphs and the PCAs (Figures ES14-ES17) related to the study of AD 

are shown. 

 

Page 13 of 23 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



14 
 

 

Fig. 4. Insubria graphs, related to models for PCPs acute toxicity in algae (a), Daphnia (b), fish with logP (c) and fish LogPfree (d); 

in the left part of the graphs the chemicals with an h value less than the h* cut off value. The dashed lines represent the 

minimum and maximum value for the training set response. 

 

From the graphs in Figure 4, it is evident that the large majority of the studied PCPs belong to the AD of all the models, in fact 

they are located at the left of the h* cut off values in the structural and response zone of the training set chemicals. The 

predictions for these compounds can be considered more reliable, being interpolated by the model. The prediction for the 

chemicals that are located at the right of the leverage cut off values could be also correct, but they are extrapolated, thus they 

should be treated with grater care as less reliable. Overall, all the developed models show a good percentage of interpolated or 

borderline chemicals, leading us to consider our predictions satisfactory and reliable, also when applied to a wide set of 

compounds without any experimental evidence.  

 

Trend of Aquatic Toxicity of PCPs and Priority list  

 

Once the wide coverage of our models for the entire set of 534 PCPs was verified by the previous AD studies (Figure 4), all the 
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ecotoxicity data (experimental plus predictions) were finally analysed by Principal Component Analysis (PCA)  in order to rank 

the compounds according to their cumulative aquatic toxicity and to define a trend of this cumulative toxicity for the class of 

PCPs, in the studied scenario, here represented by the three key organisms of the aquatic trophic level. The ultimate goal is to 

prioritize the compounds potentially more toxic. Chemicals outside each model ADs were excluded, in order to focus our 

screening exercise only on interpolated or borderline predictions (“In AD” and “Bor AD”). In this way, we excluded 50 PCPs, 

remaining with a final set of 484 chemicals. When experimental values were available within these 484 PCPs, they were used. 

Additionally, the predictions from the two P. promelas models were averaged in a consensus model for fish toxicity. The results 

are plotted in the PCA score plot (Figure 5), which explains 94% of the total variance.  

In the first Principal Component (PC1 scores on x axis, explained variance about 79%), which loadings are all in the same 

direction, an evident trend of cumulative aquatic toxicity can be observed, from the left (the less toxic chemicals) to the right 

(the more toxic chemicals). Therefore, the  PC1 can be defined as an Aquatic Toxicity Index (ATI).  

The second principal component (PC2 scores on y axis, explained variance about 15%) discriminates the different toxicities, 

separating the algae from the two animal species: therefore the chemicals in the upper right zone are those more toxic on algae, 

while those in the down right zone are more toxic for Daphnia and fish. 

To highlight the overall most toxic compounds in this ranking, for their inclusion in a priority list, and to define cut off values, we 

applied the Multi-Criteria Decision Making (MCDM) method, included in QSARINS. We selected the 40 most toxic PCPs, 

weighting the three different toxicity inputs (algae, Daphnia and fish consensus) by the same weight  (weight 0.333 in every 

species). Therefore, in the PCA score plot of Figure 5, the predicted PCPs are differently labelled basing on the obtained MCDM 

score:  the 40 PCPs that have obtained the highest MCMD ranking score (i.e. the more toxic in this simplified aquatic scenario) 

are labelled in black, while those with medium MCMD scores, corresponding to intermediate toxicity are reported in dark grey 

and those low MCDM scores, lower toxicity with light grey.  

 

Fig. 5. PCA score plot of the three studied toxicities and identification of an aquatic toxicity trend (Aquatic Toxicity Index (ATI)) of 

PCPs, in the studied simplified aquatic scenario. 

 

As can be observed in Figure 5, in the right part the most toxic PCPs according to both PCA and MCDM are located, with the only 

exception of chemical with CAS 8003-22-3 (D&C Yellow 11, a hair dye), which was predicted with a relative low toxicity in P. 
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promelas and, for this reason, was not included by the MCDM calculations within the 40 most toxic chemicals. The prioritized 40 

chemicals are summarized in the following Table (Table 6), where the PCPs which were prioritized as potential PBTs (Persistent 

Bioaccumulative and Toxic) by our previous works
19,48

  are additionally labeled by asterisk. The names, SMILES and relative 

structures of these 40 prioritized PCPs are reported in Table ES4. This is the first priority list proposed in our work, including the 

chemicals with more reliable predictions or experimental evidences (when available). These prioritized chemicals, which are 

highlighted by QSAR models and the subsequent PCA/MCDM analysis as potentially hazardous for the aquatic compartment, 

due to their toxicity on the three trophic levels, should be considered as compounds of higher concern. Careful experimental 

confirmation should be suggested on these 40 prioritized PCPs among the big studied data set of about 500 compounds. All the 

prioritization approaches are useful in reducing  costs, time and animal tests.  

 

Table 6: 40 most toxic chemicals in the studied aquatic scenario, derived from the PCA/MCDM ranking. The few available 

experimental data are in bold, other data are predicted by our QSAR models, verifying the AD. 

Rank CAS 
pLC50 

P.promelas cons. 

pEC50 

D.magna 

PEC50 

P.subcapitata 

MCDM 

score 
Use 

1 000101-20-2 6.53 7.61 9.21 0.981 Antimicrob. 

2 005089-22-5* 6.08 7.28 9.95 0.967 UV-Filter 

3 125304-04-3 7.23 6.00 7.58 0.963 UV-Filter 

4 000084-62-8 6.60 6.18 7.50 0.958 Phthalate 

5 052829-07-9 6.26 6.44 7.39 0.953 UV-Filter 

6 000117-81-7 6.39 6.39 6.59 0.950 Phthalate 

7 003380-34-5 6.06 6.20 7.93 0.948 Antimicrob 

8 027987-25-3 6.08 6.29 7.30 0.946 Phthalate 

9 302776-68-7 6.03 6.40 7.16 0.946 UV-Filter 

10 000085-69-8 6.39 6.68 6.02 0.943 Phthalate 

11 169198-72-5 5.68 6.96 8.51 0.942 UV-Filter 

12 075673-16-4 6.78 6.06 5.99 0.940 Phthalate 

13 025973-55-1* 5.65 7.06 7.75 0.939 UV-Filter 

14 003864-99-1* 5.55 7.28 7.84 0.932 UV-Filter 

15 041451-28-9 6.86 6.07 5.56 0.930 Phthalate 

16 003147-75-9* 5.70 6.71 6.44 0.927 UV-Filter 

17 070356-09-1 5.59 6.20 7.44 0.917 UV-Filter 

18 000103-53-7 6.34 5.88 5.76 0.912 Fragrance 

19 063250-25-9 5.65 6.20 6.19 0.910 UV-Filter 

20 000146-50-9 6.33 5.68 6.27 0.909 Phthalate 

21 000122-69-0 6.60 6.05 5.31 0.906 Fragrance 

22 001843-05-6 6.37 6.07 5.34 0.904 UV-Filter 

23 036437-37-3* 5.38 6.71 6.84 0.896 UV-Filter 

24 000084-61-7 5.71 5.88 5.80 0.896 Phthalate 

25 005320-75-2 5.96 5.70 5.97 0.895 Fragrance 

26 000078-37-5 6.35 5.98 5.29 0.894 Fragrance 

27 000103-41-3 6.02 5.71 5.69 0.893 Fragrance 

28 000120-24-1 5.77 5.65 6.02 0.890 Fragrance 

29 131812-52-7 5.64 5.88 5.53 0.883 Fragrance 

30 000084-75-3 6.55 6.27 4.98 0.881 Phthalate 

31 003846-71-7* 5.27 6.71 7.08 0.881 UV-Filter 
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Rank CAS 
pLC50 

P.promelas cons. 

pEC50 

D.magna 

PEC50 

P.subcapitata 

MCDM 

score 
Use 

32 000085-68-7 5.60 5.61 6.42 0.877 Phthalate 

33 000122-68-9 6.60 6.04 4.96 0.872 Fragrance 

34 005466-77-3 6.07 6.00 5.02 0.871 UV-Filter 

35 003896-11-5* 5.15 6.80 7.45 0.868 UV-Filter 

36 000575-61-1 5.41 5.74 6.28 0.867 UV-Filter 

37 019224-26-1 5.64 5.43 6.80 0.862 Fragrance 

38 010402-33-2 5.72 5.46 6.17 0.861 Fragrance 

39 000103-64-0 5.19 6.24 6.68 0.861 Fragrance 

40 036861-47-9 5.33 5.66 6.63 0.856 UV-Filter 

 

 

In the priority list of Table 6 of the most toxic PCPs in the studied aquatic scenario, there are 17 UV filters, 11 flavor 

and fragrance ingredients, 10 phthalates and 2 antimicrobial agents. These results supports our observations in a 

previous study on PCPs,
19

 where UV filters were predicted as the most environmentally hazardous subclass of PCPs, 

being, some of them, potential PBTs.  

Below, we report some evidences, found in literature or in web, which can confirm our results on the potential toxicity 

of some PCPs in our priority list. 

Triclocarban (101-20-2, ranked as the most toxic PCP ingredient in Table 6) is also classified as PT (persistent and toxic) 

by the ECHA Authority,
49

 which, with regard to toxicity, claims: “the toxicity values of fish, invertebrates and algae are 

LOEL = 0.01mg/L, EC50 = 0.0011 mg/L and LOEL = 0.01 mg/L, respectively. All these values fulfill the criteria for T 

classification (≤ 1 mg/l for acute and ≤ 0,01 mg/l for Chronic category)”, and it was predicted as a potential PBT by the 

PBT Index.
19,50

 Also triclosan (3380-34-5), a well known toxic chemical,
5,51

 appears as correctly ranked within the most 

toxic chemicals by our PCA-MCDM approach, and, similarly to triclocarban, was predicted as a potential PBT by our 

cumulative PBT Index model.
19,50

 Di(2-ethylhexyl) phthalate (DEHP, CAS 117-81-7), ranked within the most hazardous 

and toxic chemicals by PCA and MCDM, is one of the most environmentally detected phthalates among the studied 

PCPs, even though its use in cosmetics and personal care products is being phased out in the European Union, and is 

also listed on Health Canada’s Cosmetic Ingredient Hotlist that prohibits its use in cosmetics and PCPs.
51

 DEHP has also 

effects on germ cell development and shows anti-androgenic effect.
52

Butylbenzyl phthalate (BBP, CAS 85-68-7), like 

DEHP, is already banned in US in children toys and its high acute toxicity in aquatic biota is a well-recognized concern; 

additionally it was included in the SVHC list by ECHA Authority and identified as a CMR substance.
53

  

Apparently, the limited availability of homogeneous experimental data for all the three studied toxicity end points 

does not allow to validate the results of our ranking, but some among the prioritized PCPs were never included in the 

training sets of our QSAR models, therefore they can be considered a real validation of the obtained results.  The four  

chemicals mentioned above, plus 2-Ethylhexyl butyl phthalate (85-69-8), Octinoxate (5466-77-3) and Enzacamene 

(36861-47-9), have experimental data that confirm their high toxicity (experimental pL50 > 5 mol/l) and are correctly 

listed in our priority list, after the combined approach of QSAR modelling and PCA-MCDM.  

An additional validation of our screening and priority setting study can be done by verifying that the majority of the 

most toxic PCPs are UV-filters with a benzotriazole ring and phthalates. Both of these classes of chemicals have been 

demonstrated to reveal significant effects in acute and chronic toxicity tests.
54–58
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QSAR Model of Aquatic Toxicity Index (ATI)  

 

The final step of our whole study was to model, by structural molecular descriptors, the trend of cumulative acute 

aquatic toxicity measured by the algae, Daphnia and fish toxicities and summarized in the aquatic toxicity index (ATI), 

i.e. the PC1 of the PCA score plot (reported in Figure 5), which represents the overall aquatic toxicity in the studied 

scenario. 

The best combination of descriptors, obtained on the three independent training sets and selected from the three 

resulting population of models and the related statistical parameters are reported in the following Table (Table 7). The 

full model, redeveloped on 484 PCPs is also reported with equation and statistical parameters:  

 

Table 7: statistical parameters, related to the internal and external validation, of the proposed model for ATI of PCPs The 

equation of the full model is also reported. 

Model NTR NPRED R
2
 Q

2
LOO Q

2
LMO 

R
2 

Yscr 
CCCEXT Q

2
EXT Fn RMSEtr RMSEp 

Split by random 339 145 0.93 0.93 0.93 0.009 0.97 0.93-0.94 0.40 0.38 

Split by ordered response 324 160 0.94 0.93 0.93 0.009 0.97 0.93-0.94 0.40 0.39 

Split by structural similarity 324 160 0.94 0.94 0.94 0.009 0.96 0.91-0.92 0.37 0.43 

ATI = - 14.00 + 0.34 XlogP + 17.97 Mp 
+ 0.02 TIC1 484  - 0.93 0.93 0.93 0.006 0.97cv  - 0.39 0.40cv 

 

The statistical parameters show that also QSAR models for the ATI of PCPs are internally robust and stable, not given by chance, 

and externally predictive on chemicals belonging to the three independent prediction sets. The prediction performances are 

very similar to the reproduction ability (very similar RMSE values). 

LogP, here represented by the XlogP calculated in PaDEL-Descriptor ver. 2.21,
35

 is the most important descriptor in predicting the 

toxicity of a chemical.  It has, as expected, a positive sign in the equation, thus a positive influence in increasing the overall 

aquatic toxicity. The remaining two descriptors, Mp and TIC1, both with a positive sign in the model equation and thus also with 

a positive impact on the cumulative toxicity of PCPs, encode respectively for mean atomic polarizability and total information 

content index (neighborhood symmetry of 1-order).
47

 These three descriptors are mainly related to the complexity and the 

dimension of the molecule, but also to the presence of polarizable atoms, giving higher values for compounds with hydrophobic 

chains and electronegative atoms (mainly oxygen, nitrogen and also chlorine in few chemicals)  

In Figure 6, the plot of the PC1 scores (ATI values) vs. the QSAR predicted values and the Williams Plot for the AD of the ATI 

model (Ordered by response split) are reported.  
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Fig. 6. Graph of experimental vs. predicted values (on the left) and Williams Plot (on the right) for the ATI model (splitting by 

ordered response) 

 

The others graphs related to the ATI QSAR model are included in Electronic Supplementary Information material (Figures ES18-

ES21).  

As can be seen in the Williams Plot in Figure 6, chemical with CAS 101-20-2 (triclocarban) is a strong outlier, both for response 

and structure. Two others strong outliers for structure are highlighted, triclosan (CAS 3380-34-5) and bromostyrene (CAS 103-

64-0). The complete list of structural and response outliers for this ATI model, is visible in Figures ES18-ES21 of the ESI, while the 

complete list of chemicals included in the ATI model, with the predictions and the AD belonging, are reported in Table ES5 of ESI. 

Finally, once the model was internally and externally validated, the equation was applied to the 50 PCPs which were excluded 

from the previous PCA analysis, being outside the AD of the different developed models. Choosing an arbitrary cut-off, the 

chemicals predicted with an ATI greater than 2 (PC1 score of Figure 5), were considered as the most toxic for the aquatic 

scenario here studied. In this way, 26 additional molecules were selected for their potential hazard for their toxicity on the three 

key organisms of the aquatic compartment (see Table ES5). 

Thus, the first priority list (i.e. the list containing the 40 most toxic compounds, predicted with more reliability, Table 6), could be 

incremented with the addition of these 26 PCPs, reaching a total of prioritized 66 PCPs ingredients, which are highlighted as the 

potentially most toxic within the studied aquatic scenario.  

Looking at the chemical structures, the most hazardous PCPs are those with aromatic rings (one or more benzenes and 

benzotriazoles), long aliphatic chains, unsaturated esters, in general with complex structure including electronegative atoms. 

It is important to note that the ATI model can be applied to any new compound, simply on its designed chemical structure, to 

verify before its synthesis if it could be inherently not hazardous for the aquatic environment. In fact, to predict the ATI of any 

new PCP, also not yet synthesized, it is sufficient to draw the hypothesized chemical structure, to derive the corresponding 

SMILES notation (/REF OBOILE), to compute the required three molecular descriptors and to apply the above QSAR model for 

ATI in QSARINS. Safer chemicals should have an ATI value as much as possible lower than 2.   

It is also possible to verify if each chemical belongs or not to the structural applicability domain of the model, in order to have 

information on the higher reliability of the predictions for compounds interpolated into the model AD or the lower reliability for 

those that are extrapolated, being out of the AD. In conclusion, this model could be a useful tool for the early identification, and 

suggestion for the synthesis of potential safer alternatives to PCPs of highlighted concern. 
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Conclusions  

 

This paper proposes new, externally validated, QSAR models specifically developed for the prediction of the acute aquatic 

toxicity of organic ingredients of personal care products (PCPs) in the green algae Pseudokirchneriella subcapitata in the 

crustacean Daphnia magna and in the fish Pimephales promelas, the three key organisms of the aquatic trophic level. These 

models, developed and validated , according to the OECD principles for QSAR acceptance in regulation, by the GA-OLS method,  

included in the software QSARINS, are characterized by large applicability domain, verified by different approaches, and were 

applied to prioritize the most toxic compounds among about 500 PCPs ingredients without experimental data. The predicted 

values obtained from these models are more similar to the available experimental values, if compared with those obtained by 

the commonly used software ECOSAR. The generated predictions allow a ranking of PCPs by PCA and MCDM according to their 

cumulative aquatic toxicity. An Aquatic Toxicity Index (ATI) is identified from this trend; also this index can be modelled by 

structural descriptors, allowing the prediction of cumulative aquatic toxicity. The application of QSAR models, PCA and MCDM 

approaches have yet demonstrated their utility in priority setting for characterization of potentially hazardous compounds. In 

particular, a total of 66 chemicals related to PCPs ingredients (mainly UV filters and phthalates) have been here selected for 

inclusion into a final priority list for further more definitive evaluation, focusing on them the necessary experimental tests. In this 

way, costs, time and sacrificed animals will be reduced. Most importantly, each QSAR model and particularly the ATI model, all 

applicable to a simple design of a hypothesized new compound, could allow to check a priori if this potential substitute could be 

a possible “safer alternative” of a recognized hazardous chemical, in a benign by design approach of Green Chemistry. The 

possibility to continuously contaminate the environment with “regrettable substitutions”, which could be recognized only after 

they have been introduced to the market, and evidence of human health concerns have been manifested, could be highly 

reduced if a priori screenings and prioritization, by combining QSAR models and chemometric approaches, were more widely 

applied.
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New externally validated QSAR models for aquatic toxicity of PCPs are proposed and applicable in QSARINS 

for a priori chemical design of environmentally safer PCPs.  
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