Green Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/greenchem

Green Chemistry

ARTICLE

Chemoselective Cross-Coupling Reaction of Sodium Sulfinates with Phenols under Aqueous Conditions

Fuhong Xiao,*^{ab} Shuqing Chen,^a Jinxin Tian,^a Huawen Huang,^a Yuejin Liu*^b and Guo-Jun Deng*^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

An efficient procedure for the formation of C-S bonds via direct C-H functionalization has been developed under aqueous conditions. In this process, stable and readily available sodium sulfinates were used as sulfuration source to provide aryl sulfides and sulfones in good to excellent yields. A broad range of functional groups were well tolerated in this reaction system.

Introduction

In synthetic organic reactions, the sulfur-containing groups serve as an important auxiliary function in synthetic sequences.¹ The sulfur-containing organic compounds also play significant roles in organic synthesis, pharmaceutical drugs and materials science.² Among them, aryl sulfides and aryl sulfones have gained intensive attention due to their prominent drug activity, such as anti-HIV-1, antifungal, antibacterial, and antitumoral.³ Therefore, many researchers have devoted their efforts to developing highly efficient, regioselective, and environmentally friendly C-S bond formation methods.⁴ Traditionally, the C-S bond can be constructed by the halohydrocarbon (or other functional condensation of substrates) with sulfuration reagents.⁵ However, some of these processes suffer from pre-functionalization of both the coupling partners. In recent years, the direct C-S bond formation via C-H functionalization has attracted great interests since this method can potentially lead to more efficient synthesis with a reduced number of synthetic operations.⁶

Direct C-H functionalization for the synthesis of aryl sulfides and sulfones under metal-free conditions is highly desirable especially for pharmaceutical drugs purpose to avoid metal contaimination. Various sulfuration reagents such as sulfenyl halides,⁸ sulfinic acids,⁹ thiols,10 disulfides,⁷ arylsulfonyl cyanides¹¹ and N-(thio)succinimides¹² have been employed under metal-free conditions. Among the various sulfuration reagents, sodium sulfinates are stable and easy to handle, and they have been widely used as sulfonylating agents.13 Recently, we and others have developed various approaches for C-H sulfenylation¹⁴ and sulfonylation¹⁵ using

E-mail: fhxiao@xtu.edu.cn; gjdeng@xtu.edu.cn; xdlyj@163.com Electronic Supplementary Information (ESI) available: [details of these reactions were carried out in organic solvents. From the perspective of green chemistry, water is an ideal solvent for chemical transformation because of its natural, inexpensitve, nontoxic, and environmentally friendly characteristics.¹⁶ Thus, the development of efficient approach to construct C-S bond under metal-free conditions using water as solvent is highly desirable. As our continuing efforts using sodium sulfinates as the sulfuration agents for the C-S bond formation via C-H functionalization. Herein, we disclose a novel, regioselective and chemoselective route for the synthesis of aryl sulfides and sulfones via C-H bond functionalization of phenols with sodium sulfinates under aqueous conditions.

Scheme 1 C-S Bonds formation with sodium sulfinates

Results and discussion

To get optimized reaction conditions for the direct sulfenylation 2-naphthol (1a) and sodium benzenesulfinate (2a) were initiall used as the standard substrates under different conditions (Table 1). Several iodide-containing additives were initially investigated, and among them I₂ (100 mol%) showed the best efficiency to give the corresponding product 3a in 88% yield at 110 °C under an argon atmosphere (Table 1, entry 5). The reaction was less efficient when other acids were used (Table 1, entries 6-9). Decreasing the reaction temperature or the amount (of I₂ both slightly dereased the reaction yields (Table 1, entries 10-11). Lower yield was obtained when the reaction was run i air. Formic acid and I₂ both are necessary for the reductive

^{a.} Key Laboratory for Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China ^{b.} School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.

any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

a

coupling, and much lower yield was obtained when the reaction was carried out in the absence of one of them (Table 1, entries 12-13).

Table 1. Optimization of the direct sulfenylation reaction conditions a

			Ph`s
	OH +	SO ₂ Na additive	ОН
1a		2a	3a
Entry	Additive	Acid	Yield ^b (%)
1	KI	formic acid	18
2	NIS	formic acid	55
3	Nal	formic acid	14
4	TBA	formic acid	35
5	l ₂	formic acid	88
6	I ₂	acetic acid	52
7	I ₂	pivalic acid	72
8	l ₂	hypophosphite	46
9	I ₂	trifluoroacetate	70
10 ^c	l ₂	formic acid	68
11 ^d	l ₂	formic acid	79
12 ^e	l ₂	formic acid	45
13	l ₂		35
14		formic acid	8
Conditions:	1a (0.2 m	mol), 2a (0.5 mmol),	H ₂ O (0.5 mL)
1 11 1	•		0.00 1 1

Additive (0.2 mmol), Acid (0.1 mL), 24 h, 110 °C, under Ar. ^b GC yield. ^c I₂ (0.1 mmol). ^d 90 °C. ^e Under air.

Under the optimized conditions, various sodium sulfinates and 2-naphthol were explored as the substrates, and the results are summarized in Table 2. A series of para-substituted sodium sulfinates smoothly reacted with 1a to give 1-arylsulfenyl-2naphthols in good to high yields (Table 2, entries 2-5). Functional groups such as halogens, trifluoromethyl, and trifluoromethoxy tolerated well under the optimized reaction conditions (Table 2, entries 6-10). It should be noted that cleavage of the C-halogen bond was not observed as determined by GC-MS analysis. More bulky substrates such as 2-naphthylsulfinic acid sodium salt (2k) also reacted with 1a and gave the product in 75% yield (Table 2, entry 11). To our delight, apart from aromatic sodium sulfinates, less reactive aliphatic sodium sulfinates such as sodium methanesulfinate (21), sodium propane-1-sulfinate (2m) also coupled with 2naphthol to give the desired product 3l and 3m in 60%, 80% yields, respectively (Table 2, entries 12 - 13).

To further examine the scope and limitations of the direct sulfenylation reaction, we tested various phenol derivatives for this kind of reaction (Table 3). 2-Naphthol with a bromo group at C-6 and C-7 both smoothly coupled with **2a** and gave the desired products **3n** and **3p** in 92% and 88% yields, respectively. Also, no cleavage of the C-Br bond was observed. Notably, under the optimized reaction conditions, the direct

sulfenylation occurred exclusively at the C-1 position of the 2naphthol moiety. When the C-6 and C-7 position of 2-naphthol was occupied by an active hydroxy group, no C-5 and C-8 sulfenylation products (**3o**, **3q**) were observed. To our delight, 2-methoxynaphthalene and 2-ethoxynaphthalene participated well in this protocol to afford aryl sulfides **3r** and **3s** in good yields. Besides 2-naphthol, this reaction system could also be applied to the direct sulfenylation of phenol derivatives and methoxy-benzenes with sodium benzenesulfinate (**3t-3w**). We further tested this method with *N*,*N*-dimethylaniline and the reaction proceeded smoothly to provide the corresponding product **3x** in 48% yield.

After screening the direct sulfenylation reaction, we next sought to expand the scope of sulfonylation of 2-naphthols with sodium sulfinates. To get the reaction conditions for sodium sulfinate substrates, we reinvestigated the reaction conditions for this kind of transformation. After systematic investigation we found that TBP (di-*tert*-butyl peroxide) and DMSO bot were necessary (Table S1). When sodium benzenesulfinate (**2a**)

reacted with 2-naphthol at 100 °C under air atmosphere, the desired product 4a was obtained in 82% isolated yield (Table 5). The reactions with sodium benzenesulfinates bearing electrondonating groups and electron-withdrawing substituents at the para-position proceeded smoothly to give the desired products (4b-4d, 4i-4j) in good to excellent yields. Under the optimized conditions, halogen substituents were all well tolerated and afforded the desired products (4f-4h) in good yields. When sodium naphthalene-2-sulfinate was subjected to the procedure, the product **4k** was isolated in 71% yield. Notably, the reaction of aliphatic sodium sulfinates, such as sodium methanesulfinate, sodium propane-1-sulfinate, sodium cyclopropanesulfinate, with 1a afforded the desired products (41-4n) in moderate to good yields. Furthermore, sensitive bromo and active hydroxy group substituents on 2-naphthols were well tolerated, and the desired products (40-4q) were obtained in good yields.

(trifluoromethyl)benzene (1r) were used. These results indicate that the reaction may proceed through an electrophilic substitution pathway. Based on these observations, we proposed a plausible mechanism for this transformation on the basis of our previous observations and literature.¹⁷ The reduction of sodium sulfinates with iodine and formic acid generates electrophilic intermediate Ar-SI (A). The species Ar-SI liberates the electrophile RS⁺, which reacts with 2-naphthol to produce intermediate B. This intermediate releases a proton to afford the desired product. On the other hand, the procedure of the direct sulfonylation of 2-naphthol is similar to the direct sulfenylation pathway. Sodium sulfinates react with iodine to give sulfonyl iodide C in present of oxidant, which readily mediates iodosulfonylation of the 2-naphthol to give an intermediate D. Spontaneous elimination of HI to afford the desired product.

^{*a*} Reaction conditions: **1** (0.2 mmol), **2a** (0.5 mmol), I_2 (0.2 mmol), formic acid (0.1 mL), H_2O (0.5 mL), 110 °C, Ar, 24 h; isolated yield.

To gather more information about the reaction mechanism, a large number of control experiments were set up under various reaction conditions (Scheme S1, S2, S3). The reactions with phenol derivatives (3t, 3u) and methoxy-benzenes (3v, 3w)bearing electron-donating groups substituents proceeded smoothly to give the desired sulfenylation products in good yields. But no desired products were observed when 3-(trifluoromethyl)phenol (1q) and 1-methoxy-3Table 4. Reaction of various sodium sulfinates with 2-naphthols^a

^{*a*} Reaction conditions: **1** (0.2 mmol), **2** (0.4 mmol), I₂ (0.2 mmol), K₃PO₄·3H₂O (0.2 mmol), TBP (0.2 mmol), DMSO (0.2 mmol), H₂O (0.5 mL), 100 $^{\circ}$ C, 24 h, air; isolated yield.

Conclusions

4q, 65%

In conclusion, we have developed a metal-free, green an environmentally friendly method for the synthesis of aryl

ARTICLE

ARTICLE

sulfides and sulfones under aqueous conditions. Various sodium sulfinates were used as the sulfur source to smoothly couple with 2-naphthols. Iodine was used as an effective additive in this transformation. Halogen and other functional groups were well tolerated under the optimized reaction conditions. This method affords an efficient alternative approach for the synthesis of biologically important aryl sulfide and aryl sulfones from sodium sulfinates.

Scheme 2 Mechanistic proposal

Experimental

General methods

The sulfenylation reaction is conducted under an atmosphere of argon and the sulfonylation reaction is carried out in an air atmosphere. Flash column chromatography was performed over silica gel 48-75 µm. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or acetone signals. MS analyses were performed on an Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at Jiangxi University of Traditional Chinese Medicine. The structures of known compounds were further corroborated by comparing their NMR data and MS data with those of literature. Reagents were used as received or prepared by our laboratory.

General procedure: (3a):

A 10 mL oven-dried reaction vessel was charged with sodium benzenesulfinate (**2a**, 82 mg, 0.5 mmol), naphthalen-2-ol (**1a**, 28.8 mg, 0.2 mmol), I₂ (50.8 mg, 0.2 mmol). Formic acid (0.1 mL) and H₂O (0.5 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred at 110 °C for 24 h. The volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 40:1) to give **3a** as white solid; yield: 40.3 mg (80%), mp 50-53 °C.

General procedure: (4a):

A 10 mL oven-dried reaction vessel was charged with sodium benzenesulfinate (**2a**, 65.6 mg, 0.4 mmol), naphthalen-2-ol (**1a**, 28.8 mg, 0.2 mmol), I₂ (50.8 mg, 0.2 mmol), K₃PO₄ 3 H₂O (53.2 mg, 0.2 mmol). TBP (35 μ L, 0.2 mmol), DMSO (15 μ L, 0.2 mmol) and H₂O

(0.5 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred at 100 °C for 24 h. The volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 40:1) to give **4a** as yellow solid; yield: 46.6 mg (82%), mp 129 - 133 °C.

1-(Phenylsulfonyl)naphthalen-2-ol (3a, CAS: 97992-89-7).^[17a] White solid, yield 80%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.22 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.39-7.33 (m, 2H), 7.12 - 7.01 (m, 4H), 7.03 (d, J = 7.7 Hz, 2H).¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.0, 135.4, 135.3, 132.8, 129.5, 129.1, 128.5, 127.9, 126.3, 125.9, 124.7, 123.8, 116.8, 108.0 MS (EI) *m/z* (%) 252, 191, 146, 115, 77.

1-Tosylnaphthalen-2-ol (**3b**, **CAS: 799764-32-2**).^[17a] ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.23 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.38 - 7.32 (m, 2H), 7.21 (s, 1H), 7.00 - 6.91 (m, 4H), 2.24 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 156.9, 135.8, 135.4 132.6, 131.7, 129.9, 129.5, 128.5, 127.8, 126.7, 124.7, 123.7, 116.8, 108.7, 20.8. MS (EI) *m/z* (%) 266, 205, 146, 115, 91.

1-((4-iso-Propylphenyl)sulfonyl)naphthalen-2-ol (3c). brown semisolid, yield 78%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.25 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 - 7.30 (m, 2H), 7.21 (s, 1H), 7.03 - 6.96 (m, 3H), 2.79 (m, 1H), 1.16 (s, 3H), 1.15 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 156.9, 146.9, 135.5, 132.6, 132.1, 129.5, 128.5, 127.9, 127.4, 126.6, 124.8, 123.8, 116.8, 108.7, 33.6, 23.8. HRMS calcd. for: C₁₉H₁₈OSNa [M+Na]⁺ 317.09706, found 317.09718.

1-((4-(*tert***-Butyl)phenyl)sulfonyl)naphthalen-2-ol (3d).** orange semisolid, yield 68%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.25 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.80 (d, J= 7.8 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.38 - 7.32 (m, 2H), 7.21 - 7.15 (m, 3H), 6.99 - 6.94 (m, 2H), 1.23 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 156.9, 149.1, 135.5, 132.6, 131.8, 129.4, 128.5, 127.8, 126.3, 126.2, 124.8, 123.8, 116.8, 108.6, 34.3, 31.2. HRMS calcd. for: C₂₀H₂₀OSNa [M+Na]⁺ 331.11271, found 331.11211.

1-((4-Methoxyphenyl)thio)naphthalen-2-ol (**3e).** yellow solid, yield 85%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.26 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.38 - 7.27 (m, 3H), 7.04 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 8.7 Hz, 2H), 3.71 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.4, 156.7, 135.3, 132.5, 129.5, 128.8, 128.5, 127.8, 125.9, 124.7, 123.7, 116.8, 114.9, 109.7 55.3. HRMS calcd. for: C₁₇H₁₄O₂SNa [M+Na]⁺ 305.06067 found 305.06095.

1-((4-Fluorophenyl)thio)naphthalen-2-ol (3f). white solid, yield 70%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.20 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.3 Hz, 1H), 7.40 - 7.30 (m, 2H), 7.17 (s, 1H), 7.04 - 6.96 (m, 2H), 6.88 (t, J = 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 161.4 (d, J = 244.4 Hz), 156.9, 135.2, 132.9, 130.3 (d, J = 3.24 Hz), 129.5, 128.6, 128.3 (d, J = 7.87Hz), 128.0, 124.5, 123.9, 116.9, 116.3 (d, J = 22.11Hz), 108.5 HRMS calcd. for: C₁₆H₁₀FOS [M-H]⁻ 269.04419, foun 269.04394.

1-((4-Chlorophenyl)thio)naphthalen-2-ol (**3g).**^[17a] brown solid, yield 75%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.15 (d, J = 8.2 Hz, 1H), 7.91 - 7.89 (m, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.1 Hz, 1H), 7.38 - 7.30 (m, 2H), 7.12 - 7.10 (m, 2H), 6.93 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.9, 135.1, 133.9, 133.0, 131.8, 129.5, 129.2, 128.6, 128.0, 127.6, 124.4, 123.9, 116.9, 107.6. MS (EI) *m/z* (%) 286, 225, 218, 146, 115.

1-((4-Bromophenyl)thio)naphthalen-2-ol (**3h).**^[17a] yellow solid, yield 75%. 1H NMR (CDC13, 400 MHz, ppm): δ 8.15 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.43 - 7.32 (m, 3H), 7.28 (d, J = 8.2 Hz, 1H), 7.08 (s, 1H), 6.88 (d, J = 8.2 Hz, 2H). MS (EI) m/z (%) 331, 218, 189, 146, 115.

1-((4-(Trifluoromethyl)phenyl)thio)naphthalen-2-ol (3i). white solid, yield 60%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.13 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.83 (d, J =8.0 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.42 - 7.33 (m, 4H), 7.07 (d, J = 7.7 Hz, 2H), 7.00 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 7. 152, 140.6, 135.2, 133.4, 129.6, 128.7, 128.2, 128.1, 127.8, 126.0, 125.97, 125.93, 125.90, 124.1 (q, J = 90.1 Hz), 117.0. HRMS calcd. for: C₁₇H₁₂F₃OS [M+H]⁺ 321.05555, found 321.05563.

1-((4-(Trifluoromethoxy)phenyl)thio)naphthalen-2-ol (3j). white solid, yield 66%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.18 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.9 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.40 - 7.32 (m, 2H), 7.09 (s, 1H), 7.02 (s, 4H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.1, 147.4, 135.2, 134.1, 133.2, 129.5, 128.7, 128.1, 127.5, 124.4, 124.0, 121.9, 121.6, 116.9, 107.5. HRMS calcd. for: C₁₇H₁₂F₃O₂S [M+H]⁺ 337.05046, found 337.05051.

1-(Naphthalen-2-ylthio)naphthalen-2-ol (3k, CAS: 5432-97-3).^[17a] white solid, yield 75%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.25 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.9 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 6.3 Hz, 1H), 7.50 - 7.36 (m, 6H), 7.23 - 7.15 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.1, 135.4, 133.7, 132.9, 132.7, 131.7, 129.5, 128.9, 128.5, 127.9, 127.6, 127.0, 126.6, 125.6, 124.64, 124.61, 124.5, 123.8, 116.9, 108.1. MS (EI) m/z (%) 302, 269, 128, 115.

1-(Methylthio)naphthalen-2-ol (3l, CAS: 7439-28-3).^[18] brown liquid, yield 60%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.33 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.56 (t, J = 7.1 Hz, 1H), 7.37 - 7.34 (m, 2H), 7.25 - 7.23 (m, 1H), 2.26 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 155.8, 134.8, 131.5, 129. 4, 128.7, 127.5, 124.3, 123.5, 116.4, 112.5, 18.6. MS (EI) *m/z* (%) 190, 175, 147, 115, 102.

1-(Propylthio)naphthalen-2-ol (3m). blue liquid, yield 80%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.34 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.6 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.40 (s, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.26 - 7.23 (m, 1H), 2.67 (t, J = 7.4 Hz, 2H), 1.58 - 1.52 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 156.4, 135.4, 131.4, 129.4, 128.6, 127.4, 124.6, 123.4, 116.3, 111.2, 37.8, 23.3, 13.4. MS (EI) m/z (%) 218, 176, 147, 115, 103. HRMS calcd. for: C₁₃H₁₅OS [M+H]⁺ 219.08381, found 219.08379.

6-Bromo-1-(phenylthio)naphthalen-2-ol (3n).^[19] white solid, yield 92%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.08 (d, J = 8.9 Hz, 1H), 7.96 (s, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H),

7.35 (d, J = 8.9 Hz, 1H), 7.18 - 7.12 (m, 4H), 7.00 (d, J = 7.3 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.1, 134.9, 134.0, 131.7, 131.1, 130.5, 130.4, 129.2, 126.6, 126.4, 126.1, 118.0, 117.7, 108.5. MS (EI) *m/z* (%)332, 251, 225, 146, 116.

1-(Phenylthio)naphthalene-2,6-diol (30). yellow solid, yield 70%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.88 (s, 1H), 8.26 (d, *J* = 8.9 Hz, 1H), 7.94 (d, *J* = 7.7 Hz, 2H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.56 (t, *J* = 7.1 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.16 (d, *J* = 9.1 Hz, 1H), 7.07 - 7.05 (m, 3H). ¹³C NMR (CD₃COCD₃, 100 MHz, ppm): δ 156.6, 154.2, 142.3, 136.4, 133.8, 130.7, 129.5, 126.5, 124.5, 123.2, 120.3, 120.2, 112.2, 111.4. HRMS calcd. for: C₁₆H₁₁O₂S [M-H]⁻ 267.04853, found 267.05017.

7-Bromo-1-(phenylthio)naphthalen-2-ol (3p). white solid, yield 88%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.32 (s, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.57 (d, *J* = 8.6 Hz, 1H), 7.37 - 7.34 (m, 1H), 7.24 (s, 1H), 7.12 - 7.09 (m, 3H), 7.05 - 7.02 (m, 1H), 6.93 (d, *J* = 7.4 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.7, 136.8, 134.7, 132.6, 130.1, 129.3, 127.9, 127.3, 126.9, 126.4, 126.1, 122.8, 117.3 107.6. HRMS calcd. for: C₁₆H₁₀BrOS [M-H]⁻ 328.96412, found 328.96377.

1-(Phenylthio)naphthalene-2,7-diol (**3q**). white solid, yield 80%).¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.81 (d, J = 8.9 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.51 (s, 1H), 7.14 (m, 6H), 7.03 - 6.94 (m 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.7, 155.6, 137.3, 135.2, 132.7, 130.8, 129.2, 126.2, 125.9, 124.7, 115.3, 114.3, 107.2, 106.4. HRMS calcd. for: C₁₆H₁₃O₂S [M+H]⁺ 269.06308, found 269.06284.

(2-Methoxynaphthalen-1-yl)(phenyl)sulfane (3r, CAS: 108979-03-9).^[20] white solid; yield: 32.5 mg (61%), mp 79 - 81 °C. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.46 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H) 7.39 - 7.34(m, 2H), 7.12 (t, J = 7.6 Hz, 2H), 7.02 (t, J = 6.9 Hz, 3H), 3.94 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.2, 138.1, 136.2, 132.0, 129.5, 128.7, 128.2, 127.71, 127.69, 126.2, 125.4, 124.7, 124.1, 113.4, 56.9. MS (EI) *m/z* (%) 266, 251, 223, 178, 115.

(2-Ethoxynaphthalen-1-yl)(phenyl)sulfane (3s). brown solid, yield 70%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.49 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.14 7.10 (m, 2H), 7.06 - 7.01 (m, 3H), 4.17 (q, J = 6.9 Hz, 2H), 1.28 (t, J= 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.5, 138.5, 136.3, 131.6, 129.6, 128.6, 128.2, 127.5, 126.8, 125.5, 124.8, 124.1, 114.9, 114.4, 65.5, 14.8. HRMS calcd. for: C₁₈H₁₇OS [M+H]⁺ 281.09946, found 281.09972.

3-Methyl-2-(phenylthio)phenol (**3t**, **CAS: 1350814-76-4**).^{[211} brown liquid, yield 45%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.35 (d, *J* = 8.3 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 2H), 7.11 - 7.03 (m, 4H), 6.79 (s, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 156.4, 144.1, 138.4, 137.5, 128.9, 126.9, 125.2, 122.8, 117.8, 113.9, 20.9. MS (EI) *m/z* (%) 216, 183, 138, 107, 77.

3,5-Dimethyl-2-(phenylthio)phenol (3u, CAS: 52145-51-4). brown solid, yield 60%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.17 (t, J = 7.5 Hz, 2H), 7.04 (t, J = 7.1 Hz, 1H), 6.90 (d, J = 7.6 Hz, 2H), 6.68 (s, 2H), 2.37 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 156.1 145.9, 138.6, 128.8, 125.2, 124.4, 121.5, 115.4, 21.9. MS (EI) *m*. (%) 230, 182, 152, 91, 77.

(2,6-Dimethoxyphenyl)(phenyl)sulfane (3v, CAS: 146643-79-0).^[22] yellow liquid, yield 55%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.34 (d, J = 8.3 Hz, 1H), 7.23 - 7.19 (m, 2H), 7.13 - 7.09 (m, 3H), 6.53 - 6.47 (m, 2H), 3.83 (s, 3H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 161.8, 160.3, 137.7, 136.7, 128.7, 127.7, 125.4, 112.2, 105.4, 99.3, 55.9, 55.4. MS (EI) *m/z* (%) 246, 231, 198, 171, 77.

Phenyl(2,4,6-trimethoxyphenyl)sulfane (3w, CAS: 41280-62-0).^[17a] white solid, yield 60%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.15 (t, J = 7.7 Hz, 2H), 7.03 (t, J = 6.0 Hz, 3H), 6.22 (s, 2H), 3.87 (s, 3H), 3.80 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 162.8, 162.4, 138.6, 128.3, 125.5, 124.2, 98.6, 91.1, 56.1, 55.3. MS (EI) *m/z* (%) 276, 228, 207, 141, 69.

N,N-Dimethyl-4-(phenylthio)aniline (3x, CAS: 42881-80-1).^[17a] brown solid, yield 48%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.39 (d, J = 8.5 Hz, 2H), 7.20 (t, J = 7.3 Hz, 2H), 7.12 - 7.07 (m, 3H), 6.73 (d, J = 5.2 Hz, 2H), 2.99 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 150.5, 140.2, 136.1, 128.6, 126.7, 124.9, 117.3, 112.9, 40.2. MS (EI) m/z (%) 229, 197, 184, 152, 77. MS (EI) m/z (%) 229, 197, 184, 152, 77.

1-(Phenylsulfonyl)naphthalen-2-ol (**4a**).^[22] yellow solid, yield 82%. ¹H NMR (CDCl3, 400 MHz, ppm): δ 11.11 (s, 1H), 8.33 (d, J = 8.5 Hz, 1H), 7.96 - 7.93 (m, 3H), 7.72 (d, J = 7.8 Hz, 1H), 7.55 - 7.44 (m, 4H), 7.34 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 9.0 Hz, 1H). ¹³C NMR (CDCl3, 100 MHz, ppm): δ 158.9, 142.0, 137.5, 133.5, 129.4, 129.2, 129.1, 128.7, 128.7, 126.5, 124.3, 122.9, 120.1, 111.7. MS (EI) m/z (%) 284, 219, 203, 115, 77. HRMS calcd. for: C₁₆H₁₂O₃SNa [M+Na]⁺ 307.03994, found 307.03987.

1-Tosylnaphthalen-2-ol (4b, CAS: 108980-64-9).^[22] yellow solid, yield 84%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.13 (s, 1H), 8.34 (d, *J* = 8.6 Hz, 1H), 7.93 - 7.83 (m, 3H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.35 - 7.27 (m, 3H), 7.18 (d, *J* = 9.0 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.6, 144.6, 139.1, 137.3, 129.8, 129.4, 129.1, 128.7, 128.6, 126.5, 124.3, 122.9, 120.1, 112.1, 21.5. MS (EI) *m/z* (%) 298, 233, 219, 114, 91.

1-((4-*iso***-Propylphenyl)sulfonyl)naphthalen-2-ol (4c).** yellow solid, yield 85%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.14 (s, 1H), 8.38 (d, J = 8.6 Hz, 1H), 7.93 - 7.86 (m, 3H), 7.72 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.36 - 7.31 (m, 3H), 7.18 (d, J = 9.0 Hz, 1H), 2.91 (m, 1H), 1.20 (d, J = 6.8 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.7, 155.2, 139.3, 137.3, 129.5, 129.2, 128.7, 128.7, 127.3, 126.7, 124.3, 123.1, 120.1, 112.2, 34.1, 23.5. MS (EI) m/z (%) 326, 219, 201, 115, 77. HRMS calcd. for: C₁₉H₁₈O₃SNa [M+Na]⁺ 349.08689, found 349.08715.

1-((4-(*tert***-Butyl)phenyl)sulfonyl)naphthalen-2-ol (4d).** yellow solid, yield 81%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.14 (s, 1H), 8.40 (d, J = 8.7 Hz, 1H), 7.94 - 7.86 (m, 3H), 7.72 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 8.4 Hz, 3H), 7.34 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 9.0 Hz, 1H), 1.28 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.7, 157.5, 139.0, 137.3, 129.5, 129.0, 128.7, 128.7, 126.4, 126.2, 124.3, 123.1, 120.1, 112.2, 35.2, 30.9. MS (EI) *m/z* (%) 340, 261, 219, 135, 115. HRMS calcd. for: C₂₀H₂₀O₃SNa [M+Na]⁺ 341.12059, found 341.12081.

1-((4-Methoxyphenyl)sulfonyl)naphthalen-2-ol (4e). white solid, yield 72%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.15 (s, 1H), 8.36 (d, J = 8.7 Hz, 1H), 7.92-7.88 (m, 3H), 7.71 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.33 (d, J = 7.3 Hz, 1H), 7.17 (d, J = 9.0

Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 163.5, 158.4, 137.2, 133.6, 129.4, 129.1, 128.8, 128.7, 128.6, 124.2, 122.9, 120.1, 114.4, 112.5, 55.6. MS (EI) *m/z* (%) 314, 249, 219, 207, 108. HRMS calcd. for: C₁₇H₁₅O₄S [M+H]⁺ 315.06856, found 315.06846.

1-((4-Fluorophenyl)sulfonyl)naphthalen-2-ol (4f). white solid yield 73%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.04 (s, 1H), 8.31 (d, J = 8.6 Hz, 1H), 7.99 - 7.93 (m, 3H), 7.73 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.36 (t, J = 7.3 Hz, 1H), 7.20 - 7.13 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 166.7, 164.2, 158.8, 137.7, 129.4(d, J = 9.6 Hz), 129.3, 129.03(d, J = 32 Hz), 128.7, 124.5, 122.7, 120.1, 116.7, 116.4, 111.6. MS (EI) *m/z* (%) 302, 237, 221, 131, 114. HRMS calcd. for: C₁₆H₁₁FO₃SNa [M+Na]⁺ 325.03052, found 325.03076.

1-((4-Chlorophenyl)sulfonyl)naphthalen-2-ol (4g). white solid, yield 75%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.02 (s, 1H), 8.29 (d, J = 8.7 Hz, 1H), 7.96 - 7.87 (m, 3H), 7.73 (d, J = 7.9 Hz, 1H), 7.50 - 7.43 (m, 3H), 7.36 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 9.0 Hz 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.0, 140.5, 140.1, 137.8, 129.5, 129.3, 129.2, 128.9, 128.7, 128.0, 124.5, 122.7, 120.1, 111.2. HRMS calcd. for: C₁₆H₁₁ClO₃SNa [M+Na]⁺ 341.00097, found 341.00081.

1-((4-Bromophenyl)sulfonyl)naphthalen-2-ol (4h). white solid yield 77%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.01 (s, 1H), 8.29 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.82 - 7.72 (m, 3H), 7.61 (d, J = 8.4 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 9.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.0, 141.0, 137.8, 132.5, 129.3, 129.2, 128.9, 128.7, 128.7, 127.9, 124.5, 122.7, 120.1, 111.2. MS (EI) *m/z* (%) 364, 219, 201, 115, 75. HRMS calcd. for: C₁₆H₁₁BrO₃SNa [M+Na]⁺ 384.95045, found 384.95013.

1-((4-(Trifluoromethyl)phenyl)sulfonyl)naphthalen-2-ol (**4i).** white solid, yield 67%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.98 (s, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.07 (d, J = 8.1 Hz, 2H), 7.98 (d, J = 9.0 Hz, 1H), 7.75 (d, J = 8.1 Hz, 3H), 7.49 (t, J = 7.8 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 9.1 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.3, 145.4, 138.2, 135.3, 134.9, 129.31, 129.29, 129.1, 128.8, 127.0, 126.4 (q, J = 3.7 Hz), 124.6, 122.6, 120.2, 110.7. HRMS calcd. for: C₁₇H₁₁F₃O₃SNa [M+Na]⁺ 375.02732, foun⁻³ 375.02738.

1-((4-(Trifluoromethoxy)phenyl)sulfonyl)naphthalen-2-ol (4j). white solid, yield 70%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.01 (s, 1H), 8.32 (d, J = 8.5 Hz, 1H), 8.02 – 7.95 (m, 3H), 7.75 (d, J = 7.7 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.40 – 7.28 (m, 3H), 7.20 (d, J = 9.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.0, 152.7, 140.2, 137.9, 129.3, 129.2, 129.0, 128.8, 124.5, 122.7, 121.4, 120.9 120.2, 118.8, 111.2. HRMS calcd. for: C₁₇H₁₁F₃O₄SNa [M+Na] 391.02224, found 391.02189.

1-(Naphthalen-2-ylsulfonyl)naphthalen-2-ol (4k, CAS:51739-34-5). white solid, yield 71%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.20 (s, 1H), 8.62 (s, 1H), 8.42 (d, J = 8.6 Hz, 1H), 8.00 - 7.79 (m, 5H), 7.71-7.61 (m, 3H), 7.43 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.22 (d, J = 9.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.9, 138.8, 137.6, 135.1, 131.9, 129.7, 129.5, 129.4, 129.3, 129.1, 128.8, 128.7, 127.9, 127.9, 127.7, 124.3, 122.9, 121.4, 120.1, 111.7 MS (EI) *m/z* (%) 334, 269, 128, 115, 77.

1-(Methylsulfonyl)naphthalen-2-ol (4l, CAS: 19365-95-8). yellow solid; yield: 30.2 mg (68%), mp 100-104 °C. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.78 (s, 1H), 8.51 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.9 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.3 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.1, 137.4, 129.7, 129.4, 129.2, 128.7, 124.5, 122.4, 120.2, 112.0, 44.8. MS (EI) *m/z* (%) 222, 159, 143, 131, 115. MS (EI) *m/z* (%) 222, 159, 143, 131, 115.

1-(Propylsulfonyl)naphthalen-2-ol (**4m**). brown liquid, yield 45%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.85 (s, 1H), 8.52 (d, *J* = 8.7 Hz, 1H), 7.95 (d, *J* = 9.0 Hz, 1H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.62 (t, *J* = 3.7 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 9.0 Hz, 1H), 3.34 (t, *J* = 4.0 Hz, 2H), 1.79 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.0, 137.3, 129.9, 129.4, 129.1, 128.8, 124.4, 122.6, 120.1, 110.3, 58.1, 16.2, 12.7. HRMS calcd. for: C₁₃H₁₅O₃S [M+H]⁺ 251.07364, found 251.07386.

1-(Cyclopropylsulfonyl)naphthalen-2-ol (**4n**). yellow solid, yield 60%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.60 (s, 1H), 8.65 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 9.0 Hz, 1H), 2.94 - 2.87 (m, 1H), 1.45 - 1.44 (m, 2H), 1.04 (d, J = 6.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 157.7, 136.9, 130.0, 129.3, 128.9, 124.4, 123.2, 120.1, 112.7, 112.6, 34.2, 5.8. HRMS calcd. for: C₁₃H₁₃O₃S [M+H]⁺ 249.05799, found 249.05776.

6-Bromo-1-(phenylsulfonyl)naphthalen-2-ol (40). yellow solid, yield 68%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.09 (s, 1H), 8.23 (d, J = 9.0 Hz, 1H), 7.93 (d, J = 7.7 Hz, 2H), 7.87 - 7.83 (m, 2H), 7.59 - 7.48 (m, 4H), 7.22 - 7.20 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 158.9, 141.7, 136.4, 133.8, 131.8, 130.9, 129.9, 129.3, 128.0, 126.4, 124.6, 121.4, 118.2, 112.1. HRMS calcd. for: C₁₆H₁₁BrO₃SNa [M+Na]⁺ 384.95045, found 384.94951.

7-Bromo-1-(phenylsulfonyl)naphthalen-2-ol (4p). white solid, yield 56%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.13 (s, 1H), 8.56 (s, 1H), 7.96 (d, J = 7.5 Hz, 2H), 7.88 (d, J = 9.0 Hz, 1H), 7.6 - 7.55 (m, 4H), 7.43 (d, J = 7.4 Hz, 1H), 7.19 (d, J = 9.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 159.3, 141.6, 137.2, 133.8, 130.6, 130.4, 129.3, 127.8, 127.1, 126.6, 125.5, 123.7, 120.6, 110.4. MS (EI) *m/z* (%) 364, 219, 201, 189, 77.

1-(Phenylsulfonyl)naphthalene-2,7-diol (4q). white solid, yield 65%. ¹H NMR (CDCl₃, 400 MHz, ppm): δ 11.03 (s, 1H), 7.94 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 8.9 Hz, 1H), 7.73 (s, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.58 - 7.47 (m, 4H), 7.03 (d, J = 9.0 Hz, 1H), 6.94 - 6.92 (m, 1H); ¹³C NMR (CD₃COCD₃, 100 MHz, ppm): δ 159.3, 158.0, 142.0, 137.7, 133.8, 131.5, 131.2, 129.4, 126.5, 123.4, 116.3, 116.0, 110.5, 106.1. HRMS calcd. for: C₁₆H₁₂O₄SNa [M+Na]⁺ 323.03485, found 323.03513.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21172185, 21372187, 21502160, 21572194), the Project Supported by Scientific Research Fund of Hunan Provincial Education Department (15C1311), Project Funded by China Postdoctoral Science Foundation (2015M572257), and Hunan Provincial Innovative Foundation for Postgraduate (CX2014B258).

Notes and references

- For selected reviews, see: (a) L. Wang, W. He and Z. K. Yu, *Chem. Soc. Rev.*, 2013, **42**, 599; (b) I. P. Beletskaya and V. P. Ananikov, *Chem. Rev.*, 2011, **111**, 1596; (c) T. Kondo and T.a. Mitsudo, *Chem. Rev.*, 2000, **100**, 3205; (d) T. Punniyamurthy, *Chem. Rev.*, 2005, **105**, 2329; (e) M. Fontecave, S. Ollagnier-de-Choudens and E. Mulliez, *Chem. Rev.*, 2003, **103**, 2149; (f) S. S. Mansy and J. A. Cowan, *Acc. Chem. Res.*, 2004, **37**, 719.
- 2 For selected examples, see: (a) A. Gangjee, Y. Zeng, T. Talreja, J. J. Mc Guire, R. L. Kisliuk and S. F. Queener, J. Med. Chem., 2007, 50, 3046; (b) G. D. Martino, M. C. Edler, G. L. Regina, A. Coluccia, M. C. Barbera, D. Barrow, R. I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico and R. Silvestri, J. Med. Chem., 2006, 49, 947; (c) H. Eto, Y. Kaneko, S. Takeda, M. Tokizawa, S. Sato, K. Yoshida, S. Namiki, M. Ogawa, K. Maebashi, K. Ishida, M. Matsumoto and T. Asaoka, Chem. Pharm. Bull., 2001, 49, 173; (d) T. Nakazawa, J. Xu, T. Nishikawa, T. Oda, A. Fujita, K. Ukai, F. P. Mangindaan, H. Rotinsulu, H. Kobayashi, M. Namikoshi, J. Nat. Prod., 2007, 70, 439; (e) A. Casini, J.-Y. Winum, J.-L. Montero, A. Scozzafava and C. T. Supuran, Bioorg. Med. Chem. Lett., 2003, 13, 837.
- 3 (a) H. Peng, Y. Cheng, N. Ni, M. Li, G. Choudhary, H. T. Chou, C.-D. Lu, P. C. Tai and B. Wang, *ChemMedChem* 2009, 4, 1457; (b) A. Gangjee, Y. Zeng, T. Talreja, J. J. McGuire, R. L. Kisliuk and S. F. Queener, *J. Med. Chem.*, 2007, 50, 3046; (c) T. Oda, T. Fujiwara, H. Liu, K. Ukai, R. E. P. Mangindaan, M. Mochizuki and M. Namikoshi, *Mar. Drugs*, 2006, 4, 15; (d) K. El-Bayoumy, R. Sinha, J. T. Pinto and R. S. Rivlin, *J. Nutr.*, 2006, 136, 864.
- For selected reviews, see: (a) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. Andy Hor and X. G. Liu, *Chem. Soc. Rev.*, 2015, 44, 291; (b) J. Aziz, S. Messaoudi, M. Alami and A. Hamze, *Org. Biomol. Chem.*, 2014, 12, 9743; (c) C.-F. Lee, Y.-C. Liu and S. S. Badsara, *Chem. Asian J.*, 2014, 9, 706; (d) H. Liu, X. Jiang, *Chem. Asian J.*, 2013, 8, 2546; (e) S. V. Ley and A.W. Thomas, *Angew. Chem. Int. Ed.*, 2003, 42, 5400; (f) L. Pan, X. Bi and Q. Liu, *Chem. Soc. Rev.*, 2013, 42, 1251.
- 5 For selected examples, see: (a) C.-K. Chen, Y.-W. Chen, C.-H. Lin, H.-P. Lin and C.-F. Lee, *Chem. Commun.*, 2010, 46, 282; (b) M. Carril, R. SanMartin, E. Domínguez and I. Tellitu, *Chem.–Eur. J.*, 2007, 13, 5110; (c) W.-Y. Wu, J.-C. Wang and F.-Y. Tsai, *Green Chem.*, 2009, 11, 326; (d) C. Uyeda, Y. Tan, G. C. Fu, and J. C. Peters, *J. Am. Chem. Soc.*, 2013, 135, 9548; (e) A. Correa, M. Carril and C. Bolm, *Angew. Chem. Int. Ed.*, 2008, 47, 2880.
- 6 For selected examples, see: (a) W. Wei, C. L. Liu, D. S. Yang, J. W. Wen, J. M. You, Y. R. Sou and H. Wang, Chem. Commun., 2013, 49, 10239; (b) M. Iwasaki, M. Iyanaga, Y. Tsuchiya, Y. Nishimura, W. Li, Z. Li and Y. Nishihara, Chem.-Eur. J., 2014, 20, 2459; (c) M. Iwasaki, W. Kaneshika, Y. Tsuchiya, K. Nakajima and Y. Nishihara, J. Org. Chem. 2014, 79, 11330; (d) H. S. Li and G. Liu, J. Org. Chem., 2014 79, 509; (e) X. W. Li, Y. L. Xu, W. Q. Wu, C. Jiang, C. R. Q and H. F. Jiang, Chem.-Eur. J., 2014, 20, 7911; (f) X. Q. Li, X. S. Xu and C. Zhou, Chem. Commun., 2012, 48, 12240; (g) T. Taniguchi, A. Idoto and H. Ishibashi, Org. Biomol. Chem., 2011, 9, 3151; (h) X. Q. Li, X. H. Shi, M. W. Fang and X. S. Xu, J. Org. Chem., 2013, 78, 9499; (i) Y. Xu, P. Liu, S.-L. Li and P. Sun, J. Org. Chem., 2015, 80, 1269; (j) D. Zhang, X. Cui, Q. Zhang and Y. Wu, J. Org. Chem., 2015, 80, 1517.
- (a) C. D. Prasad, S. J. Balkrishna, A. Kumar, B. S. Bhakuni, K. Shrimali, S. Biswas and S. Kumar, J. Org. Chem., 2013, 78, 1434; (b) W. L. Ge and Y. Y. Wei, Green Chem., 2012 14, 2066; (c) D. Y. Huang, J. X. Chen, W. X. Dan, J. C. Ding M. C. Liu and H. Y. Wu, Adv. Synth. Catal., 2012, 354, 2123;

ARTICLE

(d) L. H. Zou, J. Reball, J. Mottweiler and C. Bolm, *Chem. Commun.*, 2012, **48**, 11307; (e) R. Tang, Y. Xie, Y. Xie, J. Xiang and J. Li, *Chem. Commun.*, 2011, **47**, 12867; (f) S. Guo, Y. Yuan and J. Xiang, *Org. Lett.*, 2013, **15**, 4654; (g) B. Du, B. Jin and P. Sun, *Org. Lett.*, 2014, **16**, 3032; (f) J. Zhao, H. Fang, J. Han, Y. Pan and G. Li, *Adv. Synth. Catal.*, 2014, **356**, 2719; (g) S. S. Badsara, Y.-C. Liu, P.-A. Hsieh, J.-W. Zeng, S.-Y. Lu, Y.-W. Liu and C.-F. Lee, *Chem. Commun.*, 2014, **50**, 11374.

- 8 (a) Q. Wu, D.-B. Zhao, X.-R. Qin, J.-B. Lan and J.-S. You, *Chem. Commun.*, 2011, **47**, 9188; (b) G. Kumaraswamy, R. Raju and V. Narayanarao, *RSC Adv.*, 2015, **5**, 22718.
- (a) C.-R. Liu and L.-H. Ding, Org. Biomol. Chem., 2015, 13, 2251; (b) W. Wei, X. Liu, D. Yang, R. Dong, Y. Cui, F. Yuan and H. Wang, Tetrahedron Lett., 2015, 56, 1808; (c) Q. Lu, J. Zhang, F. Wei, Y. Qi, H. Wang, Z. Liu and A. Lei, Angew. Chem., Int. Ed., 2013, 52, 7156; (d) W. Wei, J. Wen, D. Yang, J. Du, J. Youa and H. Wang, Green Chem., 2014, 16, 2988; (e) Q. Lu, J. Chen, C. Liu, Z. Huang, P. Peng, H. Wang and A. Lei, RSC Adv., 2015, 5, 24494; (f) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang and A. Lei, J. Am. Chem. Soc., 2013, 135, 11481
- 10 (a) Y.-F. Liao, P.-C. Jiang, S.-P. Chen, H.-R. Qi and G.-J. Deng, *Green Chem.*, 2013, 15, 3302; (b) Y.-P. Zhu, M. Lian, F.-C. Jia, M.-C. Liu, J.-J. Yuan, Q.-H. Gao and A.-X. Wu, *Chem. Commun.*, 2012, 48, 9086; (c) Y.-F. Liao, H.-R. Qi, S.-P. Chen, P.-C. Jiang, W. Zhou and G.-J. Deng, *Org. Lett.*, 2012, 14, 6004.
- (a) F. L. Yang and S.-K. Tian, Angew. Chem. Int. Ed., 2013,
 52, 4929; (b) X. Zhao, L. Zhang, X. Lu, T. Li and K. Lu, J. Org. Chem., 2015, 80, 2918; (c) S. Guo, W. He, J. Xiang and Y. Yuan, Chem. Commun., 2014, 50, 8578; (d) X. Kang, R. Yan, G. Yu, X. Pang, X. Liu, X. Li, L. Xiang and G. Huang, J. Org. Chem., 2014, 79, 10605; (e) F.-L. Yang, F.-X. Wang, T.-T. Wang, Y.-J. Wang and S.-K.Tian, Chem. Commun., 2014, 50, 2111; (f) J.-K. Qiu, W.-J. Hao, D.-C. Wang, P. Wei, J. Sun, B. Jiang and S.-J. Tu, Chem. Commun., 2014, 50, 14728; (g) J. Sun, J.-K. Qiu, Y.-L. Zhu, C. Guo, W.-J. Hao, B. Jiang and S.-J. Tu, J. Org. Chem., 2015, 80, 8217; (h) Z. Yang, W.-J. Hao, S.-L. Wang, J.-P. Zhang, B. Jiang, G. Li and S.-J. Tu, J. Org. Chem., 2015, 80, 9224.
- 12 (a) T. Hostier, V. Ferey, G. Ricci, D. G. Pardo and J. Cossy, *Chem. Commun.*, 2015, **51**, 13898; (b) T. Hostier, V. Ferey,[†] G. Ricci, D. G. Pardo, and J. Cossy, *Org. Lett.*, 2015, **17**, 3898; (c) H. Tian, C. Zhu, H. Yang and H. Fu, *Chem. Commun.*, 2014, **50**, 8875; (d) J. Yu, C. Gao, Z. Song, H. Yang and H. Fu, *Org. Biomol. Chem.*, 2015, **13**, 4846.
- 13 For selected examples, see: (a) X. Zhao, E. Dimitrijević and V. M. Dong, J. Am. Chem. Soc. 2009, 131, 3466; (b) Y. Chen, Y. L. Lam and Y. H. Lai, Org. Lett., 2003, 5, 1067; (c) Y. F. Chang, Y. R. Jiang and W. C. Cheng, Tetrahedron Lett., 2008, 49, 543; (d) R. Kuwano, Y. Kondo and T. Shirahama, Org. Lett., 2005, 7, 2973; (e) C. Martin, F. Sandrinelli, C. Perrio, S. Perrio and M. C. Lasne, J. Org. Chem., 2006, 71, 210; (f) C. S. Richarda-Taylor, D. C. Blakemore and M. C. Willis, Chem. Sci., 2013, 5, 222.
- 14 (a) F. H. Xiao, H. Xie, S. Liu and G. J. Deng, Adv. Synth. Catal., 2014, 356, 364; (b) Y. Chen, F. Xiao, H. Chen, S. Liu and G.-J. Deng, RSC Adv., 2014, 4, 44621; (c) Y.-M. Lin, G.-P. Lu, C. Cai and W.-B. Yi, Org. Lett., 2015, 17, 3310; (d) P. Katrun, S. Hongthong, S. Hlekhlai, M. Pohmakotr, V. Reutrakul, D. Soorukram, T. Jaipetchb and C. Kuhakarn, RSC Adv., 2014, 4, 18933; (e) H. Rao, P. Wang, J. Wang, Z. Li, X. Sun and S. Cao, RSC Adv., 2014, 4, 49165.
- 15 For selected examples on organosulfone synthesis via C-H functionalization using sodium sulfinates as the sulfonylating agents, see: (a) F.H. Xiao, S. Chen, Y. Chen, H. Huang and G.-J. Deng, Chem. Commun., 2015, 51, 652; (b) F.H. Xiao, H.

Chen, H. Xie, S. Chen, L. Yang, and G.-J. Deng, *Org. Lett.*, 2014, **16**, 50; (*c*) Y. Xu, X. Tang, W. Hu, W. Wu and H. F. Jiang, *Green Chem.*, 2014, **16**, 3720; (*d*) K. Praewpan, M. Charoensak, P. Manat, R. Vichai, J. Thaworn, S. Parunee and K. Chutima, *J. Org. Chem.*, 2014, **79**, 1778; (*e*) X. D. Tang, L. B. Huang, Y. L. Xu, J. D. Yang, W. Q. Wu and H. F. Jiang, *Angew. Chem., Int. Ed.*, 2014, **53**, 4205.

- 16 (a) C.-J. Li and L. Chen, Chem. Soc. Rev., 2006, 35, 68; (b)
 C.-J. Li and T.-H. Chan, Comprehensive Organic Reactions in Aqueous Media, Wiley, New York, 2007; (c) P. H. Dixneuf and V. Cadierno, Metal-Catalyzed Reactions in Water, Wiley-VCH, Weinheim, 2012; (d) S. Minakata and M. Komatsu, Chem. Rev., 2009, 109, 711; (e) A. Chanda and V. V. Fokin, Chem. Rev., 2009, 109, 725; (f) R. N. Butler and A. G. Coyne, Chem. Rev., 2010, 110, 6302; (g) C. I. Herrerías, X. Q. Yao, Z. P. Li and C.-J. Li, Chem. Rev., 2007, 107, 2546; (h)
 D. Dallinger and C. O. Kappe, Chem. Rev., 2007, 107, 2563; (i) E. Levin, E. Ivry, C. E. Diesendruck and N. G. Lemcoff, Chem. Rev., 2015, 115, 4607; (j) B. Li and P. H. Dixneuf, Chem. Soc. Rev., 2013, 42, 5744.
- (a) S. K. R. Parumala and R. K. Peddinti, *Green Chem.*, 2015
 17, 4068; (b) X. Kang, R. Yan, G. Yu, X. Pang, X. Liu, X. Li, L. Xiang and G. Huang, *J. Org. Chem.*, 2014, **79**, 10605.
- 18 J. S.Bradshaw and R. H. Hales, J. Org. Chem., 1971, 36, 318.
- 19 Y. Maeda, M. Koyabu, T. Nishimura and S. Uemura, J. Org. Chem., 2004, 69, 7688.
- 20 V. Balasubramanian and V. Baliah, J. Indian Chem. Soc., 1959, 36, 391.
- 21 K. Komeyama, K. Aihara, T. Kashihara and K. Takaki, *Chem. Lett.*, 2011, **40**, 1254.
- 22 G. Bastug and S. P. Nolan, J. Org. Chem., 2013, 78, 9303.