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and low nutrient requirements.8

Microalgae are attractive for biofuels production from sunlight

energy because some strains naturally accumulate up to 50% dry

weight in lipids.9 In addition, algae do not compete for food re-

sources as they can be grown on wastewater and/or seawater,10

and they are up to one order of magnitude more efficient than

higher-order terrestrial plants in capturing sunlight.9,11 In addi-

tion, algal biofuels have reduced CO2 emissions compared to fos-

sil fuels, and can become carbon neutral if all energy inputs to

the process are carbon neutral. Despite all these advantages, al-

gal biofuels remain to be commercialized due to their high prices.

For example, in 2013 the Department of Defense paid $150 per

gallon for 1,500 gallons of jet fuel when petroleum-based jet fuel

was only $2.88 per gallon.12 Prices remain high because a low

cost production method that obtains acceptable algal biomass and

lipids yields remains to be found.

Oleaginous yeasts are also attractive for biofuels production

as they can convert lignocellulosic sugars into lipids. Some ex-

amples of oleaginous yeast strains include Cryptococcus albidus,

Lipomyces starkeyi, Rhodotorula glutinis, Trichosporon pullulans,

and Yarrowia Lipolytica which accumulate up to 65, 63, 72, 65,

and 36 % lipids, respectively.13,14

Algae and yeasts can be cultivated in open pond systems or

closed photobioreactors. Closed photobioreactors have been used

successfully to produce high-value specialty chemicals, but these

systems incur high capital and operating costs.15 Therefore, they

are not commercially viable to produce commodities such as fuels.

On the other hand, open pond lipid yields are insufficient because

monocultures are vulnerable to invasion and predation by other

algae species, bacterial or fungal infection. Oleaginous yeasts

that thrive under low pH and low temperature conditions have

been successfully cultivated in open ponds,16 but most oleagi-

nous yeasts are not extremophiles. In this case, culture resilience

and stability are critical. Synthetic consortia can be designed to

fill ecological niches which would otherwise be filled by invading

species. Design of such synthetic consortia has been discussed in

Kazamia et al.4 at a qualitative level, and a quantitative approach

has been proposed in Höffner and Barton.8 In addition, algae in

open pond cultures are carbon limited due to the low atmospheric

CO2 concentration and yeasts can become O2 limited.17 The car-

bon limitation has restricted the locations where algal ponds can

be economically feasible, because the use of CO2-rich flue gas is

only possible in the vicinity of power plants18. An alternative ap-

proach to cultivating monocultures of yeast and algae is to grow

them together and benefit from their symbiotic interactions. Ex-

amples of this approach have been tested at lab scale.17,19–24 The

introduction of yeast enables lignocellulosic sugars, which cannot

be metabolized by most microalgae, to be digested and can in-

crease algal biomass by transforming part of these carbon sources

into CO2. At the same time, yeast can benefit from the O2 pro-

duced by microalgae and increase lipids production. In addition,

both species together fill available ecological niches to protect

against invasion.4 This alternative strategy promotes installing al-

gal/fungal ponds near farms, where significant quantities of agri-

cultural waste are generated, but no flue gas is available, and

transform these wastes into lipids first, and then biodiesel.

This paper shows how an algal-fungal pond is able to attain

higher biomass productivities than the respective monocultures.

The substrates required for algae growth are minimal. For al-

gal photoautotrophic growth, CO2 is the carbon source, energy is

provided by sunlight, and small amounts of nitrogen, phosphorus

and sulfur sources need to be provided. The quantity of the avail-

able substrate strongly determines the growth rate and intracellu-

lar accumulation of desired metabolic products such as lipids. For

yeast, a carbon source, in this case glucose and xylose, and small

amounts of nitrogen, phosphorus and sulfur are required. This

case study shows that yeast provides additional CO2 to algae by

metabolizing sugars and algae provides O2 to yeast. Furthermore,

together yeast and algae use available resources more efficiently,

which makes the invasion of other microorganisms less likely.

This paper uses the modeling framework presented in Höffner

and Barton,8 which is based on Dynamic Flux Balance Analysis

(DFBA)25–28 and the High-Rate Algal-Bacterial pond model.29,30

2 Methods

Design of novel algal open pond systems requires process mod-

els, which provide quantitative predictions of interactions be-

tween process components across different scales. Multi-scale

models, integrating genome-scale information in metabolic net-

works with the ecological scale of the interactions between mul-

tiple species and the process scale of bioreactors, have been pro-

posed in Höffner and Barton.8 These complex models are based

on multi-species dynamic flux balance analysis and can be used

for the discovery of novel and improved microbial bioprocesses.

2.1 Dynamic Flux Balance Analysis

Flux balance analysis (FBA) is a genome-scale, constraint-based

modeling approach. It is a widely successful framework for

metabolic engineering and analysis of metabolic networks.26,28

Consequently, metabolic network models of many organisms have

been developed.31 Based on genomic analysis, a metabolism can

be modeled as a network of reactions, which must satisfy sim-

ple mass balance constraints. The network reconstruction deter-

mines the stoichiometry of the metabolism under the balanced

growth assumption.28 However, this network is often underdeter-

mined; the fluxes of the different substrates and metabolites can

vary and yet still produce a solution which satisfies mass balance

constraints. Thus, it is assumed that the fluxes will be such that

some cellular objective is maximized. For example, an evolution-

ary argument can be made that a microorganism will maximize

its growth rate if sufficient nutrients are provided.26

Dynamic flux balance analysis (DFBA) combines genome-scale

metabolic network analysis with a dynamic simulation of the

extracellular environment.25,27 At this scale, process models of

bioreactors incorporating detailed metabolic reconstructions can

be considered. DFBA models have matched accurately experi-

mental data for the cultivation of E. coli25,32 and the competition

between Rhodoferax and Geobacter.33 In addition, DFBA has suc-

cessfully modeled experimentally observed mutualistic relation-

ships between D. vulgaris and M. maripaludis and between engi-

neered yeast strains unable to grow on minimal glucose medium
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separately, and has been used to make fast predictions for com-

binations of microorganisms and media not yet validated experi-

mentally.34 DFBA provides a platform for detailed design, control,

and optimization of biochemical process technologies, such as an

open pond. With DFBA, temporal and/or spatial variations in the

behaviour of the community within the bioreactor can be simu-

lated. This formulation provides a more appropriate and predic-

tive description of complex ecological systems, in which emergent

nonlinear dynamic behaviour is a common phenomenon. Fur-

thermore, the mathematical formulation allows for unstructured

models of ecological species, such as large zooplankton, for which

a metabolic model is not available.

Simulation and optimization of large multi-species and multi-

scale process models requires efficient numerical tools. A DFBA

model results in a dynamic system with linear programs embed-

ded.35,36 Numerical complications arise when simulating these

systems; these have recently been addressed and efficient simula-

tors have become available.35,37 Therefore, simulation of large-

scale multi-species metabolic reconstructions is now possible. The

simulations in this paper were performed using DFBAlab.37

2.2 High-Rate Algal Pond Model

The high-rate algal-bacterial pond model was first introduced and

validated experimentally by Buhr and Miller29 and then extended

by Yang.30 This model considers a coculture of bacteria and algae

for high-rate wastewater treatment ponds. Their growth expres-

sions are given by Monod type kinetics dependent on the concen-

tration of carbon, oxygen, and nitrogen. In addition, they con-

sidered pond depth and biomass concentration effects on light

penetration, the effect of ionic species on pH, and the effect of

pH on dissolved CO2. In order to use Monod kinetic expressions,

a limiting substrate must be readily identified, and accuracy is

lost at transitions when several substrates may be limiting. In co-

cultures and non-steady state environments, predicting limiting

substrates and active metabolic pathways can be a very challeng-

ing task, if possible. In this paper we incorporate genome-scale

metabolic models into the high-rate algal-bacterial pond. When

using dynamic flux balance analysis, no a priori predictions are

needed because the linear programs modeling the behaviour of

each species predict the metabolic state given the extracellular

conditions and identify the limiting substrates. Monod kinetics

are used indirectly by bounding the consumption of substrates as

in Hanly and Henson,32 but the actual consumption rate is calcu-

lated by the linear programs after identifying a limiting substrate.

2.3 Raceway Open Ponds

A raceway pond is an open pond with flow and can be modelled

as a plug flow reactor (PFR). In this paper, the spatial distribution

of quantities in the raceway pond is approximated as a sequence

of interconnected continuous stirred tank reactors (CSTRs). Each

CSTR model includes the mass balances for the main metabo-

lites and an estimate of the variation of the average light inten-

sity during a 24 hour period. For each CSTR, it is assumed that

the broth is well mixed such that there are no gradients in nutri-

ents or biomass concentrations. Growth rates of algae and yeast,

and uptake and production rates of metabolites are obtained from

genome-scale metabolic network reconstructions.

First a pond with an algae monoculture with no CO2 sparging

is analyzed. Next, the productivity of this culture is boosted with

CO2 sparging and a series of three ponds is considered. Next, a

pond containing a monoculture of oleaginous yeast is considered

and the advantages of an algae/yeast coculture are illustrated.

Next, we model an algal/yeast coculture with no flue gas sparg-

ing in a three pond system. Finally, the case where the oleaginous

yeast can also consume xylose is considered in another three pond

system. The coculture examples illustrate the benefits of the sym-

biotic relationships between yeast and algae. The series of ponds

is necessary to induce lipids production through nitrogen starva-

tion,16 as observed experimentally by Rodolfi et al.38 and Breuer

et al.39 Nitrogen starvation increases lipids productivity but re-

duces biomass productivity.39,40 A two phase cultivation system

can achieve good biomass and lipids productivity.41 Therefore,

the series of ponds allows biomass growth in the first pond and

lipids accumulation in the latter ones. Ammonia is used as the

single nitrogen source. Caustic soda is used to prevent the pond

from becoming too acidic.

In this case study, the model for each pond was obtained from

Yang.30 This model considers a 350,000 L outdoor pond with a

depth of 0.4 m. It is continuously harvested at a rate of 50,000

L/day with a recycle rate of 350,000 L/h. A channel width of 1.2

m is assumed such that the flow velocity is 0.2 m/s to avoid sed-

imentation and thermal stratification, as suggested by Becker.42

The Reynolds number of this pond is of 250,000; turbulent flow

is desired to keep cells in suspension and prevent stratification.43

We discretized the spatial variations of the pond by modeling it

as a sequence of nine CSTRs. For ponds connected in series, the

effluent of one pond feeds into the next and the effluent of the

last pond feeds into a clarifier, in which the water content is re-

duced and subsequently the remaining biomass is harvested and

processed. The clarifier and other downstream processes are not

included in the current model.

The average light intensity is estimated based on the Beer-

Lambert law:29,30

Ia(t) =
1

L

∫

L

0
I0(t)exp(−Ke(X(t))z)dz, (1)

where Ke(X(t)) is the extinction coefficient, L is the depth of the

pond, and I0 is the surface light intensity during the photoperiod

(7:00-19:00) approximated by a sinusoidal function with maxi-

mal intensity at noon and average surface light intensity of 18.81

MJ/m2/day.30 To convert to mmol photons/gDW/h, the average

cell diameter used was 10 µm,44 and the average weight was

estimated as 109 cells in one gram dry weight.45 Following the

calculations in Boelee et al.,46 Imax
0 = 283 mmol/gDW/h. The de-

pendency of Ke on biomass concentration is modeled via a simple

linear relationship,

Ke(X(t)) = Ke1 +Ke2X(t), (2)

where X(t) is the total biomass concentration at time t and

the values of the parameters Ke1 and Ke2 are taken from Buhr
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and Miller.29 In addition, light available for photosynthesis can-

not exceed the average surface light intensity of 3610 mmol

photons/(m2
×h). Therefore,

I0(t) = max

(

0,283π

(

sin

(

π(t −7)

12

)))

,

Ia(t) = I0(t)×
1− e−LKe(X(t))

LKe(X(t))
,

I1(t) =
max

(

0,3610π

(

sin
(

π(t−7)
12

)))

400XA(t)
,

Im(t) = min(Ia(t), I1(t)),

where Im(t) is the light available for algae at time t in

mmol/gDW/h, XA(t) is algal biomass concentration in g/L and

400 is a conversion factor from g/L to g/m2 based on the geom-

etry of this pond. The open pond is in direct contact with the at-

mosphere, therefore a simple model based on film theory is used

to estimate the mass transfer across the interface between air and

water with parameters from Buhr and Miller29 and Yang30 and

pond mass transfer area to volume ratio of 2.5 m2/m3. The equi-

librium concentrations for both O2 and CO2 in water are calcu-

lated using Henry’s law. Finally, the dissolved gas concentrations

are limited by their saturation concentration at ambient condi-

tions.

Sparging of flue gas is modeled according to Yang.30 The model

considers that flue gas is fed at atmospheric pressure into orifices

with a diameter of 5 cm. covering the entire bottom of the pond

with a concentration of 250 orifices/m2. Flue gas flowrates of

10, 40, 100, 500, and 2000 m3/h were modeled. The flue gas

composition of 13.6% CO2, 5% O2, and the rest N2 was obtained

from Brown.47 Variations of the concentration of CO2 in the gas

bubbles with respect to pond depth were considered.

2.4 Metabolic Models

Chlamydomonas reinhardtii is used as a model organism for mi-

croalgae. The genome-scale metabolic network iRC1080 is an

up-to-date metabolic reconstruction of C. reinhardtii.48 The re-

construction consists of 2190 fluxes and 1068 unique metabo-

lites, and encompasses ten compartments including a detailed

reconstruction of the lipid metabolism. The model includes

photoautotrophic, heterotrophic and mixotrophic growth options

and a detailed model of the light spectrum. The model pre-

diction has been validated experimentally under different envi-

ronmental conditions, such as nitrogen limited or light limited

growth.48 The model includes the pathways necessary for the

biosynthesis of unsaturated fatty acids, fatty acids, steroids, sph-

ingolipids, glycerophospholipids, and glycerolipids, and it con-

siders the pathways related to fatty acid elongation in the mito-

chondria. The model considers all individual metabolites in these

pathways including backbone molecules, stereochemical num-

bering of acyl-chain positions, acyl-chain length, and cis-trans

stereoisomerisms.48 More model details including a list of all

metabolites and reactions can be found in the Supplementary In-

formation of Chang et al.48 and more information in general on

algal lipids synthesis in Harwood and Guschina.49 For this paper,

125 metabolites were classified as lipids and a lipid storage was

implemented in the model. In addition, minor modifications were

done to the metabolic network reconstruction to satisfy mass bal-

ances.

The model for the yeast organism is based on a well-established

model of Saccharomyces cerevisiae. The genome-scale network re-

construction of the S. cerevisiae metabolism iND750 has shown

good agreement with experimental data.50 It considers 1061

unique metabolites in eight compartments and 1266 intracellular

and exchange fluxes. Furthermore, the model correctly predicts

ethanol production under anaerobic conditions. However, S. cere-

visiae is not an oleaginous yeast. Examples of oleaginous yeasts

include Cryptococcus albidus, Lipomyces starkeyi, Rhodotorula glu-

tinis, Trichosporon pullulans, and Yarrowia Lipolytica with lipid

accumulations ranging from 36% to 72%.13,14 A description of

the lipids profiles for different fungal species can be found in Ra-

tledge.13 The iND750 model considers most pathways found in

fungal species. It also considers the production of different lipids

species such as glycerolipids, glycolipids, sphingolipids, phospho-

lipids, and fatty acids. This metabolic reconstruction can be used

to model different species by adjusting the biomass equation and

adjusting the flux bounds on reactions feeding to different path-

ways. In this paper, we modified the iND750 model such that

it cannot produce ethanol14 and under low oxygen conditions it

can produce acetate, formate, succinate, and citrate, reflecting

the behavior of Y. Lipolytica.51 We also modified it further such

that it consumed xylose reflecting the behavior of Rhodotorula

glutinis.52 Therefore, the biomass equation was modified such

that the yeast accumulates 40% lipids.

Both modified models are provided as supplementary materi-

als. Figure 1 presents a simplified version of both models. Yeast

consumes glucose, xylose, O2, and nutrients to obtain biomass,

CO2 and water. The metabolic reactions of glucose and xylose

generate ATP with stoichiometry defined by the metabolic model.

Xylose, glucose and nutrients are assimilated into biomass; these

growth reactions have ATP requirements with coefficients deter-

mined by the metabolic model. Meanwhile, algae obtains ATP

from light and converts CO2 and water into glucose and O2

through photosynthesis with some ATP requirement. This glucose

can be transformed into starch for energy storage, consumed for

ATP production, or assimilated with nutrients as biomass. Under

nitrogen limitations, this glucose can be assimilated as lipids. In

addition, the algae model considers a survival ATP requirement.

The red and purple arrows show symbiotic opportunities. All ATP

coefficients are determined by the metabolic model. Both mod-

els, iRC1080 and iND750, contain in full detail all the relevant

metabolic pathways that achieve these main reactions. The full

list of metabolites and reactions of iRC1080 and iND750 can be

found in the Supplementary Information of Chang et al.48 and

the Supplemental Material of Duarte et al..,50 respectively.
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Therefore, an algae/yeast coculture could be preferred over a

yeast monoculture.

Table 9 Economic analysis for biodiesel production with pure glucose

and a glucose/xylose mix

Cocul. Cocul. Yeast Units

Glucose or Mix Gluc. Mix Mix
Yeast Production 34.5 30.2 86.9 gDW/(m2

× d)
Algae Production 26.2 27.3 0 gDW/(m2

× d)
Lipid Production 82.5 83.6 128.7 tonne/(ha × yr)
Carbohydrate Prod. 55.6 50.5 75.5 tonne/(ha × yr)
Protein Prod. 83.4 75.8 113.2 tonne/(ha × yr)
Electricity AD 216 196 292 MWh/(ha × yr)
Capital Costs
Raceway Pond 146 146 146 $1000/ha
Non-pond Site Prep. 5 5 5 $1000/ha
Engineering 22 22 22 $1000/ha
Harvest 3.6 3.6 3.6 $1000/ha
Extraction 4.6 4.6 4.6 $1000/ha
Anaerobic Digester 31.2 28.4 42.4 $1000/ha
TOTAL CAPITAL COSTS 212.4 209.6 223.6 $1000/ha
Power Requirements
Growth 21.6 21.6 21.6 MWh/(ha × yr)
Harvest 38 38 38 MWh/(ha × yr)
Dewatering 1.5 1.5 1.5 MWh/(ha × yr)
Electricity Required -154.4 -134.6 -231.3 MWh/(ha × yr)
Running Costs
Labor 4430 4430 4430 $/(ha × yr)
Electricity -15400 -13500 -23200 $/(ha × yr)
Transesterification
Power (Natural Gas) 380 385 593 $/(ha × yr)
Methanol 3780 3830 5900 $/(ha × yr)
NaOH 90.9 90.9 0 $/(ha × yr)
Water 145 145 145 $/(ha × yr)
Ammonia 1300 1150 2780 $/(ha × yr)
DAP 2360 2190 1690 $/(ha × yr)
Sugars 43400 24100 50400 $/(ha × yr)
Anaerobic Digester 4320 3930 5870 $/(ha × yr)
Capital Costs @ 10%/yr 21.2 21.0 22.4 $1000 /(ha × yr)
TOTAL COSTS 65.8 47.6 70.8 $1000 /(ha × yr)
Biodiesel Prod. Ideal 65.6 66.5 102.4 kL/(ha × yr)
Biodiesel Prod. Real 32.8 33.2 51.2 kL/(ha × yr)
Biodiesel Cost 2.01 1.44 1.39 $/L

The anaerobic digester produces CO2. If algae ponds are lo-

cated immediately next to the digester, minimal costs are incurred

for compressing the flue gas. Then, the price per liter of biodiesel

for a sparging rate of 100 m3/h is of $0.93/L. A mixed setup can

be conceived where most of the biodiesel is produced from a glu-

cose/xylose mix and a few ponds produce biodiesel using flue gas

from the anaerobic digester.

4 Conclusions

DFBA can be used to model accurately complex and novel biologi-

cal scenarios, for example, a microbial consortia in an algal pond.

Based on this modeling framework, the potential of producing

biodiesel in raceway ponds from algae and oleaginous yeast was

evaluated. Flue gas can be used to produce biodiesel at competi-

tive prices only if the ponds are located very close to the flue gas

source. Meanwhile, algae/yeast cocultures provide a method of

producing biodiesel using cellulosic sugar. Our model predicts a

cost of production of biodiesel $2.01/L if pure glucose is used and

$1.44/L if a mix of glucose and xylose is used instead.

The results of this work suggest that algae/yeast cocultures for

biodiesel production should be considered seriously. This alter-

native employs cellulosic sugars which are currently very cheap.

In this analysis we considered that lipid-extracted biomass was

utilized to produce electricity. Another option would be to treat

it and make it digestible by the consortia, potentially reducing

the operating costs of the consortia alternative. In addition, the

results in this work are not systematically optimized. The opti-

mization of this system requires the computation of generalized

derivatives for non-smooth objective functions. The work in Khan

et al.71 and Höffner et al.72 will enable the numerical optimiza-

tion of these systems to become possible in the very near future.

However, despite the lack of optimization, the results of the al-

gae/yeast coculture growing on cellulosic sugars presented in this

paper are promising. We suggest experimental groups implement

the proposed microbial consortia strategy to increase culture re-

silience and expand the range of substrates that can be converted

into biofuels.

References

1 R. Agrawal and N. R. Singh, Annual review of chemical and

biomolecular engineering, 2010, 1, 343–364.

2 N. Arifeen, R. Wang, I. Kookos, C. Webb and A. A. Koutinas,

Biotechnology progress, 2007, 23, 872–880.

3 M. F. Ruth and R. J. Wooley, 4th Annual Green Chemistry &

Engineering Conference, 2000, p. 109.

4 E. Kazamia, D. C. Aldridge and A. G. Smith, Journal of Biotech-

nology, 2012, 162, 163–169.

5 R. Harrabin, US makes climate pledge to UN, http://www.

bbc.com/news/science-environment-32136006,

2015.

6 Blueprint for a Secure Energy Future, The White House report,

2011.

7 R. Luque, Energy & Environmental Science, 2010, 3, 254–257.

8 K. Höffner and P. I. Barton, Computer Aided Chemical Engi-

neering, 2014, 34, 65–74.

9 M. S. Wigmosta, A. M. Coleman, R. J. Skaggs, M. H. Hue-

semann and L. J. Lane, Water Resources Research, 2011, 47,

W00H04.

10 A. Clarens and L. Colosi, Biofuels, 2010, 1, 805–808.

11 Y. Chisti, Journal of Biotechnology, 2013, 167, 201–214.

12 Alternative Jet Fuels: Federal Activities Support Development

and Usage, but Long-term Commercial Viability Hinges on Mar-

ket Factors, United States government accountability office re-

port, 2014.

13 C. Ratledge, Trends in Biotechnology, 1993, 11, 278–284.

14 A. Beopoulos, J. Cescut, R. Haddouche, J.-L. Uribelarrea,

C. Molina-Jouve and J.-M. Nicaud, Progress in Lipid Research,

2009, 48, 375–387.

15 L. Amer, B. Adhikari and J. Pellegrino, Bioresource Technology,

2011, 102, 9350–9359.

16 F. Santamauro, F. M. Whiffin, R. J. Scott, C. J. Chuck et al.,

Biotechnology for Biofuels, 2014, 7, 34–43.

17 B. Cheirsilp, W. Suwannarat and R. Niyomdecha, New Biotech-

nology, 2011, 28, 362–368.

18 C. M. Beal, L. N. Gerber, D. L. Sills, M. E. Huntley, S. C. Mach-

12 | 1–14

Page 12 of 15Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



esky, M. J. Walsh, J. W. Tester, I. Archibald, J. Granados and

C. H. Greene, Algal Research, 2015.

19 C. A. Santos and A. Reis, Applied Microbiology and Biotechnol-

ogy, 2014, 98, 5839–5846.

20 R. Reyna-Martínez, R. Gomez-Flores, U. J. López-Chuken,

R. González-González, S. Fernández-Delgadillo and

I. Balderas-Rentería, Applied Biochemistry and Biotechnology,

2015, 175, 354–359.

21 H.-W. Yen, P.-W. Chen and L.-J. Chen, Bioresource Technology,

2015, 184, 148–152.

22 T. Papone, S. Kookkhunthod and R. Leesing, World Acad Sci

Eng Technol, 2012, 64, 1127–1131.

23 J. Ling, S. Nip, W. L. Cheok, R. A. de Toledo and H. Shim,

Bioresource Technology, 2014, 173, 132–139.

24 Z. Zhang, H. Ji, G. Gong, X. Zhang and T. Tan, Bioresource

Technology, 2014, 164, 93–99.

25 A. Varma and B. Ø. Palsson, Applied and environmental micro-

biology, 1994, 60, 3724–3731.

26 J. D. Orth, I. Thiele and B. Ø. Palsson, Nature Biotechnology,

2010, 28, 245–248.

27 R. Mahadevan, J. S. Edwards and F. J. Doyle, Biophysical Jour-

nal, 2002, 83, 1331–1340.

28 B. Ø. Palsson, Systems Biology: Properties of Reconstructed Net-

works, Cambridge University Press, New York, NY, 2006.

29 H. Buhr and S. Miller, Water Research, 1983, 17, 29–37.

30 A. Yang, Industrial & Engineering Chemistry Research, 2011,

50, 11181–11192.

31 J. Schellenberger, J. O. Park, T. M. Conrad and B. Ø. Palsson,

BMC Bioinformatics, 2010, 11, 213.

32 T. J. Hanly and M. A. Henson, Biotechnol. Biofuels, 2013, 6,

44.

33 K. Zhuang, M. Izallalen, P. Mouser, H. Richter, C. Risso, R. Ma-

hadevan and D. R. Lovley, The ISME journal, 2011, 5, 305–

316.

34 N. Klitgord and D. Segrè, PLoS Computational Biology, 2010,

6, e1001002.

35 K. Höffner, S. Harwood and P. Barton, Biotechnology and bio-

engineering, 2013, 110, 792–802.

36 S. M. Harwood, K. Höffner and P. I. Barton, Numerische Math-

ematik, 2015, 1–31.

37 J. A. Gomez, K. Höffner and P. I. Barton, BMC Bioinformatics,

2014, 15, 409.

38 L. Rodolfi, G. Chini Zittelli, N. Bassi, G. Padovani, N. Biondi,

G. Bonini and M. R. Tredici, Biotechnology and Bioengineering,

2009, 102, 100–112.

39 G. Breuer, P. P. Lamers, D. E. Martens, R. B. Draaisma and

R. H. Wijffels, Bioresource Technology, 2012, 124, 217–226.

40 P. J. Williams and L. M. Laurens, Energy & Environmental Sci-

ence, 2010, 3, 554–590.

41 L. Jiang, S. Luo, X. Fan, Z. Yang and R. Guo, Applied Energy,

2011, 88, 3336–3341.

42 E. Becker, Microalgae: Biotechnology and Bioengineering, Cam-

bridge Univ Press, 1994.

43 Y. Chisti, in Microalgal Biotechnology: Potential and Produc-

tion, ed. C. Posten and C. Walter.

44 J. D. Harper, International Review of Cytology, 1999, 189,

131–176.

45 E. H. Harris, The Chlamydomonas sourcebook: introduction to

Chlamydomonas and its laboratory use, Academic Press, 2009,

vol. 1.

46 N. C. Boelee, H. Temmink, M. Janssen, C. J. Buisman and

R. H. Wijffels, Water, 2012, 4, 460–473.

47 L. M. Brown, Energy Conversion and Management, 1996, 37,

1363–1367.

48 R. L. Chang, L. Ghamsari, A. Manichaikul, E. F. Hom, S. Balaji,

W. Fu, Y. Shen, T. Hao, B. Ø. Palsson, K. Salehi-Ashtiani et al.,

Molecular Systems Biology, 2011, 7, 518.

49 J. L. Harwood and I. A. Guschina, Biochimie, 2009, 91, 679–

684.

50 N. C. Duarte, M. J. Herrgård and B. Ø. Palsson, Genome Re-

search, 2004, 14, 1298–1309.

51 S. Papanikolaou, A. Chatzifragkou, S. Fakas, M. Galiotou-

Panayotou, M. Komaitis, J.-M. Nicaud and G. Aggelis, Eu-

ropean Journal of Lipid Science and Technology, 2009, 111,

1221–1232.

52 G. Zhang, W. T. French, R. Hernandez, E. Alley and

M. Paraschivescu, Biomass and Bioenergy, 2011, 35, 734–740.

53 X.-W. Zhang, F. Chen and M. R. Johns, Process Biochemistry,

1999, 35, 385–389.

54 R. Jongbloed, J. Clement and G. Borst-Pauwels, Physiologia

Plantarum, 1991, 83, 427–432.

55 M. Tsuzuki, Z. Pflanzenphysiol. Bd., 1983, 110, 29–37.

56 M. Hein, M. F. Pedersen and K. Sand-Jensen, Marine ecology

progress series. Oldendorf, 1995, 118, 247–253.

57 A. Galván, A. Quesada and E. Fernández, Journal of Biological

Chemistry, 1996, 271, 2088–2092.

58 G. M. Walker, Yeast physiology and biotechnology, John Wiley

& Sons, 1998.

59 I. Tang, M. R. Okos, S.-T. Yang et al., Biotechnology and Bio-

engineering, 1989, 34, 1063–1074.

60 A. R. Franco, J. Cárdenas and E. Fernández, Molecular and

General Genetics MGG, 1987, 206, 414–418.

61 Q.-X. Kong, L. Li, B. Martinez, P. Chen and R. Ruan, Applied

Biochemistry and Biotechnology, 2010, 160, 9–18.

62 R. Robinson and R. Stokes, Electrolyte Solutions, Butterworths

Scientific Publications, London, 1959.

63 R. Agrawal, N. R. Singh, F. H. Ribeiro and W. N. Delgass,

Proceedings of the National Academy of Sciences, 2007, 104,

4828–4833.

64 R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz,

Analysis, synthesis and design of chemical processes, Prentice

Hall, 3rd edn, 2010.

65 W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of

chemical engineering, McGraw-Hill New York, 7th edn, 2005.

66 G. Towler and R. K. Sinnott, Chemical engineering design: prin-

ciples, practice and economics of plant and process design, Else-

vier, 2012.

67 R. Davis, A. Aden and P. T. Pienkos, Applied Energy, 2011, 88,

1–14 | 13

Page 13 of 15 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



3524–3531.

68 Indicative Chemical Prices A-Z, http://www.icis.com/

chemicals/channel-info-chemicals-a-z/, 2008.

69 Electric Power Monthly, http://www.eia.gov/

electricity/monthly/epm_table_grapher.cfm?t=

epmt_5_6_a, 2015.

70 I. Rawat, R. R. Kumar, T. Mutanda and F. Bux, Applied Energy,

2013, 103, 444–467.

71 K. A. Khan and P. I. Barton, Journal of Optimization Theory

and Applications, 2014, 163, 355–386.

72 K. Höffner, K. A. Khan and P. I. Barton, Automatica, Accepted.

14 | 1–14

Page 14 of 15Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



 

From Sugars to Biodiesel Using Microalgae and Yeast 
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An efficient method of transforming sugars into lipids is presented based on the mathematical model of 

an algal/yeast raceway pond. 
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