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Abstract 14 

A simple and effective synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and their derivatives 15 

from aldehydes, β-dicarbonyl compounds and urea or thiourea using D-xylonic acid both as a 16 

green solvent and an effective catalyst is described. Taking the environment and economy into 17 

account, the work presented here has the merits of environmental friendliness, easy operation, 18 

simple work-up, excellent yields, the avoidance of the organic solvents and inexpensive catalysts. 19 

In addition, the good property of D-xylonic acid has also been validated by synthesis of 20 

5-phenyl-1(4-methoxyphenyl)-3[(4-methoxyphenyl)-amino]-1H-pyrrol-2(5H)-one and 21 

12-phenyl-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one. The synthesized 22 

compounds were characterized by FT-IR, 
1
H NMR, 

13
C NMR and melting point.  23 

 24 
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 32 

 33 
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 40 
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Introduction 44 

The development of efficient, practical and environmentally friendly synthetic methodology for 45 

organic reactions is one of the latest challenges to all organic chemists.
1
 Considering the pollution 46 

and economy of many synthetic organic processes with organic solvents, the development of a 47 

clean, safe, and efficient synthetic methodology for organic reactions in green solvents is a focal 48 

point of modern organic synthesis.
2
 The most commonly used green reaction media are 49 

supercritical fluids,
3
 ionic liquids,

3c, 4
 and water.

4e, 5
 Recently, bio-based solvents such as 50 

glycerol,
2c-2g

 gluconic acid aqueous solution,
2h

 and meglumine aqueous solution or their 51 

mixtures,
2i

 have also increasingly attracted attention. As a new kind of green reaction media, 52 

bio-based solvents are not only wildly available in nature, but also environmentally benign, and 53 

even some of them have played a dual role as both of a reaction medium and a catalyst in organic 54 

synthesis. In recent years, the application of green reaction media in organic synthesis is not only 55 

valuable for the atom economy, but also avoids using hazardous solvents. On the other hand, 56 

taking various factors of catalysts into consideration, the applications of various metal-free, 57 

eco-friendly, inexpensive and readily available catalysts are also a focus in organic reactions.
6  

58 

Multicomponent reaction (MCR) is a valuable tool for the synthesis of structurally diverse 59 

chemical libraries of heterocyclic compounds.
7
 To date, this type of reaction has been used 60 

successfully in many fields, especially in the area of drug discovery, organic synthesis, and 61 

material science.
8 

Dihydropyrimidinones (DHPMs) and their derivatives (a series of heterocyclic 62 

organic compounds) are one of the most widely distributed classes of natural compounds, which 63 

have gained extensive interests due to their wide range of biological properties and important 64 

applications in medicine.
9
 Multicomponent one-pot strategy to access DHPMs has attracted 65 

considerable attention over the years.  66 

Recently, this important class of heterocyclic compounds exhibits a wide spectrum of biological 67 

activities, including antiviral, antimitotic, anticarcinogenic, and antihypertensive effects.
10

 Some 68 

functionalized DHPMs also have been used as calcium channel modulators,
11

 69 

alpha-1a-antagonists,
12

 and neuropetide Y (NPY) antagonists.
13

 In addition, some marine alkaloids 70 

containing the dihydropyrimidione-5-carboxylate core unit possess interesting biological 71 

properties. In particular, Batzelladine A and B have been found to be potent HIV gp-120-CD4 72 

inhibitors.
14  

73 
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The first simple and straightforward strategy to synthesize DHPMs is Biginelli reaction via 74 

one-pot condensation reaction of β-dicarbonyl compounds with aldehydes (aromatic or aliphatic 75 

aldehydes) and urea or thiourea.
15 

This kind of reaction is usually carried out in organic solvents at 76 

a reflux temperature in the presence of acid catalyst. Products with low yields (20~50%) are also 77 

generally observed when substituted aromatic or aliphatic aldehydes are used.
16 

Although more 78 

multistep reactions have been developed to increase product yields, these processes are complex.
17

 79 

In recent years, enormous progresses have been made to develop novel procedures under milder 80 

conditions by employing a wide array of acid catalysts, such as HCl,
15

 silica gel-supported 81 

L-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate,
18 

silica gel-supported sodium 82 

hydrogensulfate,
19

 MNPs-IL-HSO4,
20 

L-tyrosine,
21

 solid acids,
22

 Lewis acids,
23

 and basic 83 

catalysts.
24

 Many of these new catalytic materials and synthetic methods, however, have many 84 

limitations such as longer reaction time, harsher reaction condition, expensive and complex 85 

catalysts, and generation of noticeable amount of side products. These catalysts also suffer from 86 

other drawbacks, such as strongly acidic media, high temperature, tedious work-up or purification. 87 

When the environmental effects
25

 are taken into consideration, new and efficient procedures in 88 

ionic liquids,
26 

or eutectic mixtures,
27

 by microwave or ultrasonic assistance,
28 

have been reported. 89 

However, there are still some drawbacks, for examples, volatile organic solvents, toxic and 90 

hazardous transition metals, side products, and harsh or sensitive reaction conditions. Thus, there 91 

is ample scope for the development of greener new synthetic protocols to assemble such 92 

compounds.  93 

Currently, several new methodologies have shown that natural catalysts (vitamin B1,
29

 tartaric 94 

acid, citric acid,
30

 bovine serum albumin,
31

 baker’s yeast,
32

 and even phytic acid,
33

 etc.) could be 95 

used for the three-component condensation reaction. Moreover, using heterogeneous Bronsted 96 

acid,
34

 carboxylic acids,
35

 and phosphoric acids
36

 as mild and efficient catalysts for the reaction 97 

also captured our interest. It is envisioned that the ubiquitous carboxylic acid D-xylonic acid could 98 

be a potential catalyst in organic transformations. D-xylonic acid is a versatile platform chemical 99 

derived from renewable hemicellulose,
37

 which can be used as complexing agent, chelator, or 100 

precursor for synthesizing polyesters, hydrogels or copolyamides
38

 and 1,2,4-butanetriol
39

. With 101 

increasing glucose prices, D-xylonic acid may provide a cheap, non-food derived alternative for 102 

gluconic acid. Large-scale production of D-xylonic acid has not been developed, reflecting the 103 
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current limited market for D-xylonic acid. To the best of our knowledge, there has not been a 104 

report about the synthesis of DHPMs and their derivatives catalyzed by D-xylonic acid. In 105 

continuation of our work on the applications of heterogeneous catalysts in organic 106 

transformations,
40

 we not only explored the possibility of using D-xylonic acid as both of a 107 

biocatalyst and green reaction medium for one-pot three-component condensation reaction to 108 

3,4-dihydropyrimidin-2(1H) ones/thiones (Scheme 1), but also investigated the feasibility of the 109 

synthesis of 5-phenyl-1(4-methoxyphenyl)-3[(4-methoxyphenyl)-amino]-1H-pyrrol-2(5H)-one 110 

and 12-phenyl-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one. The results showed that 111 

D-xylonic acid exhibited desired catalytic performances.  112 

Experimental section 113 

Materials 114 

Aldehyde and 1,3-dicarbonyl compound are analysis grade and purchased from Aladdin Industrial 115 

Corporation. D-xylonic acid with a purity of 96% is provided by Guangzhou Chemical Reagent 116 

Factory, China. Urea, thiourea, and other reagents used are analysis grade and also provided by 117 

Guangzhou Chemical Reagent Factory, China. All the reagents were employed without further 118 

purification.  119 

General procedure for the synthesis of dihydropyridine-2(1H)-ones using D-xylonic acid 120 

catalyst 121 

In a typical experimental procedure, a mixture of aldehyde (5 mmol), 1,3-dicarbonyl compound (6 122 

mmol), urea (or thiourea) (7.5 mmol), and D-xylonic acid (6.5 mol% to all of the reactants) was 123 

charged into a 35 mL pressure flask with a magnetic stirring bar. Then the reaction system was 124 

placed in an oil-bath (100 
o
C）for 5 h with magnetic stirring. Upon the completion of the reaction, 125 

the resulting solid product with pale yellow color was cooled to room temperature. Ice water or a 126 

mixture of ethanol and water was then added and fully crushed, rested for a period of time, and the 127 

product was then washed with ice water for several times, filtered and dried in vacuum for 10 h to 128 

afford the crude product. Finally, the pure product was obtained by recrystallization of the crude 129 

product in anhydrous ethanol. 130 

Synthesis of 5-phenyl-1(4-methoxyphenyl)-3[(4-methoxyphenyl)-amino]-1H-pyrrol-2(5H) 131 

-one using D-xylonic acid catalyst 132 

A mixture of 4-methoxyaniline (2 mmol), benzaldehyde (1 mmol), ethyl pyruvate (1.5 mmol) and 133 
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D-xylonic acid (12 mol% to all of the reactants) was stirred at room temperature for 2 h. Upon the 134 

completion of the reaction, absolute ethyl alcohol (5 mL) was added, and the reaction continued to 135 

whisk for further 3-4 minutes until smooth. Then the reaction mixture was filtered, and the solid 136 

product was washed with absolute ethyl alcohol and diethyl ether for several times. Finally, the 137 

solid product was dried in vacuum, and the product was confirmed by NMR spectral. 138 

Synthesis of 12-phenyl-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one using 139 

D-xylonic acid catalyst 140 

In a typical experimental procedure, a mixture of benzaldehyde (1.0 mmol), 141 

2-hydroxynaphthalene (1.0 mmol), 5,5-dimethyl-1,3-cyclohexanedione (1.2 mmol) and D-xylonic 142 

acid (4 mol% to all of the reactants) was charged into a 35 mL pressure flask with a magnetic 143 

stirring bar. The reaction system was placed in an oil-bath (90 
o
C) for 2 h with magnetic stirring. 144 

Upon the completion of the reaction, ethyl acetate (5 mL) was added and the reaction mixture was 145 

filtered. Then the catalyst was washed with ethyl acetate (10 mL) for two times. The pure product 146 

was afforded by evaporation of the solvent, followed by recrystallization from ethanol or by 147 

column chromatography on silica gels using ethyl acetate/hexane as the eluent. Finally, the 148 

product was confirmed by NMR spectral. 149 

Characterization 150 

In the pertinent literatures, the information on the characterization of the products was almost 151 

retrieved. In this work, the identifications of the products including FT-IR, 
1
H NMR, 

13
C NMR, 152 

and melting points (mp) measurements were conducted. A Nicolet 750 spectrophotometer 153 

(Thermo Fisher Nicolet, Florida, USA) was used to record FT-IR spectra using a KBr disc 154 

containing 1% (w/w) of finely ground sample. The melting points were determined on a BUCHI 155 

Melting Point B-545. 
1
H and 

13
C NMR spectra were recorded on a Bruker AVIII 600 MHz 156 

spectrometer (Bruker Corporation, Rheinstetten, Gemerny) by using DMSO-d6 as a solvent. 
1
H 157 

NMR spectral measurements were performed at 600 MHz using TMS as the internal standard, and 158 

13
C NMR spectral measurements were at 151 MHz with complete proton decouping . 159 

Results and discussion  160 

Optimization of the reaction conditions 161 

Initially, the three-component Biginelli condensation reaction of bezaldehyde (5 mmol) with ethyl 162 

acetoacetate (5 mmol) and urea (5 mmol) in the presence of D-xylonic acid (6.5 mol% to all of the 163 
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reactants) at 100 
o
C for different times was studied to give the desired product 5a. It was observed 164 

that when the reaction time increased, the yield of 5a increased at first and then decreased (Table 1, 165 

entries 1-5). The largest output of 5a occurred in 5 h and thus this period of time was chosen as the 166 

optimum reaction time for further reactions. Subsequently, the stoichiometric of the reactants for 167 

the synthesis of 5a as a model was investigated. As can be seen from Table 1, with the increase in 168 

the amount of urea, the yield of 5a increased (Table 1, entries 4, 6 and 7). However, under the 169 

same reaction condition, the amount of 5a was firstly increased and then slightly decreased with 170 

the raising of the dosage of ethyl acetoacetate (Table 1, entries 6, 8 and 9). The maximum 171 

production rate was observed when benzaldehyde, ethyl acetoacetate and urea were used at a mole 172 

ratio of 1:1.2:1.5, as illustrated in Table 1.  173 

Next, in order to explore the effect of reaction temperature on the field of the product, the reaction 174 

was carried out from 60 
o
C to 120 

o
C. The output of 5a increased along with the temperature 175 

raising from 60 
o
C to 100 

o
C (Table 2, entries 1-5). However, the yield of the product 5a had no 176 

obvious increase as the reaction temperature raised from 100 
o
C to 120 

o
C (Table 2, entries 6-7). 177 

Therefore, the optimum temperature for the synthesis of 5a by the catalysis of D-xylonic acid was 178 

observed at 100 
o
C. Finally, the effect of the amount of D-xylonic acid on the Biginelli reaction 179 

was explored. Based on the data in the Table 2, as the quantity of D-xylonic acid was increased 180 

from 1.6 mol% to 6.5 mol%, the yield of 5a increased from 83% to 87%. However, no obvious 181 

increase of the yield was observed as excessive D-xylonic acid was used (Table 2, entries 10-12). 182 

Furthermore, as the reaction was carried out with the same reagents and conditions in the absence 183 

of D-xylonic acid, the yield of 5a was only 37%, which demonstrated that D-xylonic acid was an 184 

efficient catalyst for this reaction. Therefore, according to the results discussed above, the optimal 185 

results for the three-component Biginelli condensation reaction was observed at a molar ratio of 186 

benzaldehyde, ethyl acetoacetate, and urea of 1:1.2:1.5 for 5 h at 100 
o
C in the presence of 187 

D-xylonic acid (6.5 mol% to all of the reactants). 188 

To have a better understanding of the catalytic system, the effectiveness of D-xylonic acid was 189 

compared to those of the catalysts reported previously, 
31, 34, 35, 41, 42

 and the results are listed in 190 

Table 3. D-xylonic acid is an efficient catalyst for the synthesis of DHPMs with a high yield in a 191 

relatively short period (Table 3, entries 1-4). Although some of them have excellent yields, 192 

additional solvents (water and ethanol) were used (Table 3, entries 3, 5, and 6), or the reaction 193 
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time was relatively long (Table 3, entry 3). In the case of Cu@PMO-IL, the yield obtained was as 194 

high as that from D-xylonic acid, and the reaction time was short, but the synthesis of the catalyst 195 

was very tedious (Table 3, entry 7). Obviously, D-xylonic acid catalyst system was much better 196 

than the other catalysts reported due to its non-toxic, inexpensiveness, and biodegradable, etc.. 197 

Reaction medium is a main factor influencing the selectivity of organic synthesis. In this work, the 198 

effect of D-xylonic acid for the synthesis of DHPMs under different reaction media was explored. 199 

As can be seen from Table 4, the yield of the three-component condensation reaction in only 200 

D-xylonic acid system was higher than those of other systems, and additional solvents in the 201 

reaction system not only caused environmental pollution, but also waste resources. In addition, the 202 

liquid D-xylonic acid had strong nominal stickiness, which could be considered as a green 203 

reaction medium for three-component condensation reaction. 204 

The scope of the substrates 205 

To examine the extent of the application of this catalyst in condensation reaction, the 206 

three-component Biginelli reaction of a variety of aldehydes with 1,3-dicarbonyl compounds 207 

(ethyl acetoacetate, methyl acetoacetate and acetylacetone) and urea or thiourea in the presence of 208 

D-xylonic acid (6.5 mol% to all of the reactants) was also investigated at the optimal condition 209 

(Table 5). 210 

For all cases, D-xylonic acid could catalyze the reaction smoothly in green reaction media to give 211 

the corresponding DHPMs and their derivatives with yields of 23~93%. Many aromatic aldehydes 212 

with electro-donating groups, such as 4-methyl-benzaldehyde, 4-cholro-benzaldehyde, 213 

4-bromo-benzaldehyde and 4-fluoro-benzaldehyde, could be converted to corresponding DHPMs 214 

and their derivatives in high yields with 1,3-dicarbonyl compounds (ethyl acetoacetate, methyl 215 

acetoacetate and acetylacetone) and urea (Table 5, entries 11, 12, 14-21 and 27-28). Many 216 

aromatic aldehydes including 4-hydroxy-benzaldehyde, 4-nitro-benzaldehyde, 217 

4-methoxy-benzaldehyde, 3-methoxy-4-hydroxybenzaldehyde, 3-methoxybenzaldehyde with 218 

electro-withdrawing groups could also give excellent yields under the same condition (Table 5, 219 

entries 2, 3, 5, 7, 13, 20, 21 and 28). Moreover, this work also explored the effect of D-xylonic 220 

acid by three-component Biginelli condensation reaction among aliphatic aldehyde, ethyl 221 

acetoacetate and urea on the yield. It found that the yield of aliphatic aldehyde was lower as 222 

compared with the aromatic aldehydes (Table 5, entries 22-26). In addition, thiourea was also 223 
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successfully used to produce the corresponding 3,4-dihydropyrimidin-2(1H)-thiones (Table 5, 224 

entries 4, 8 and 9). However, under the same condition, the yields of the products with thiourea 225 

were slightly lower than those with urea (Table 5, entries 1 and 4, 5 and 8, 6 and 9 ).  226 

Due to the excellent activity of D-xylonic acid, it is worth to explore its catalytic activity for the 227 

synthesis of pyrroles. Pyrroles and their analogs, are a general class of important five-member 228 

N-heterocyclic compounds in the aspect of synthesis of pharmacologically significant molecules 229 

and natural products.
43

 Moreover, 1,5-dihydro-2H-pyrrol-2-ones compounds are a fascinating 230 

family of lactams.
44

 Thus, synthesis of this class of N-heterocyclic compounds has gained 231 

intensive interest for organic chemists.
45

 Xanthenes, an important group of O-heterocyclic 232 

compounds, were widely employed in laser technique
46

 and biological molecular fluorescent 233 

tags
47

 as a source for chemical fluorescent dyes. It was found that xanthenes, especially 234 

benzoxanthene derivatives, possess favorable biological and pharmaceutical properties, such as 235 

analgesic,
48

 antiviral,
49

 and antibacterial.
50

 Moreover, these kinds of compounds can also be 236 

employed as antagonists in photodynamic therapy.
51

 Therefore, the synthesis of xanthenes and 237 

benzoxanthene derivatives is of great importance. For pyrroles synthesis, the condensation 238 

reaction was carried out by mixing 4-methoxyaniline, benzaldehyde and ethyl pyruvate with 78% 239 

yield (Scheme 2), while for xanthenes, the condensation reaction among benzaldehyde, 240 

2-hydroxynaphthalene, and 5,5-dimethyl-1,3-cyclohexanedione gave product 3 with 89% yield 241 

(Scheme 3). Furthermore, when a new reaction is discovered or observed, it is necessary to 242 

explore the plausible pathway for the reaction. Today, the hotly debated mechanism for the 243 

Biginelli condensation reaction mainly includes three types: Knoevenagel mechanism, enamine 244 

mechanism and iminium mechanism. In 1973, Sweet and Fissekis
52

 presented the Knoevenagel 245 

mechanism (Scheme 4) based on their findings. However, as time goes on, further study indicated 246 

that the Knoevenagel mechanism was not the preferred reaction pathway. In 1933, Folkers and 247 

coworkers
53

 advanced the enamine mechanism (Scheme 5), which was the first attempt to 248 

illustrate mechanism of the Biginelli condensation reaction. However, the reports including 249 

Folkers,
53

 Johnson,
53

 and Kappe
54

 have only supposed a plausible mechanism without any real 250 

proof. The good news was that the work of Cepanec and coworkers
55

 which used SbCl3 as the 251 

catalyst showed that the Biginelli condensation reaction went through the enamine mechanism. 252 

The work of Litvic
56

 also returned similar results, in accordance with the description of Cepanec.
55   

253 
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Iminium mechanism of the Biginelli condensation reaction (Scheme 6) was reported by Kappe
54 

254 

based on NMR experiments. Lately, Souza and coworkers
57

 also investigated the mechanism of 255 

the Biginelli reaction using Bronsted acid catalysis (formic acid). The work
57

 not only detected 256 

and characterized the structure of intermediate by using ESI-MS/MS, but also won the support of 257 

thermodynamic and kinetics from DFT calculations. According to the data from 
1
H and 

13
C 258 

NMR,
54

 ESI-MS/MS
57

 and DFT calculation,
57 

the iminium mechanism could be highly favored 259 

and the Knoevenagel and enamine pathways could be discarded. Herein, based on the former 260 

literatures,
23a, 52-58

 a plausible reaction mechanism for the synthesis of DHPMs catalyzed by 261 

D-xylonic acid was proposed in Scheme 7. N-acyl iminium intermediates might generate via 262 

cyclocondensation of aldehyde and urea in the presence of D-xylonic acid during the reaction. 263 

Subsequently, 1,3-dicarbonyl compounds were added to the reaction system, followed by 264 

cyclization and dehydration procedures under the acidic condition. Finally the corresponding 265 

3,4-dihydropyrimidin-2(1H)-ones/thiones and their derivatives were obtained. 266 

Conclusions 267 

In summary, D-xylonic acid was proved to be both an effective biocatalyst and a green reaction 268 

medium for one-pot three-component Biginelli condensation reaction to give 269 

3,4-dihydropyrimidin-2(1H)-ones/thiones and their derivatives. The natural abundance, ease of 270 

use, eco-friendliness, biodegradability, as well as air, water, and substrate tolerances make it an 271 

excellent catalyst and solvent for Biginelli condensation reaction. Moreover, D-xylonic acid was 272 

also used in the synthesis of 273 

5-phenyl-1(4-methoxyphenyl)-3[(4-methoxyphenyl)-amino]-1H-pyrrol-2(5H)-one and 274 

12-phenyl-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one with excellent yields.  275 
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The Characterization of the Products 444 

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (5a) 445 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.17 (brs, 1H, NH), 7.72 (brs, 1H, NH), 446 

7.33-7.23 (m, 5H, Ar-H), 5.14 (d, J = 3.0 Hz, 1H, CH), 3.98 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.25 447 

(s, 3H, CH3), 1.08 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.31, 448 

152.09, 148.32, 144.84, 128.36, 127.23, 126.22, 99.25, 59.16, 53.94, 17.76, 14.06; IR (KBr): v 449 

(cm
-1

) 3245, 3115, 2979, 1725, 1702, 1649; mp (
o
C): 208-210. 450 

5-Ethoxycarbonyl-4-(4-hydroxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5b) 451 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.32 (s, 1H, OH), 9.10 (brs, 1H, NH), 452 

7.61 (brs, 1H, NH), 7.02 (d, J = 9.0 Hz, 2H, Ar-H), 6.68 (d, J = 8.4 Hz, 2H, Ar-H), 5.04 (d, J = 3.6 453 

Hz, 1H, CH), 3.97 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.23 (s, 3H, CH3), 1.09 (t, J = 7.2 Hz, 3H, 454 

OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.03, 151.97, 151.71, 149.36, 146.70, 455 

127.63, 123.81, 98.17, 59.37, 53.67, 17.85, 14.04; IR (KBr): v (cm
-1

) 3284, 3111, 2973, 1691, 456 

1652, 1606; mp (
o
C): 232-234. 457 

5-Ethoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (5c) 458 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.34 (brs, 1H, NH), 8.22 (d, J = 9.0 Hz, 459 

2H, Ar-H), 7.88 (brs, 1H, NH), 7.50 (d, J = 9.0 Hz, 2H, Ar-H), 5.27 (d, J = 3.6 Hz, 1H, CH), 3.99 460 

(q, J = 7.2 Hz, 2H, OCH2CH3), 2.27 (s, 3H, CH3), 1.09 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR 461 

(151 MHz, DMSO-d6, δ ppm): 165.05, 152.00, 151.74, 149.40, 146.71, 127.66, 123.85, 98.17, 462 

59.40, 53.68, 17.89, 14.06; IR (KBr): v (cm
-1

) 3225, 3118, 2981, 1705, 1641, 1522; mp (
o
C): 463 

210-212. 464 

5-Ethoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione (5d) 465 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 10.33 (brs, 1H, NH), 9.65 (brs, 1H, NH), 466 

7.36-7.21 (m, 5H, Ar-H), 5.17 (d, J = 3.6 Hz, 1H, CH), 4.01 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.29 467 

(s, 3H, CH3), 1.10 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 174.22, 468 

165.12, 145.04, 143.49, 128.57, 127.69, 126.38, 100.70, 59.60, 54.04, 17.17, 14.02; IR (KBr): v 469 

(cm
-1

) 3248, 3113, 2954, 1716, 1684,1652; mp (
o
C): 205-206. 470 

5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5e) 471 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.14 (brs, 1H, NH), 7.65 (brs, 1H, NH), 472 

7.14 (d, J = 8.4 Hz, 2H, Ar-H), 6.87 (d, J = 8.4 Hz, 2H, Ar-H), 5.09 (d, J = 3.0 Hz, 1H, CH), 3.98 473 
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(q, J = 7.2 Hz, 2H, OCH2CH3), 3.72 (s, 3H, OCH3), 2.24 (s, 3H, CH3), 1.10 (t, J = 7.2 Hz, 3H, 474 

OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.36, 158.42, 152.13, 147.99, 137.04, 475 

127.37, 113.69, 99.56, 59.14, 55.05, 53.32, 17.75, 14.10; IR (KBr): v (cm
-1

) 3244, 3111, 2956, 476 

1706, 1650, 1614; mp (
o
C): 203-205. 477 

5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (5f) 478 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.21 (brs, 1H, NH), 7.74 (brs, 1H, NH), 479 

7.33-7.23 (m, 5H, Ar-H), 5.14 (d, J = 3.6 Hz, 1H, CH), 3.53 (s, 3H, OCH3), 2.25 (s, 3H, CH3); 
13

C 480 

NMR (151 MHz, DMSO-d6, δ ppm): 165.82, 152.14, 148.64, 144.66, 128.44, 127.27, 126.15, 481 

99.00, 53.77, 50.79, 17.83; IR (KBr): v (cm
-1

) 3332, 3224, 3107, 2947, 1706, 1668; mp (
o
C): 482 

212-213. 483 

5-Methoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5g) 484 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.17 (brs, 1H, NH), 7.68 (brs, 1H, NH), 485 

7.14 (d, J = 9.0 Hz, 2H, Ar-H), 6.87 (d, J = 8.4 Hz, 2H, Ar-H), 5.09 (d, J = 3.6 Hz, 1H, CH), 3.72 486 

(s, 3H, OCH3), 3.52 (s, 3H, OCH3), 2.24 (s, 3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 487 

165.85, 158.45, 152.15, 148.32, 136.84, 127.32, 113.76, 99.28, 55.05, 53.18, 50.76, 17.80; IR 488 

(KBr): v (cm
-1

) 3246, 3111, 2949, 2840, 1720, 1655; mp (
o
C): 197-200. 489 

5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-thione (5h) 490 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 10.28 (brs, 1H, NH), 9.59 (brs, 1H, NH), 491 

7.13 (d, J = 8.4 Hz, 2H, Ar-H), 6.90 (d, J = 8.4 Hz, 2H, Ar-H), 5.11 (d, J = 3.6 Hz, 1H, CH), 4.00 492 

(q, J = 7.2 Hz, 2H, OCH2CH3), 3.72 (s, 3H, OCH3), 2.28 (s, 3H, CH3), 1.10 (t, J = 7.2 Hz, 3H, 493 

OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 174.02, 165.15, 158.73, 144.73, 135.70, 494 

127.60, 113.86, 100.97, 59.54, 55.10, 53.45, 17.14, 14.04; IR (KBr): v (cm
-1

) 3313, 3172, 2984, 495 

1669, 1572, 1458; mp (
o
C): 151-153. 496 

5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-thione (5i) 497 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 10.35 (brs, 1H, NH), 9.67 (brs, 1H, NH), 498 

7.36-7.21 (m, 5H, Ar-H), 5.18 (d, J = 3.6 Hz, 1H, CH), 3.56 (s, 3H, OCH3), 2.30 (s, 3H, CH3); 
13

C 499 

NMR (151 MHz, DMSO-d6, δ ppm: 174.28, 165.64, 145.31, 143.30, 128.63, 127.71, 126.32, 500 

100.45, 53.91, 51.11, 17.23; IR (KBr) : v (cm
-1

) 3313, 3184, 3000, 1667, 1575, 1448; mp (
o
C): 501 

226-228. 502 

4-(4-Hydroxyphenyl)-5-methoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-thione (5j) 503 
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1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm =10.26 (brs, 1H, NH), 9.56 (brs, 1H, NH), 504 

9.42 (s, 1H, OH), 7.01 (d, J = 8.4 Hz, 2H, Ar-H), 6.71 (d, J = 8.4 Hz, 2H, Ar-H), 5.06 (d, J = 3.6 505 

Hz, 1H, CH), 3.54 (s, 3H,OCH3), 2.28 (s, 3H,CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 506 

173.90, 165.71, 156.93, 144.82, 133.89, 127.58, 115.21, 100.81, 53.42, 51.04, 17.19; IR (KBr): v 507 

(cm
-1

) 3310, 3124, 1665, 1567, 1448, 1341, 1192; mp (
o
C): 246-248. 508 

5-Ethoxycarbonyl-4-(4-methylphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5k) 509 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.14 (brs, 1H, NH), 7.67 (brs, 1H, NH), 510 

7.12 (s, 4H, Ar-H), 5.10 (d, J = 3.6 Hz, 1H, CH), 3.98 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.26 (s, 3H, 511 

CH3), 2.24 (s, 3H, CH3), 1.10 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ 512 

ppm): 165.34, 152.15, 148.11, 141.94, 136.34, 128.86, 126.12, 99.41, 59.14, 53.62, 20.63, 17.74, 513 

14.09; IR (KBr): v (cm
-1

) 3246, 3115, 2972, 1716, 1644, 1460; mp (
o
C): 216-218. 514 

5-Methoxycarbonyl-4-(4-methylphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5l) 515 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.17 (brs, 1H, NH), 7.69 (brs, 1H, NH), 516 

7.11 (s, 4H, Ar-H), 5.10 (d, J = 3.6 Hz, 1H, CH), 3.52 (s, 3H, OCH3), 2.26 (s, 3H, CH3), 2.24 (s, 517 

3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ pp): 165.84, 152.17, 148.44, 141.76, 136.40, 128.94, 518 

126.07, 99.15, 53.49, 50.74, 20.63, 17.80; IR (KBr): v (cm
-1

) 3242, 3113, 2934, 1703, 1644, 1514; 519 

mp (
o
C): 234-236. 520 

5-Ethoxycarbonyl-4-(4-hydroxyphenyl-3-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin- 521 

2(1H)-one (5m) 522 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.10 (s, 1H, OH), 8.89 (brs, 1H, NH), 523 

7.61 (brs, 1H, NH), 6.80-6.60 (m, 3H, Ar-H), 5.06 (d, J = 3.0 Hz, 1H, CH), 3.99 (q, J = 7.2 Hz, 2H, 524 

OCH2CH3), 3.72 (s, 3H, OCH3), 2.23 (s, 3H, CH3), 1.11 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR 525 

(151 MHz, DMSO-d6, δ ppm): 165.44, 152.21, 147.86, 147.24, 145.78, 135.91, 118.28, 115.26, 526 

110.89, 99.55, 59.11, 55.57, 53.55, 17.73, 14.15; IR (KBr): v (cm
-1

) 3245, 3114, 2948, 1717, 1647, 527 

1433; mp (
o
C): 225-226. 528 

4-(4-Chlorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5n) 529 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C) : δ ppm = 9.23 (brs, 1H, NH), 7.76 (brs, 1H, NH), 530 

7.39 (d, J = 8.4 Hz, 2H, Ar-H), 7.25 (d, J = 8.4 Hz, 2H, Ar-H), 5.14 (d, J = 3.0 Hz, 1H, CH), 3.98 531 

(q, J = 7.2 Hz, 2H, OCH2CH3), 2.25 (s, 3H, CH3), 1.09 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR 532 

(151 MHz, DMSO-d6, δ ppm): 165.19, 151.91, 148.70, 143.78, 131.77, 128.38, 128.17, 98.83, 533 
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59.25, 53.42, 17.79, 14.07; IR (KBr): v (cm
-1

) 3241, 3114, 2968, 1713, 1645, 1469; mp (
o
C): 534 

215-217. 535 

4-(4-Chlorophenyl)-5-methoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5o) 536 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.27 (brs, 1H, NH), 7.78 (brs, 1H, NH), 537 

7.39 (d, J = 8.4 Hz, 2H, Ar-H), 7.25 (d, J = 9.0 Hz, 2H, Ar-H), 5.14 (d, J = 3.6 Hz, 1H, CH), 3.53 538 

(s, 3H, OCH3), 2.25 (s, 3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.70, 151.96, 539 

148.98, 143.59, 131.82, 128.44, 128.11, 98.61, 53.27, 50.82, 17.85; IR (KBr): v (cm
-1

) 3362, 3226, 540 

3108, 2964, 1722, 1630; mp (
o
C): 209-212. 541 

4-(4-Bromophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5p) 542 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.24 (brs, 1H, NH), 7.77 (brs, 1H, NH), 543 

7.53 (d, J = 8.4 Hz, 2H, Ar-H), 7.19 (d, J = 8.4 Hz, 2H, Ar-H), 5.12 (d, J = 3.6 Hz, 1H, CH), 3.98 544 

(q, J = 7.2 Hz, 2H, OCH2CH3), 2.24 (s, 3H, CH3), 1.09 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR 545 

(151 MHz, DMSO-d6, δ ppm): 165.18, 151.90, 148.72, 144.18, 131.30, 128.53, 120.29, 98.76, 546 

59.26, 53.48, 17.80, 14.07; IR (KBr) : v (cm
-1

) 3244, 3116, 2968, 1717, 1648, 1471; mp (
o
C): 547 

223-225. 548 

4-(4-Bromophenyl)-5-methylcarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5q) 549 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.27 (brs, 1H, NH), 7.78 (brs, 1H, NH), 550 

7.52 (d, J = 8.4 Hz, 2H, Ar-H), 7.18 (d, J = 8.4 Hz, 2H, Ar-H), 5.12 (d, J = 3.0 Hz, 1H, CH), 3.53 551 

(s, 3H, OCH3), 2.25 (s, 3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.69, 151.94, 552 

149.00, 144.00, 131.37, 128.47, 120.35, 98.54, 53.33, 50.84, 17.85; IR (KBr): v (cm
-1

) 3363, 3222, 553 

3106, 2953, 1720, 1633; mp (
o
C): 225-227. 554 

4-(4-Fluorophenyl)-5-methylcarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5r) 555 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.26 (brs, 1H, NH), 7.78 (brs, 1H, NH), 556 

7.27-7.13 (m, 4H, Ar-H), 5.14 (d, J = 3.0 Hz, 1H, CH), 3.53 (s, 3H, OCH3), 2.25 (s, 3H, CH3); 
13

C 557 

NMR (151 MHz, DMSO-d6, δ ppm): 165.76, 162.14, 160.53, 152.02, 148.84, 140.93 (d, J=2.87 558 

Hz), 128.18 (d, J = 8.15 Hz), 115.20 (d, J=21.29 Hz), 98.89, 53.17, 50.84, 17.87; IR (KBr) : v 559 

(cm
-1

) 3327, 3223, 3106, 2948, 1680, 1423; mp (
o
C): 202-203. 560 

4-(4-Fluorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5s) 561 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.21 (brs, 1H, NH), 7.73 (brs, 1H, NH), 562 

7.27-7.13 (m, 4H, Ar-H), 5.14 (d, J = 3.0 Hz, 1H, CH), 3.98 (m, 2H, OCH2CH3), 2.25 (s, 3H, 563 
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CH3), 1.09 (t, J = 7.2 Hz, 3H, OCH2CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.23, 564 

162.10, 160.49, 151.94, 148.51, 141.12 (d, J = 3.02 Hz), 128.23 (d, J = 8.15 Hz), 115.10 (d, J = 565 

21.29 Hz), 99.11, 59.20, 53.33, 17.78, 14.06; IR (KBr): v (cm
-1

) 3243, 3120, 2971, 1717, 1646, 566 

1461; mp (
o
C): 184-186. 567 

5-Ethoxycarbonyl-4-(3-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (5t) 568 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.19 (brs, 1H, NH), 7.73 (brs, 1H, NH), 569 

7.24 (t, 1H, J = 7.8 Hz, Ar-H), 6.80 (m, 3H, Ar-H), 5.11 (d, J = 3.0 Hz, 1H, CH), 3.99 (q, J = 7.2 570 

Hz, 2H, OCH2CH3), 3.72 (s, 3H, OCH3), 2.24 (s, 3H, CH3), 1.11 (t, J = 7.2 Hz, 3H, OCH2CH3); 571 

13
C NMR (151 MHz, DMSO-d6, δ ppm): 165.35, 159.20, 152.20, 148.45, 146.34, 129.57, 118.23, 572 

112.39, 112.13, 99.13, 59.23, 54.98, 53.74, 17.78, 14.13; IR (KBr): v (cm
-1

) 3254, 3109, 2952, 573 

1704, 1638, 1451; mp (
o
C): 229-231. 574 

5-Methylcarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (5u) 575 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.37 (brs, 1H, NH), 8.21 (d, J = 8.4 Hz, 576 

2H, Ar-H), 7.90 (brs, 1H, NH), 7.50 (d, J = 8.4 Hz, 2H, Ar-H), 5.27 (d, J = 3.6 Hz, 1H, CH), 3.54 577 

(s, 3H, OCH3), 2.27 (s, 3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.55, 151.79, 578 

151.77, 149.62, 146.73, 127.57, 123.86, 97.98, 53.53, 50.91, 17.92; IR (KBr): v (cm
-1

) 3364, 3223, 579 

3113, 2958, 1714, 1638, 1516; mp (
o
C): 241-243. 580 

5-Ethoxycarbonyl-4,6-dimethyl-3,4-dihydropyrimidin-2(1H)-one (5v) 581 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 8.96 (s, 1H, NH), 7.18 (s, 1H, NH), 582 

4.13-4.06 (m, 2H, OCH2CH3), 4.06-4.03 (m, 1H, CH), 2.15 (s, 3H, CH3), 1.19 (t, J = 7.2 Hz, 3H, 583 

OCH2CH3), 1.10 (d, J = 6.6 Hz, 3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 165.32, 584 

152.48, 147.70, 100.47, 59.03, 46.28, 23.38, 17.65, 14.22; IR (KBr): v (cm
-1

) 3251, 3116, 2978, 585 

2937, 1705, 1656; mp (
o
C): 288-290. 586 

5-Ethoxycarbonyl-6-methyl-4-ethyl-3,4-dihydropyrimidin-2(1H)-one (5w) 587 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 8.91 (s, 1H, NH), 7.27 (s, 1H, NH), 588 

4.11-4.06 (m, 2H, OCH2CH3), 4.06-4.01 (m, 1H, CH), 2.16 (s, 3H, CH3), 1.44-1.39 (m, 2H, 589 

CH2CH3), 1.18 (t, J = 7.2 Hz, 3H, OCH2CH3), 0.79 (t, J = 7.2 Hz, 3H, CH2CH3); 
13

C NMR (151 590 

MHz, DMSO-d6, δ ppm): 165.96, 153.29, 148.86, 99.25, 59.48, 51.83, 30.09, 18.17, 14.68, 9.00;  591 

IR (KBr): v (cm
-1

) 3249, 3121, 2961, 2936, 1724, 1704; mp (
o
C): 191-192. 592 

5-Ethoxycarbonyl-6-methyl-4-propyl-3,4-dihydropyrimidin-2(1H)-one (5x) 593 
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1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 8.92 (s, 1H, NH), 7.32 (s, 1H, NH), 594 

4.11-4.06 (m, 2H, OCH2CH3), 4.06-4.01 (m, 1H, CH), 2.16 (s, 3H, CH3), 1.43-1.20 (m, 4H, 595 

(CH2)2CH3), 1.18 (t, J = 7.2 Hz, 3H, OCH2CH3), 0.84 (t, J = 7.2 Hz, 3H, (CH2)2CH3); 
13

C NMR 596 

(151 MHz, DMSO-d6, δ ppm): 165.42, 152.87, 148.19, 99.48, 59.01, 49.83, 39.07, 17.66, 17.00, 597 

14.18, 13.71; IR (KBr): v (cm
-1

) 3251, 3120, 2958, 2935, 1721, 1704; mp (
o
C): 192-193. 598 

5-Ethoxycarbonyl-6-methyl-4-heptyl-3,4-dihydropyrimidin-2(1H)-one (5y) 599 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 8.91 (s, 1H, NH), 7.31 (s, 1H, NH), 600 

4.10-4.07 (m, 2H, OCH2CH3), 4.07-4.02 (m, 1H, CH), 2.16 (s, 3H, CH3), 1.38-1.22 (m, 12H, 601 

(CH2)6CH3), 1.18 (t, J = 7.2 Hz, 3H, OCH2CH3), 0.85 (t, J = 7.2 Hz, 3H, (CH2)6CH3); 
13

C NMR 602 

(151 MHz, DMSO-d6, δ ppm): 165.40, 152.79, 148.18, 99.43, 59.00, 50.06, 36.67, 31.20, 28.74, 603 

28.62, 23.66, 22.07, 17.65, 14.17, 13.89; IR (KBr): v (cm
-1

) 3240, 3113, 2952, 2927, 2859, 1706; 604 

mp (
o
C): 138-139. 605 

5-Ethoxycarbonyl-6-methyl-4-decyl-3,4-dihydropyrimidin-2(1H)-one (5z) 606 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 8.90 (s, 1H, NH), 7.30 (s, 1H, NH), 607 

4.10-4.03 (m, 2H, OCH2CH3), 4.03-4.00 (m, 1H, CH), 2.15 (s, 3H, CH3), 1.39-1.23 (m, 18H, 608 

(CH2)9CH3), 1.18 (t, J = 7.2 Hz, 3H, OCH2CH3), 0.85 (t, J = 7.2 Hz, 3H, (CH2)9CH3); 
13

C NMR 609 

(151 MHz, DMSO-d6, δ ppm): 165.89, 153.23, 148.69, 99.90, 59.45, 50.52, 37.15, 31.75, 29.46, 610 

29.43, 29.42, 29.23, 29.17, 24.12, 22.55, 18.14, 14.66, 14.39; IR (KBr): v (cm
-1

) 3244, 3122, 2921, 611 

2852, 1730, 1706; mp (
o
C): 142-143. 612 

5,6-Dimethyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (5a
’
) 613 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.19 (brs, 1H, NH), 7.83 (brs, 1H, NH), 614 

7.34-7.23 (m, 5H, Ar-H), 5.27 (d, J = 3.6 Hz, 1H, CH), 2.29 (s, 3H, CH3), 2.10 (s, 3H, CH3); 
13

C 615 

NMR (151 MHz, DMSO-d6, δ ppm): 194.26, 152.15, 148.11, 144.25, 128.52, 127.34, 126.43, 616 

109.60, 53.85, 30.32, 18.92; IR (KBr): v (cm
-1

) 3408, 2936, 1745, 1636, 1510, 1458; mp (
o
C): 617 

239-241. 618 

5,6-Dimethyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (5b
’
) 619 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm = 9.34 (brs, 1H, NH), 8.20 (d, J = 8.4 Hz, 620 

2H, Ar-H), 7.98 (brs, 1H, NH), 7.50 (d, J = 9.0 Hz, 2H, Ar-H), 5.39 (d, J = 3.6 Hz, 1H, CH), 2.31 621 

(s, 3H, CH3), 2.18 (s, 3H, CH3); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 193.91, 151.98, 151.56, 622 

149.05, 146.68, 127.67, 123.81, 109.46, 53.16, 30.63, 19.11; IR (KBr): v (cm
-1

) 3269, 2943, 1716, 623 
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1670, 1591, 1524; mp (
o
C): 254-256. 624 

5-Phenyl-1(4-methoxyphenyl)-3[(4-methoxyphenyl)-amino]-1H-pyrrol-2(5H)-one 625 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 7.85 (s, 1H), 7.47 (d, J = 9.0 Hz, 2H), 7.26 626 

(d, J = 7.2 Hz, 2H), 7.22-7.19 (m, 5H), 6.85 (dd, J1 = 9.6 Hz, J2 = 9.0 Hz, 4H), 6.11 (d, J = 2.4 Hz, 627 

1H), 5.92 (d, J = 2.4 Hz, 1H), 3.69 (s, 6H); 
13

C NMR (151 MHz, DMSO-d6, δ ppm): 166.31, 628 

156.17, 153.36, 138.26, 135.48, 132.64, 130.18, 128.64, 127.63, 126.80, 123.50, 118.28, 114.31, 629 

113.86, 107.24, 62.81, 55.17, 55.10; mp (
o
C): 197-199. 630 

12-Phenyl-9,9-dimethyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one 631 

1
H NMR (DMSO-d6, 600 MHz, Me4Si, 25 

o
C): δ ppm= 8.04 (d, J = 8.4 Hz, 2H), 7.92-7.90 (m, 632 

2H), 7.50-7.41 (m, 3H), 7.30-7.29 (m, 2H), 7.19-7.16 (m, 2H), 7.06-7.03 (m, 1H), 5.58 (s, 1H), 633 

2.63 (dd, J1 = 17.4 Hz, J2 = 16.2 Hz, 2H), 2.34-2.32 (m, 2H), 1.06 (s, 3H), 0.88 (s, 3H); 
13

C NMR 634 

(151 MHz, DMSO-d6, δ ppm): 196.31, 164.25, 147.64, 145.33, 131.55, 131.11, 129.55, 129.00, 635 

128.60, 128.59, 127.60, 126.66, 125.43, 123.73, 117.77, 117.62, 113.70, 50.60, 40.73, 34.59, 636 

32.36, 29.30, 26.69; mp (
o
C): 151-153. 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 
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 653 

Scheme 1 Synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones using D-xylonic acid as both a 654 

catalyst and a green reaction medium. 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 
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 682 

Scheme 2 D-xylonic acid catalyzed for the synthesis of 5-phenyl-1(4-methoxyphenyl)- 683 

3[(4-methoxyphenyl)-amino]-1H-pyrrol-2(5H)-one. 684 

 685 

 686 

687 

Page 25 of 39 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t



26 

 

 688 

Scheme 3 D-xylonic acid catalyzed for the synthesis of 12-phenyl-9,9-dimethyl-8,9,10,12 689 

-tetrahydrobenzo[a]xanthen-11-one. 690 

 691 
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Scheme 4 The Knoevenagel mechanism for the Biginelli reaction. 694 

695 
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Scheme 5 The enamine-based mechanism for the Biginelli reaction. 697 

698 
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Scheme 6 The iminium mechanism for the Biginelli reaction. 700 
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Scheme 7 A plausible mechanism of D-xylonic acid-catalyzed three -component Biginelli 704 

condensation reaction. 705 
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Table 1. Optimizations of reaction time and the stoichiometric ratio of the reactants for the 

synthesis of 5a
 
catalyzed by D-xylonic acid.

a
 

CHO
OEt

O O

N
H

NH

O

EtO

O

D-xylonic acid

H2N NH2

O

 

Entry Time (h) Ratio
b
 Yield

c
 (%) 

1 2 1:1:1 64 

2 3 1:1:1 67 

3 4 1:1:1 69 

4 5 1:1:1 74 

5 6 1:1:1 71 

6 5 1:1:1.5 81 

7 5 1:1:2 82 

8 5 1:1.2:1.5 87 

9 5 1:1.5:1.5 86 
a.
Experimental condition: Various stoichiometric of the reactants at 100 

o
C for various reaction 

times in the presence of D-xylonic acid (6.5 mol% to all of the reactants). 
b 
The ratio order of reactants is benzaldehyde to ethyl acetoacetate to urea (5 mmol benzaldehyde, 

1 equiv). 
c
 Isolated yields. 
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Table 2. Effects of reaction temperature and the dosage of D-xylonic acid
 
on the synthesis of 

5a. 
a
 

CHO
OEt

O O

N
H

NH

O

EtO

O

D-xylonic acid

H2N NH2

O

 

Entry Temperature (
o
C) Catalyst (mol%) Yield

 b 
(%) 

1 60 6.5 36 

2 70 6.5 50 

3 80 6.5 75 

4 90 6.5 83 

5 100 6.5 87 

6 110 6.5 85 

7 120 6.5 84 

8 100 1.6 83 

9 100 3.3 84 

10 100 9.8 85 

11 100 13.0 84 

12 100 16.0 83 
a 

Benzaldehyde, ethyl acetoacetate, and urea in equimolar ratio (1:1.2:1.5) at various reaction 

temperatures for 5 h in the presence of D-xylonic acid. 
b
 Isolated yields. 
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Table 3. Various catalysts for the synthesis of 5a in their own appropriate reaction medium. 

 

Entry Catalyst
a
 Solvent Time (h) Yield (%) Reference 

1 D-xylonic acid D-xylonic acid 5 87 This work 

2 PPF-SO3H
b
 ethanol 8 81 34 

3 Fe3O4@mesoporous 

SBA-15 

ethanol 6 85 41 

4 BSA
c
 ethanol 8 83 31 

5 IBX
d
 water 2.5 90 35b 

6 DSA
e
 water 2.4 91 35a 

7 Cu@PMO-IL
f
 solvent-free 0.83 97 42 

a 
The specific information of catalysts was shown in the corresponding papers. 

b 
PPF-SO3H: Sulfonic acid-functionalized polypropylene fiber. 

c
 BSA: Bovine serum albumin. 

d
 IBX: Iodoxy benzoic acid. 

e
 DSA: Dodecyl sulfonic acid. 

f 
Cu@PMO-IL: Ionic liquid-based ordered mesoporous organosilica-supported copper. 
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Table 4. Three-component reaction catalyzed by D-xylonic acid in various solvents.
a
 

 

Entry Solvent Temperature (
o
C) Time (h)

b
 Yield (%) 

1 D-xylonic acid 100 5 87 

2 EtOH 78 5 62 

3 Toluene 110 5 66 

4 CH2Cl2 60 5 32 

5 Water  100 5 57 
a 
Reaction condition: 5 mmol aldehyde, 6 mmol 1,3-dicarbonyl compound and 7.5 mmol urea or 

thiourea, 6.5 mol% (to all of the reactants) D-xylonic acid, 5 h. 
b 
Isolated yields. 
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Table 5. Synthesis of dihydropyrimidin-2(H)-ones and thiones catalyzed by D-xylonic acid at 

100
 o
C .

a
 

 

Entry R R
1
 X Product 5 Yield (%, 

b/c
) 

 

 

1 

 

 

C6H5 

 

 

OEt 

 

 

O 

N
H

NH

O

EtO

O

5a  

 

 

87/97 

 

 

 

2 

 

 

 

4-HO-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

87/95 

 

 

 

3 

 

 

 

4-NO2-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

84/99 

 

 

4 

 

 

C6H5 

 

 

OEt 

 

 

S 

 

 

 

76/88 

 

 

 

5 

 

 

 

4-MeO-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

81/91 

 

 

6 

 

 

C6H5 

 

 

OMe 

 

 

O 

 

 

 

83/92 
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7 

 

 

 

4-MeO-C6H4 

 

 

 

OMe 

 

 

 

O 

 

 

 

 

88/99 

 

 

 

8 

 

 

 

4-MeO-C6H4 

 

 

 

OEt 

 

 

 

S 

 

 

 

 

65/83 

 

 

9 

 

 

C6H5 

 

 

OMe 

 

 

S 

N
H

NH

S

MeO

O

5i  

 

 

83/92 

 

 

 

10 

 

 

 

4-HO-C6H4 

 

 

 

OMe 

 

 

 

S 

 

 

 

 

84/96 

 

 

 

11 

 

 

 

4-Me-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

81/90 

 

 

 

12 

 

 

 

4-Me-C6H4 

 

 

 

OMe 

 

 

 

O 

 

 

 

 

81/93 

 

 

 

13 

 

 

 

3-MeO-4-HO-C6H3 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

86/95 
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14 

 

 

 

4-Cl-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

89/99 

 

 

 

15 

 

 

 

4-Cl-C6H4 

 

 

 

OMe 

 

 

 

O 

 

 

 

 

90/98 

 

 

 

16 

 

 

 

4-Br-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

92/99 

 

 

 

17 

 

 

 

4-Br-C6H4 

 

 

 

OMe 

 

 

 

O 

N
H

NH

O

MeO

O

Br

5q  

 

 

 

93/99 

 

 

 

18 

 

 

 

4-F-C6H4 

 

 

 

OMe 

 

 

 

O 

N
H

NH

O

MeO

O

F

5r  

 

 

 

77/90 

 

 

 

19 

 

 

 

4-F-C6H4 

 

 

 

OEt 

 

 

 

O 

 

 

 

 

80/91 

 

 

20 

 

 

3-MeO-C6H4 

 

 

OEt 

 

 

O 

 

 

 

75/96 
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21 

 

 

 

4-NO2-C6H4 

 

 

 

OMe 

 

 

 

O 

 

 

 

 

81/97 

 

22 

 

CH3 

 

OEt 

 

O 

 

 

37/75 

 

23 

 

CH3CH2 

 

OEt 

 

O 

 

 

38/71 

 

24 

 

CH3(CH2)2 

 

OEt 

 

O 

 

 

49/75 

 

25 

 

CH3(CH2)6 

 

OEt 

 

O 

 

 

49/75 

 

 

26 

 

 

CH3(CH2)9 

 

 

OEt 

 

 

O 

 

 

 

23/67 

 

 

27 

 

 

C6H5 

 

 

Me 

 

 

O 

 

 

 

59/92 

 

 

 

28 

 

 

 

4-NO2-C6H4 

 

 

 

Me 

 

 

 

 

O 

 

 

 

 

74/98 

a 
Reaction condition: 5 mmol Aldehyde, 6 mmol 1, 3-dicarbonyl compound and 7.5 mmol urea or 

thiourea, 6.5 mol% (to all of the reactants) D-xylonic acid at 100 
o
C for 5 h. 

b 
Isolated yields: the yields of products with recrystallization. 

c
 Isolated yields: crude. 
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Graphical Abstract 

  

D-xylonic acid was used as both a biocatalyst and a solvent for the three-component reaction. 

Page 39 of 39 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t


