This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
On the development of a facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nano-graphite systems

Lorenza Gardella, Davide Furaro, Maurizio Galimberti and Orietta Monticelli

A method to prepare composite systems based on polylactide and a high surface area nano-graphite is developed, consisting in the application of ionic liquids as dispersing/exfoliating agents for the nanofiller.
On the development of a facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area graphite systems

Lorenza Gardella, Davide Furfaro, Maurizio Galimberti and Orietta Monticelli

In this work, a novel method to prepare composite systems based on polylactide (PLA) and a high surface area nano-graphite (HSAG) is developed, consisting in the application of ionic liquids (ILs) as dispersing/exfoliating agents for the nanofiller. Indeed, the proposed approach is easy as well as with low environmental impact, involving neither the use of co-solvents nor the preliminary oxidation of graphite. As a preparatory screening, systems based on either poly(L-lactide) (PLLA), or an equimolar mixture of poly(L-lactide) (PLLA) and poly(D-lactide) PDLA, and ionic liquids are prepared by melt-blending the polymer matrices with different kinds and amounts of imidazolium-type ILs. Among the tested ILs, 1-butyl-3-methylimidazoliumhexa-fluorophosphate ([bmim][PF$_6$]) shows the highest solubility and the lowest tendency to decompose the polymer matrix during the processing. DSC and TGA measurements highlight that the above IL induces a slightly plasticizing effect on PLLA, with a limited – of about 20 °C for the sample with the highest amount of [bmim][PF$_6$] – decrease of the onset degradation temperature. As evidenced by FE-SEM measurements, the chosen IL features an high capability, sonication-assisted, of dispersing/exfoliating the nano-graphite, thus allowing obtaining a system containing 2 % by mass of the nanofiller, organized in aggregates with an average dimension of 300 nm and composed of few layers. Conversely to the direct insertion of the HSAG into the polymer matrix (which produces micrometer-sized aggregates) when it is the beforehand-prepared [bmim][PF$_6$]/HSAG system to be incorporated, a submicrometric dispersion of the nanofiller is obtained. The presence of the finely dispersed nanofiller has a nucleating effect on PLLA crystallization, significantly increasing the crystal nucleation density. Moreover, it is of utmost relevance that, in the case of the stereocomplex-PLA-based systems, the HSAG promotes the exclusive formation of stereocomplex crystals over homocrystals.

Introduction

Poly(lactide) (PLA) is one of the most promising bio-based (the monomer can be derived from renewable sources), biodegradable and biocompatible polymers for various end-use applications, it exhibiting properties comparable to those of the traditional oil-based thermoplastics. Unfortunately, its poor thermal processability, low crystallization rate and inherent brittleness, together with hydrophobicity and lack of reactive functional groups along the polymer backbone, constitute a major limitation for its use in both industrial and biomedical fields. As a consequence, considerable research effort has been carried out over the last decades to improve the PLA performances and make it competitive with the traditional, consumable polymers. These attempts mainly include addition of plasticizers and/or nucleating agents, blending and reactive blending with other polymers, copolymerization and incorporation of fillers/nanofillers. In particular, concerning the development of PLA nanocomposites based on graphene/graphite, which is the object of our study, the addition of the carbon nanofiller was found to improve the crystallization rate of the polymer, it acting as nucleating agent. Moreover, as demonstrated by Pinto et al. PLAs/graphene nanocomposites showed improved mechanical and gas barrier properties with respect to the neat polymer matrix. The dispersion of the nanofiller in PLA was generally carried out by using the solution-mixing approach. Such method implies the preliminary dispersion of the layered carbon filler in a solvent able to promote exfoliation and to disperse the graphene layers as well as to solubilize the polymer. Furthermore, in order to promote specific interactions of the nanofiller with the polymer, graphene oxide (GO), which contains hydroxyl and epoxy groups on the basal planes and carboxy groups on the edges, was used. The use of graphene oxide requires the oxidation of graphite, typically performed by using strong acids and oxidating agents, thus achieving the extensive modification of the carbon atoms hybridization. Hence, to restore sp2 based graphene layers, which is fundamental for the electrical and thermal conductivity, subsequent reduction of GO has to be performed. However, it is recognized that the complete reduction of GO can be hardly achieved. Such top-down procedure...
thus leads to graphene/graphitic nanofillers with a, to some extent, damaged structure.20

In spite of the significant results (in terms of improvement of polymer properties) obtained by applying the described approaches, for preparing PLA-based composites keeping the benefits connected with the bio-based nature of the polymer, it would be highly desirable to use methods and/or materials with a low environmental impact, besides using a graphitic nanofiller with the sp² hybridization of the carbon atoms preserved. Recently, ionic liquids (ILs), have been proposed as "green" solvents.21,22 Although, these compounds are not always green, they can be considered low environmental impact molecules. In the polymer field, ionic liquids have been mainly used as polymerization media.23 The interest in utilizing ionic liquids not only as solvents but also as initiators,24 catalyst25 and additives26-33 has increased over the last years. In particular, imidazolium based ionic liquids were found to be efficient plasticizers for poly(methyl methacrylate) (PMMA), prepared by in situ polymerization in the ionic liquid medium.26,27 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) was applied also by Xing et al.28 to modify the properties of poly(vinylidene fluoride) (PVDF). The prepared PVDF/[bmim][PF₆] blends were found to exhibit excellent mechanical performances with significantly increased ductility and good optical transmittance. Ionic liquids, based on ammonium, imidazolium and phosphonium were studied as plasticizers also for poly(vinyl chloride) (PVC).29

More recently, 1-butyl-3-methylimidazolium hexafluorophosphate, incorporated into poly(ethylene oxide) by solution casting, was shown to slow down the melt crystallization of the polymer and the spherulitic growth rate.30 As far as the combination of ILs with PLA is concerned, only few attempts have been reported so far, mainly regarding phosphonium-based ionic liquids.31-33 A part from the above described applications in polymer science, ionic liquids were found also to be effective stabilizing agents for carbon nanotubes34,35 and, more recently, they were used to disperse graphite/graphene.36-38 Zhou et al.36 obtained a uniform dispersion of graphene sheets by applying a multi-step procedure, which consisted in a preliminary dispersion of graphite oxide (GO) in water, followed by the addition of an IL polymer (PIL) [poly(1-vinyl-3-butylimidazolium chloride)], and finally GO reduction. PIL/graphene was mixed with [bmim][PF₆] and the resulting system was found to hold a higher conductivity than the pure ionic liquid. A similar procedure was applied by the same authors to prepare graphene nanosheets/polyaniline composite.17 Indeed, the gels formed by ILs and graphene have been studied as potential electrolytes for dye sensitized solar cells by Ahmad et al.38

Recently, Zhao et al.39 highlighted also the mechanism by which the π-electron-rich carbon nanomaterials, such as graphene, can be dispersed in ionic liquids. Although the above studies have demonstrated the potentiality of ILs, the methods applied to disperse graphite/graphene in ILs are generally based on GO and on the use of co-solvents or co-dispersing agents. Clearly, the development of easier methods, simultaneously characterized by a low environmental impact, might allow a more wide use of ILs in this field.

In the present study, PLA-based composites were prepared through the simple dispersion of a nanosized graphite in ILs, followed by melt blending the graphite/ILs system with poly(L-lactide) PLLA or with the PLLA/PDLA pair (sc-PLA). Nanosized graphite was selected with high surface area (HSAG), higher than 300 m²/g, a low number of stacked graphene layers and a high shape anisotropy.40 Such method does not require either the chemical modification of the graphitic nanofiller or the use of solvents or co-dispersing agents. In particular, the use of ILs in the preparation of PLA-based composite systems, is characterized by several advantages: i) the "green" nature of ILs, ii) the known capability of ILs to disperse/exfoliate graphite, iii) the possible involvement of ILs in the modification of PLA properties.

The morphology of the composites was characterized through scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy analysis (EDS) and the thermal properties were studied, as a function of HSAG content, by means of differential scanning calorimetry (DSC).

Experimental

Materials.

Poly(L-lactide) (PLLA) is a commercial product from Nature Works Co. Ltd. U.S.A. (2002D, Mn = 100.000 g/mol) with a residual monomer content less than 0.3 % by mass. For the preparation of composites based on stereocomplex PLA (sc-PLA), poly(L-lactide) (PLLA), PLLA 1010 Synterra (average molecular weight 1·10⁶), and poly(D-lactide) (PDLA), PDLA 1010 Synterra (average molecular weight 1·10⁶), purchased from Purac (The Netherland) in pellet form, were used as received. The high surface area nano-graphite (HSAG) powder, TC-307 from Asbury, is an ultra-fine powder with a nominal BET surface area of 350 m²/g, and particle size distribution from 0.20 μm to 20 μm. Graphite TC-307 from Asbury was used as received.

The following ILs, all purchased from Sigma-Aldrich, were used as received: 1-butyl-3-methylimidazolium iodide ([bmim][I]), 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and 1-butyl-3-methylimidazoliumhexafluorophosphate ([bmim][PF₆]).

Preparation of PLLA/ILs, PLLA/PDLA/ILs (sc-PLA/ILs), PLLA/ILs/HSAG and PLLA/PDLA/ILs/HSAG (sc-PLA/ILs/HSAG) systems.

Before accomplishing the preparation of the PLLA/ILs systems, the polymer was vacuum dried overnight at 40°C. As shown in Table 1, different amounts of ILs were added to the polymer matrix. Indeed, the ionic liquid and the polymer were charged into a glass reactor, namely a laboratory internal mixer provided with a mechanical stirrer (Heidolph, type RZR1), which was connected to a vacuum line and evacuated for 15 min at room temperature, followed by argon purging for 5 minutes. The above operations were repeated at least three times, to be sure to avoid humidity to come in contact with the reagents.
Table 1. Characteristics of the prepared samples

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Type of polymer</th>
<th>Type of ILs</th>
<th>HSAG concentration (wt.%)</th>
<th>ILs concentration (wt.%)</th>
<th>ILs solubility</th>
<th>δM° (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLLA/2[bmim][I]</td>
<td>PLLA</td>
<td>[bmim][I]</td>
<td>-</td>
<td>2</td>
<td>+</td>
<td>60</td>
</tr>
<tr>
<td>PLLA/5[bmim][I]</td>
<td>PLLA</td>
<td>[bmim][I]</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>PLLA/2[bmim][Cl]</td>
<td>PLLA</td>
<td>[bmim][Cl]</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>PLLA/2[bmim][PF₆₆]</td>
<td>PLLA</td>
<td>[bmim][PF₆₆]</td>
<td>-</td>
<td>2</td>
<td>+</td>
<td>20</td>
</tr>
<tr>
<td>PLLA/5[bmim][PF₆₆]</td>
<td>PLLA</td>
<td>[bmim][PF₆₆]</td>
<td>5</td>
<td>5</td>
<td>+</td>
<td>23</td>
</tr>
<tr>
<td>PLLA/10[bmim][PF₆₆]</td>
<td>PLLA</td>
<td>[bmim][PF₆₆]</td>
<td>-</td>
<td>10</td>
<td>±</td>
<td>23</td>
</tr>
<tr>
<td>PLLA/2[bmim][PF₆₆]/0.04HSAG</td>
<td>PLLA</td>
<td>[bmim][PF₆₆]</td>
<td>0.04</td>
<td>2</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td>PLLA/5[bmim][PF₆₆]/0.1HSAG</td>
<td>PLLA</td>
<td>[bmim][PF₆₆]</td>
<td>0.1</td>
<td>5</td>
<td>+</td>
<td>23</td>
</tr>
<tr>
<td>sc-PLA/2[bmim][PF₆₆]</td>
<td>PLAG/PDLA</td>
<td>[bmim][PF₆₆]</td>
<td>-</td>
<td>2</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>sc-PLA/5[bmim][PF₆₆]</td>
<td>PLAG/PDLA</td>
<td>[bmim][PF₆₆]</td>
<td>-</td>
<td>5</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>sc-PLA/10[bmim][PF₆₆]</td>
<td>PLAG/PDLA</td>
<td>[bmim][PF₆₆]</td>
<td>-</td>
<td>10</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>sc-PLA/2[bmim][PF₆₆]/0.04HSAG</td>
<td>PLAG/PDLA</td>
<td>[bmim][PF₆₆]</td>
<td>0.04</td>
<td>2</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>sc-PLA/5[bmim][PF₆₆]/0.1HSAG</td>
<td>PLAG/PDLA</td>
<td>[bmim][PF₆₆]</td>
<td>0.1</td>
<td>5</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) + completely soluble, ± partially soluble, - immiscible
(b) percentage of molecular mass variation compared to the neat PLLA that is (M_system/M_neat_PLLA)×100

The reactor was then placed in an aluminum block oven at 180 °C and, under inert atmosphere, the polymer system was mixed for 10 minutes at 100 rpm. In the case of the systems based on stereocomplex PLA (sc-PLA), equal amounts of PLLA and PDLA were mixed with the ILs at 230 °C for 10 min at 100 rpm.

For the systems containing the HSAG, the nanofiller, whose concentration was fixed at 2 % by mass, was previously dispersed in the IL by using a sonic bath (Model Ney Ultrasonic) at 80 °C for 120 minutes. The composites were prepared by mixing PLLA or sc-PLA with the as-prepared ILs/HSAG systems, using the same conditions as for the neat PLA/ILs system. Moreover, a sample was prepared by adding the HSAG directly into PLLA and mixed for 10 minutes at 100 rpm.

Characterization

The variation of PLA molecular mass during the processing was evaluated by measuring the reduced viscosity of chloroform-based solutions containing 1 wt.% of the polymer.

A Zeiss Supra 40 VP field emission scanning electron microscope equipped with a backscattered electron detector was used to examine the prepared system morphologies. The specimens were submerged in liquid nitrogen for 30 min and fractured cryogenically. All samples were thinly sputter-coated with carbon using a Polaron E5100 sputter coater.

Differential scanning calorimetric analysis was performed under a continuous nitrogen purge on a Mettler calorimetric apparatus, model DSC1 STAR® System. Both calibrations of heat flow and temperature were based on a run in which one standard sample (indium) was heated through its melting point. The samples, having a mass between 2.5 and 6 mg, were heated from room temperature to 200 °C (250 °C for sc-PLA-based systems), then cooled down to room temperature and finally heated to 200 °C (250 °C for sc-PLA-based systems) again. A scanning rate of 10°C/min was used both on heating and cooling.

Thermal gravimetrical analysis (TGA) was performed with a Star® System Mettler thermobalance under a flow of nitrogen of 80 ml/min. The weight loss of the samples (having initial masses of ca. 10 mg) was measured from room temperature to 500 °C at a heating rate of 10 °C/min.

The development of the morphology during melt-crystallization was followed by means of a Leika DMLP polarized optical microscope equipped with a 20x objective lens. The microscope was coupled with a Linkam CSS450 hot-stage to enable a careful control of the thermal history while acquiring optical micrographs with a dedicated digital video-camera. The samples were initially melted and compressed in films of approximately 20 µm thickness by gently squeezing them between microscope glasses. The following temperature protocol was adopted: the samples were annealed for two minutes at 200 °C and then cooled down to 125 °C at 10 °C/min, at which temperature they were isothermally crystallized and the micrographs taken with a frequency of about 30 s.
Results and discussion

The work was preliminary focused on “neat” systems based on PLLA, or equimolar mixture of PLLA and PDLA (sc-PLA), and ionic liquids (ILs), prepared by melt-mixing the polymer matrices with different kind of imidazolium-type ILs (Table 1). The behavior of the imidazolium salt was found to be strongly dependent on the anion. Both [bmim][I] and [bmim][Cl] were characterized by a scarce solubility, with the occurrence of phase separation for a concentration of the IL as low as 2-5 % by mass, whereas [bmim][PF$_6$] was found to be miscible up to about 10 % by mass. Moreover, the decrease of the molecular mass of the polymer was relevant in the presence of [bmim][Cl] and [bmim][I] (up to about 80 %), but much smaller (about 20 %) in the case of [bmim][PF$_6$], in all the explored concentration range. In the literature, the effect of the anionic counterpart of the ionic liquid was documented for other polymers, such as poly(vinyl chloride) (PVC). It was also reported that ionic liquids can catalyze degradation reactions of polymers and, in particular, the hydrolytic degradation of PLA, which seems to be our case. As such, because of its highest solubility in the polymer matrix as well as minor degradative effects, [bmim][PF$_6$] was selected as the ionic liquid for the preparation of the PLA-based systems. Composites were prepared both in the absence and in the presence of a high surface area nano-graphite (HSAG), with the ionic liquid promoting exfoliation and dispersion of the HSAG, and their properties characterized.

The dispersion of the IL in the polymer was studied by SEM analysis. In Figure 1, the SEM micrograph of the surface of the sample PLLA/5[bmim][PF$_6$] is shown together with the EDS spectrum. In Figure 1a, the surface of the sample does not show any visible domains on a (sub)micrometric scale, while the concentration of both F and P elements, belonging to the IL, is constant throughout the surface of the sample. Analysis performed on a large number of samples allowed to observe an even dispersion of the mentioned elements, up to a content of the ionic liquid of about 5 wt.% by mass of the ionic liquid content. It is thus possible to derive that [bmim][PF$_6$] has a good solubility in the polymer melt up to this concentration.

The thermal properties of the PLLA/[bmim][PF$_6$] and sc-PLA/[bmim][PF$_6$] systems, as studied by means of DSC, were compared to those of the neat PLLA and sc-PLA. Tables 2 and 3 show the DSC results for PLLA- and sc-PLA-based systems, respectively. In the second heating scan, only the glass transition temperature (T_g) was observed at 63 °C in the case of the neat PLLA, whereas both cold crystallization and melting peaks were visible for the systems containing the IL. This different behavior can be ascribed to the increase of the polymer crystallinity as a consequence of the (slight) reduction of its molecular mass, which was discussed in this section and whose results are shown in Table 1. Nevertheless, in the samples containing the IL and characterized by a similar molecular mass, ΔH_{m} was found to increase by increasing the concentration of [bmim][PF$_6$]. Indeed, the degree of crystallinity (W_c), calculated on the basis of the melting enthalpy of a 100 % crystalline PLA ($\Delta H_m = 93 \text{ J/g}^{41}$), turned out to be 2% and 3% for PLLA/2[bmim][PF$_6$] and PLLA/5[bmim][PF$_6$], respectively. Indeed, it is possible to infer a nucleating effect of IL, being already reported for other polymer matrices, such as poly(ethylene oxide). Moreover, it is worth noting that the T_g of the polymer tends to slightly decrease on increasing the IL content, thus indicating a (small) plasticizing effect of [bmim][PF$_6$]. A decrease of T_g was already reported for other polymer/IL systems. 6-28 The extent of the decrease depending on the solubility of the ionic liquid in the amorphous portion of the polymer, which, in the case of our PLA-based system, seems to be limited.

The study of the thermal behavior of the prepared systems was completed by accomplishing TGA analysis. The TGA results show that the initial degradation temperature (T_{onset}) as well as the temperature related to the maximum degradation rate (T_{max}) diminish by increasing the concentration of IL in the polymer. The latter decrease turns out to be limited, of about 20 °C for the sample containing the highest amount of [bmim][PF$_6$]. It is worth underlining that a moderate enhancement of the PLA degradation rate is interesting for some specific applications, as the acceleration of the hydrolytic degradation is particularly important for products-based PLA used in biomedical application or to be composted or landfilled. In the literature, the effect of IL on the polymer thermal stability was evaluated also for other matrices, such as PMMA and PVC. While for the latter polymer a decrease of the degradation temperature, caused by the introduction of IL, was reported, in the case of PMMA an increase of the thermal stability in the [bmim][PF$_6$]-based sample was found. Indeed, in the case of our PLA/[bmim][PF$_6$] systems, it is possible to hypothesize, as previously reported, the catalytic effect of the acidity of the IL and/or of the compounds resulting from the decomposition of the IL on the degradation of the polymer and the influence of water present in the ionic liquid which can promote the breakage of the ester bonds of the PLA.

These findings clearly demonstrate that it is not possible to draw a general rule, but that the effect of the IL depends on both the type of ionic liquid and on the chemical structure of the polymer matrix. When PLLA is blended with PDLA, the formation of the stereocomplex form (whose crystallization rate is much higher than that of the two single polymers) enables the system to crystallize directly on cooling from the melt. However, on subsequent heating, two endothermic peaks appear, a low-temperature one (at about 170 °C, ascribable to the melting of homo-crystallites), together with the high-temperature one relative to the melting of the stereocomplex (at about 220 °C).
Table 2. Thermal properties of PLLA and PLLA/[bmim][PF$_6$] systems (second heating scan)

<table>
<thead>
<tr>
<th>Sample name</th>
<th>T_g(°C)</th>
<th>T_c(°C)</th>
<th>ΔH_{cc} (J g$^{-1}$)</th>
<th>T_{m} (°C)</th>
<th>ΔH_{m} (J g$^{-1}$)</th>
<th>T_{onset} (°C)</th>
<th>T_{max} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLLA</td>
<td>63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>344</td>
<td>365</td>
</tr>
<tr>
<td>PLLA/2[bmim][PF$_6$]</td>
<td>60</td>
<td>130</td>
<td>1.7</td>
<td>153</td>
<td>1.8</td>
<td>337</td>
<td>364</td>
</tr>
<tr>
<td>PLLA/5[bmim][PF$_6$]</td>
<td>57</td>
<td>129</td>
<td>2.7</td>
<td>152</td>
<td>2.9</td>
<td>320</td>
<td>354</td>
</tr>
<tr>
<td>PLLA/2[bmim][PF$_6$/0.04HSAG]</td>
<td>59</td>
<td>130</td>
<td>10.0</td>
<td>153</td>
<td>9.9</td>
<td>338</td>
<td>365</td>
</tr>
<tr>
<td>PLLA/5[bmim][PF$_6$/0.1HSAG]</td>
<td>58</td>
<td>128</td>
<td>19.0</td>
<td>152</td>
<td>18.6</td>
<td>320</td>
<td>355</td>
</tr>
<tr>
<td>PLLA/0.1HSAG$^{(a)}$</td>
<td>63</td>
<td>129</td>
<td>5.7</td>
<td>153</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$^{(a)}$Sample prepared by adding directly the HSAG in PLLA

$^{(b)}$Initial degradation temperature

Table 3. Thermal properties of sc-PLA and sc-PLA/[bmim][PF$_6$] systems (second heating scan)

<table>
<thead>
<tr>
<th>Sample name</th>
<th>T_g(°C)</th>
<th>T_c(°C)</th>
<th>ΔH_{cc} (J g$^{-1}$)</th>
<th>T_{m} homo (°C)</th>
<th>ΔH_{m} homo (J g$^{-1}$)</th>
<th>T_{m} stereo (°C)</th>
<th>ΔH_{m} stereo (J g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc-PLA</td>
<td>63</td>
<td>125</td>
<td>37.1</td>
<td>173</td>
<td>25.6</td>
<td>223</td>
<td>37.5</td>
</tr>
<tr>
<td>sc-PLA/2[bmim][PF$_6$]</td>
<td>57</td>
<td>130</td>
<td>59.3</td>
<td>165</td>
<td>9.2</td>
<td>220</td>
<td>59.3</td>
</tr>
<tr>
<td>sc-PLA/5[bmim][PF$_6$]</td>
<td>57</td>
<td>129</td>
<td>58.0</td>
<td>164</td>
<td>4.5</td>
<td>216</td>
<td>55.7</td>
</tr>
<tr>
<td>sc-PLA/2[bmim][PF$_6$/0.04G]</td>
<td>-</td>
<td>151</td>
<td>47.0</td>
<td>-</td>
<td>-</td>
<td>220</td>
<td>52.0</td>
</tr>
<tr>
<td>sc-PLA/5[bmim][PF$_6$/0.1G]</td>
<td>-</td>
<td>156</td>
<td>64.0</td>
<td>-</td>
<td>-</td>
<td>220</td>
<td>65.7</td>
</tr>
</tbody>
</table>

As in the case of the PLLA-based systems, the IL causes an enhancement of the crystallization rate, the crystallization peak being shifted towards higher temperature and the enthalpy of crystallization increasing sensibly. Moreover, the IL seems to favor the formation of the stereocomplex over that of the homo-crystals, phenomenon which might to be related to the effect of IL on the molecular weight of the system -the viscosity measurements were not carried out for the scarce solubility of sc-PLA- as well as on the nucleation of the system.

Preparation and characterization of PLLA/[bmim][PF$_6$]/HSAG and sc-PLA/[bmim][PF$_6$]/HSAG systems.

The preparation of the systems based on the HSAG consisted of a preliminary dispersion of the nanofiller in [bmim][PF$_6$], through a sonication treatment. As already mentioned, the ILs, and in particular [bmim][PF$_6$], were found to be capable of promoting the dispersion/exfoliation of graphite. Thus, in our work, we did not focus only on the specific effect of the IL on the properties of the PLA-based materials, but we investigated also its potential as a dispersing agent for the HSAG. As shown in Figure 2, the sonication of [bmim][PF$_6$], containing 2 % by mass of the HSAG allowed to obtain a stable dispersion (Figure 2a), characterized by aggregates with an average dimension of 300 nm (Figure 2b) and composed of few layers (Figure 2c). The addition of the [bmim][PF$_6$]/HSAG system into the polymer matrix, by melt-blending, did not produce any modification of the morphology of the fractured polymer surface, thus highlighting the sub-micrometric dispersion of the nanofiller. On the contrary, when the HSAG was directly added to the polymer without performing the pre-dispersion in the ionic liquid, aggregates of 10-20 μm size were formed (results not shown). These findings demonstrate the efficacy of the ionic liquid as dispersing agent for the nano-graphite.
The influence of the HSAG on the thermal properties of PLLA and sc-PLA was evaluated by means of DSC. The DSC results of the samples based on PLLA, shown in Table 2, demonstrate that the incorporation of the [bmim][PF₆] dispersion has no discernible effect on the \(T_g \), \(T_c \), and \(T_m \) of the polymer systems as compared to those containing only the IL. However, \(\Delta H_c \) and \(\Delta H_m \) significantly increase in the samples containing the nano-graphite. Indeed, \(W_c \) is ca. 2 % and 3 % for PLLA/2[bmim][PF₆] and PLLA/5[bmim][PF₆]₅, increasing to 10 % and 20 % for PLLA/2[bmim][PF₆]/0.04G and PLLA/5[bmim][PF₆]/0.1HSAG, respectively. It is worth underlining that the increase of \(W_c \) seems to be related not only to the amount of the HSAG, but also to its dispersion in the polymer matrix. Indeed, the sample based on the direct addition of the nanofiller, PLLA/0.1G, has a lower \(\Delta H_m \) than the system in which the nano-graphite was introduced by means of the IL.

In order to elucidate the peculiar behaviour of the HSAG-based systems, “visual” measurements were carried out by means of a hot stage coupled to a polarized optical microscope. By comparing the micrographs, taken during isothermal crystallization at 125 °C, of PLLA/5[bmim][PF₆] with that of PLLA/5[bmim][PF₆]/0.1HSAG, it can be seen clearly that the nucleation density (i.e. the number of spherulites per unit volume) is much higher in the sample containing the HSAG, which evidences the nucleating action of the nano-graphite (Figure 3).

As already mentioned, the nucleating effect of graphene and, in particular, of GO, on the crystallization of PLA has been reported in the literature, where the carbon nanofiller was used in concentration from 0.5 to 2 wt.%. In the present study, the effect of the nano-graphite on the polymer nucleation was observed to be significant already at a concentration of 0.04 wt.% This difference can be ascribed to both the different degree of dispersion of the nanofiller and the concomitant action of the IL. Furthermore, the spherulitic growth rate (defined as the slope of the spherulite radii as a function of crystallization time) triplicates in the case of the sample containing the IL/HSAG. Indeed, the synergic action of the nano-graphite and the IL thus produces a strong enhancement of the polymer crystallizability, enabling the crystallization of our composite systems to be complete in a much shorter time than for the neat polymer.
Once again, our approach turns out to be an appealing, economic and environmentally friendly alternative to the above mentioned methods generally applied to prepare graphite-based materials, since neither co-solvents nor the oxidation of graphite were exploited in the preparation of our systems. Indeed, in the case of PLA, some specific high added value applications of the ILs/HSAG-based materials can be envisaged in areas where the high cost of ILs is justified, such as in the biomedical field or for the development of sensors.

As far as the thermal properties of the samples based on sc-PLA are concerned, DSC traces of both sc-PLA/2[bmmim][PF₆]/0.04HSAG and sc-PLA/5[bmmim][PF₆]/0.1HSAG systems show, together with a strong enhancement of the crystallization kinetics on cooling (to be imputed once again to the nucleating action of the nano-graphite), the exclusive presence of the endothermic peak characteristic of stereocomplex-PLA on heating, the melting peak corresponding to homo-crystals being completely absent. This peculiar effect of the HSAG, which is highly appealing from a factual point, was already reported for systems charged with hydrotalcite, where the enhanced crystallization of the stereocomplex promoted by the presence of the additive was found to suppress the detrimental formation of the homo-crystals.

Conclusions
In this work, it was assessed the specific effect of imidazolium type-ionic liquids (ILs) on the properties of both poly(L-lactide) (PLLA) and an equimolar mixture of PLLA and PDLA (sc-PLA), and their function as dispersing agents for a high surface area nano-graphite (HSAG) in the preparation of PLA/HSAG systems. Indeed, among the tested ILs, 1-butyl-3-methylimidazoliumhexa-fluorophosphate ([bmmim][PF₆]) showed the highest solubility, the lowest tendency to decompose the polymer matrix during the melting-blending process and a slightly plasticizing effect on PLLA. Moreover, [bmmim][PF₆] was characterized by an high capability of dispersing/exfoliating the nano-graphite, thus allowing obtaining a system containing 2 wt.% of the nanofiller, characterized by aggregates with an average dimension of 300 nm and composed of few layers. Conversely to the direct insertion of the HSAG to the polymer matrices, which produced micrometer-sized aggregates, in the case of use of [bmmim][PF₆]/HSAG system, a sub-micrometric dispersion was obtained. Thus, the applied approach turned out to be not only easy and highly advantageous in terms of the environmental impact, it involving neither the use of co-solvents nor the preliminary oxidation of the fillers, steps generally used in the classical methods for the preparation of graphite/graphene polymer systems. Finally, the presence of the finely dispersed nanofiller was found to behave as a nucleating agent for PLLA crystallization and, in the case of the sc-PLA-based systems, to promote the exclusively formation of stereocomplex crystals over homo-crystals.

Acknowledgements
We are grateful to the Italian Ministry of Education and University through the 2010-2011 PRIN project (Grant No. 2010XLMN3_005).

References