
Green Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Journal Name

RSCPublishing

COMMUNICATION

Cyclopentyl Methyl Ether-NH₄X: a Solvent/ Catalyst System for Low Impact Acetalization Reactions

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Ugo Azzena,^{a,*} Massimo Carraro,^a Ashenafi Damtew Mamuye,^{a,‡} Irene Murgia^a and Luisa Pisano^a, Giuseppe Zedde^a

Cyclopentyl methyl ether, a low impact ether forming a positive azeotrope with water, was successfully employed as a solvent in the synthesis of 1,3-dioxanes and 1,3-dioxolanes carried out under Dean-Stark conditions by the acetalization of aliphatic and aromatic aldehydes or ketones, employing ammonium salts as environmentally friendly acidic catalysts.

Acetals are a fundamental class of substrates in organic chemistry usually employed in the protection of carbonyl groups during multistep synthesis, ¹ as well as intermediates in the monoprotection of diols. ² Additionally, they found applications as fragrances ³ or profragrances ⁴ in everyday life. Typically, acetals are synthesized starting from aldehydes or ketones with alcohols or polyols under azeotropic distillation conditions in the presence of an acid catalyst. The system commonly employed uses toluene as a solvent and *p*-toluenesulfonic acid (*p*-TSA) as a catalyst, often in the presence of large excess of alcohol. Within this field, most green approaches concern the employment of heterogeneous acidic catalysts, due to their ease of separation and recovery from reaction mixtures. ⁵

Cyclopentyl methyl ether (CPME) is emerging as a green alternative to ethereal solvents such as tetrahydrofuran, dioxane and diethyl ether. This solvent, industrially produced via a 100% atom economical reaction, is characterized by low toxicity, high boiling point, resistance to peroxide formation, stability towards acids and bases, low heat of vaporization, and a narrow explosion range. Although a note of caution is due to its relatively low auto ignition temperature (180 °C), it forms a positive azeotrope with H₂O (bp 83 °C, azeotropic composition: CPME/H₂O = 83.7:16.3 w/w) thus resulting easy to recover and dry, due to its high hydrophobicity.⁶

These characteristics prompted us to evaluate its employment as an alternative to solvents with a higher environmental impact, such as toluene, ⁷ in reactions run under azeotropic distillation conditions, for instance the acetalization reaction.

We found it advantageous, from the green chemistry standpoint, to keep the excess of alcohols to a low level and to substitute *p*-toluenesulfonic acid (*p*-TSA) with inorganic solid acids, such as

ammonium salts. Indeed, compounds such as ammonium chloride, bromide and hydrogensulfate are cheap, easily available and relatively mild acids⁸ and, due to their smaller formula weight, give rise to a low amount of generated wastes. Additionally, it is worth noting that these salts do not need any kind of activation as required, for example, by other acidic solid catalysts such as zeolites or clays.

Table 1. Synthesis of dioxolane 3a.a

Entry	Diol (equiv)	Solvent	$\mathrm{NH_{4}X}$	3a (%) ^b
1	1.1	CPME	NH ₄ HSO ₄	90°
2	1.5	СРМЕ	NH ₄ HSO ₄	95
3	2.0	СРМЕ	NH ₄ HSO ₄	98
4	1.1	СРМЕ	NH ₄ Br	79 ^d
5	1.1	СРМЕ	NH ₄ Cl	65 ^d
6	1.1	Toluene	NH ₄ HSO ₄	80
7	1.1	2-MeTHF	NH ₄ HSO ₄	31

^aAll reactions were run at reflux during 6 h in the presence of the catalyst (3 mol % of 1a). ^bAs determined by ¹H-NMR analyses of crude reaction mixtures; no other product was detected besides 1a. ^cComparable results were obtained recycling 4 times the recovered catalyst. ^dComparable results were observed recycling twice the recovered catalyst.

Taking acetophenone, **1a**, as a model compound, we investigated its conversion into the corresponding 1,3-dioxolane, **3a**, by refluxing a 4M solution of the ketone with 1,2-ethandiol, **2a**, under Dean-Stark conditions in the presence of the acidic catalysts (3 mol% of **1a**). For comparison purposes, few reactions were run employing as a solvent

either toluene or an alternative low impact ether, i.e., 2-MeTHF, under otherwise identical reaction conditions (Table 1).

Scheme 1 Synthesis of acetals in CPME. Reaction conditions: 4M solution of **1** in CPME, 1.1 equiv of **2a-c** (unless otherwise indicated), 3 mol% of NH₄X (with respect to **1**), reflux (Dean-Stark conditions); NH₄X = NH₄Cl, NH₄Br or NH₄HSO₄; percentages represent conversion of the starting materials as determined by 1 H-NMR; no other product, besides starting material, was detected. a In the presence of 1.4 equiv of diol; b A comparable result was obtained recycling the recovered catalyst. c In the presence of 2.0 equiv of diol.

Journal Name COMMUNICATION

Green Chemistry

As expected, ammonium salts proved insoluble in the organic solvents, thus allowing both their recovery and a successive easy work up of the reaction mixtures. Indeed, after decantation of the catalyst, the resulting solution was neutralized over K₂CO₃, followed by evaporation of the solvent in vacuo (see Electronic Supplementary Information). Concerning reactions run in CPME, our results show that NH₄HSO₄, the most acidic between the chosen ammonium salts, resulted more effective than NH₄Br and NH₄Cl as a catalyst (Table 1, entry 1 vs. entries 4 and 5). A moderate increase in the amount of the diol (2.0 equivs of 2a) was sufficient to achieve an almost quantitative conversion of the starting material within the allotted reaction time (Table 1, entry 3). Additionally, NH₄HSO₄ was efficiently recycled 4 times (Table 1, entry 1), whilst both NH₄Br and NH₄Cl were recycled twice (Table 1, entries 4 and 5, respectively) without observing any decrease of their catalytic activities.

Page 3 of 5

Interestingly, no improvement was observed employing toluene as a solvent and NH_4HSO_4 as a catalyst (Table 1, entry 6); finally, a very low conversion of the starting material was observed running a similar reaction in 2-MeTHF (Table 1, entry 7), probably due to the relatively low boiling point of its azeotrope with H_2O .

The above described procedure was successfully extended to the synthesis of a series of 1,3-dioxolanes (including **3b**, a known fragrance, ¹¹ enantiomerically pure **3c**, and the biologically active compounds **3k** and **3la**¹²), 1,3-dioxanes (including **3e**, an intermediate in the synthesis of a monoprotected 1,3-propandiol, ¹³ and the biologically active compounds **3lb**¹²), 1,3-dimethylimidazolidines **4a**,**b** and the hexahydropyrimidine **4c**, as diagrammatically illustrated in Scheme 1.

Taken as a whole, our results show that the ammonium salts efficiently catalyzed the almost quantitative conversion of aliphatic as well as aromatic aldehydes, **1b-h**, into the corresponding dioxolanes and dioxanes, **3**, and aminals, **4**, in the presence of minor excesses of the required dinucleophiles (1.1 to 1.4 equivs), and similar results were obtained with ketones **1i** and **1j**.

As already observed with 1a, slightly lower reactivities were observed in the case of aromatic ketones 1k-m, as expected on the basis of their relatively low electrophilicities; indeed, up to 2.0 equivs of the diol and the employment of NH_4HSO_4 as a catalyst were necessary to drive their conversions up to $\geq 95\%$, as evidenced in the case of dioxolanes 3k-3la. ¹⁴

Besides what already reported in Table 1, the efficiency of NH_4HSO_4 as a catalyst in the acetalization of aromatic ketones is outlined in comparative experiments related to the synthesis of compound **3la** (Scheme 1).

Additionally, the recovery and reuse of the acidic catalysts was effectively applied to the synthesis of dioxolanes 3g (NH₄HSO₄) and 3j (NH₄Cl).

It is also interesting to observe that aminals **4a-c** were obtained with higher yields and shorter reaction times compared to those necessary to obtain the corresponding cyclic acetals **3e** and **3g**, respectively, likely due to the higher nucleophilicity of the nitrogen vs. oxygen dinucleophiles.

To further assess the usefulness of our protocol, few crude acetals synthesized as described above were further elaborated employing CPME as a solvent (or a co-solvent), as depicted in equations 3-5. Accordingly, the monoprotection of 1,3-propandiol as the corresponding 3-(4-methoxybenzyloxy)-1-propanol, **5a**, was efficiently realized by submitting crude acetal **3e** to reduction with DIBAL-H (equation 1); reduction of crude (4-carboxymethylphenyl)-1,3-dioxolane, **3f**, with LiAlH₄ afforded the corresponding benzyl alcohol, **5b**, in 70% overall yield (equation 2); finally, ring opening of crude α -brominated dioxolane **3m** was realized in 85% overall yield via a SET reduction run with 1,2-disodiotetraphenylethane¹⁵ (equation 3).

As the generation of peroxides is a major security concern for reactions run in ethereal solvents, we next investigated the stability of CPME towards the formation of peroxides under the above reported reaction conditions. To this end, we employed a commercially available kit (Quantofix®, measuring range 0.5-25 mg/L $\rm H_2O_2$) allowing a semi-quantitative evaluation of these dangerous by-products in non-aqueous solvents. According to the reported resistance of CPME to autoxidation, 16 we found it possible to run our reactions with the commercially available solvent (stabilized with 50 ppm of BHT) exposed to air through a CaCl2 tube, without observing any formation of peroxides.

Finally, it is worth mentioning that it was possible to realize an 85% mass recovery of CPME by submitting the solvent, collected by evaporation of reaction mixtures, to filtration over acidic alumina followed by drying over KOH and distillation (see Electronic Supplementary Information). From this point of view, it is worth mentioning that recovery of CPME by distillation is economically favourable due to its relatively low latent heat of vaporization. ^{6a}

Conclusions

As a conclusion, we were able to demonstrate the capability of CPME to promote the acetalization of aldehydes and ketones employing ammonium salts as acidic catalysts, thus

representing an efficient green alternative to toluene/p-TSA. Accordingly, our results disclose an environmentally sustainable approach to the synthesis of a particularly important class of organic compounds as well as an alternative approach to reactions run under Dean-Stark conditions. Additionally, besides underlying the possibility of an easy and efficient recovery of CPME, it is worth noting that the employment as acidic catalysts of low impact, highly economical, recyclable and non soluble ammonium salts allowed the set up of a particularly simple and efficient work up with a reduced production of wastes.

Acknowledgment

COMMUNICATION

Financial support from the Regione Autonoma della Sardegna, through the Legge Regionale 07/09/2007 (code CRP-59740), is gratefully acknowledged.

Notes and references

- 1. T. W. Green, P. G. M. Wuts, in *Protective Groups in Organic Synthesis*, Wiley, New York, 3rd edn., 1999, p. 297.
- 2. B. Bartel, R. Hunter, J. Org. Chem., 1993, 58, 6756.
- 3. H. Surburg and J. Panten, *Common Fragrance and Flavour Materials*, Wiley-VCH Weinheim, 5th edn., 2006, p. 12.
- A. Hermann, Profragrances and Properfumes, in The Chemistry and Biology of Volatiles, A. Hermann Ed., Wiley, Chichester, 2010, p. 333.
- See, for example: a) C. Gonzalez-Arellano, S. Deb, R. Luque, Catal. Sci. Technol., 2014, 4, 4242; b) B. Mallesham, P. Sudarsanam, G. Raju, B. M. Reddy, Green. Chem., 2013, 15, 478; c) J. Deutsch, A. Martin, H. Lieske, J. Catal., 2007, 245, 428; d) M. J. Climent, A. Corma, A. Velty, Appl. Catal. A: Chem., 2004, 263, 155, and references therein; e) S. Palaniappan, P. Narander, C. Saravanan, V. J. Rao, Synlett, 2003, 1793.
- For a review, see: a) K. Watanabe, N. Yamagiwa, Y. Torisawa, Org. Proc. Res. Dev., 2007, 11, 251; for recent examples, see: b) C. Gozlan, R. Lafon, N. Duguet, A. Redl, M. Lemaire, RSC Adv., 2014, 4, 50653; c), K. Skowerki, J. Biatecki, A. Tracz, T. K. Olzewski, Green Chem., 2014, 16, 1125; d) A. Mouret, L. Leclercq, A. Mühlbauer, V. Nardello-Rataj, Green Chem., 2014, 16, 269; e) V. Mallardo, R. Rizzi, F. C. Sassone, R. Mansueto, F. M. Perna, A. Salomone, V. Capriati, Chem. Commun., 2014, 50, 8655; f) M. Zhang, T. Jia, H. Yin, P. J. Carroll, E. J. Schelter, P. J. Walsh, Angew. Chem. Int. Ed., 2014, 53, 10755.
- 7. Positive azeotrope toluene/ H_2O : bp 80 °C, azeotropic composition: toluene/ H_2O = 79.8:20.2, w/w).
- 8. pKa (in H₂O): p-TSA = -2.58: http://www.epa.gov/hpv/pubs/summaries/ptolacid/c16597tc.htm; HSO₄ = 1.99 and NH₄ + 9.25: J. A. Dean, Lange's Handbook of Chemistry, McGraw-Hill New York, 15th edn., 1999, Table 8.7.
- Positive azeotrope 2-MeTHF/H₂O: bp 71 °C, azeotropic composition: 2-MeTHF/H₂O = 89.4:10.6, w/w); for recent applications of this biomass-derived solvent in organic chemistry, see: V. Pace, P. Hoyos, L. Castoldi, P. Dominguez de María, A. R. Alcantara, *ChemSusChem*, 2012, 5, 1369.

- 10. The employment of 3 mol% of p-TSA as an acidic catalyst afforded a comparable result, whilst the employment of catalytic amounts of zeolite ZSM-5 or molecular sieves (3 Å) led to poorer conversions.
- R. Chaudhuri, G. Puccetti, F. Marchio, Z. Lascu, Methods for stabilizing ingredients within cosmetics, personal care and household products, US2005/244349 A1, 2005.
- E. F. Morand, M. N. Iskander, C. E. Skene, Novel methods for the treatment of inflammatory deseases, WO2004/89927 A1, 2004
- See, for example: D. Hernández, K. B. Lindsay, L. Nielsen, T. Mittag, K., Bjerglund, S., Friis, R. Mose, T. Skrydstrup, *J. Org. Chem.*, 2010, 75, 3283.
- 14. Besides what already reported in Table 1, the efficiency of NH₄HSO₄ as a catalyst in the acetalization of aromatic ketones is outlined in comparative experiments related to the synthesis of compound **3la** (Scheme 1).
- U. Azzena, F. Kondrot, L. Pisano, M. Pittalis, Appl. Organometal. Chem., 2012, 26, 180, and references therein.
- H. Hoshino, K. Sakakibara, K. Watanabe, *Chem. Lett.*, 2008, 37, 774.

‡Current Address: Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, Vienna, Austria

Electronic Supplementary Information (ESI) available: General method, synthetic procedures, characterization data of all compounds including copies of ¹H and ¹³C NMR of previously not completely described compounds. See DOI: 10.1039/c000000x/

^a Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, 07100 – Sassari (Italy)

$$\begin{array}{c}
O \\
R
\end{array} + HO(CH_2)_nOH \xrightarrow{NH_4^+X^-} O \\
\hline
CPME
\end{array} + H_2O$$

$$n = 2, 3; m = 0, 1$$

Cyclopentyl methyl ether and ammonium salts provide an environmentally friendly reaction medium for the synthesis of acetals

65x30mm (300 x 300 DPI)