

Eucommia ulmoides extracts prevent the formation of advanced glycation end products

Journal:	Food & Function
Manuscript ID	FO-ART-12-2015-001563.R1
Article Type:	Paper
Date Submitted by the Author:	05-Mar-2016
Complete List of Authors:	Sugawa, Hikari; Tokai University, Bioscience Ohno, Rei-ichi; Tokai University, Bioscience Shirakawa, Jun-ichi; Tokai University, Bioscience Nakajima, Akari; Japan Women\'s University Kanagawa, Amane; Japan Women\'s University Hirata, Tetsuya; Kobayashi Pharmaceutical Co.,Ltd., R&D Center Ikeda, Tsuyoshi; Sojo University, Faculty of Pharmaceutical Sciences Moroishi, Narumi; Tokai University, Bioscience Nagai, Mime; Tokai University, Bioscience Nagai, Ryoji; Japan Women's University,

SCHOLARONE[™] Manuscripts

1	Eucommia ulmoides extracts prevent the formation of
2	advanced glycation end products
3	
4	Hikari Sugawa ¹ , Rei-ichi Ohno ¹ , Jun-ichi Shirakawa ¹ , Akari Nakajima ² , Amane Kanagawa ² , Tetsuya
5	Hirata ³ , Tsuyoshi Ikeda ⁴ , Narumi Moroishi ¹ , Mime Nagai ¹ and Ryoji Nagai ¹ *
6	
7	¹ Laboratory of Food and Regulation Biology Department of Bioscience, School of
8	Agriculture, Tokai University, ² Department of Food and Nutrition, Laboratory of Nutritional
9	Science and Biochemistry, Japan Women's University, ³ R & D Center Kobayashi Pharmaceutical Co. Ltd.,
10	⁴ Faculty of Pharmaceutical Sciences, Sojo University
11	
12	Running head: Eucommia ulmoides prevents AGEs formation.
13	
14	*Address for correspondence: Ryoji Nagai, Ph.D., Laboratory of Food and Regulation
15	Biology Department of Bioscience, School of Agriculture, Tokai University, Kawayou,
16	Minamiaso, Aso-gun, Kumamoto 869-1404, Japan
17	
18	Phone and Fax: +81-967-67-3918

- 19 e-mail: <u>nagai-883@umin.ac.jp</u>
- 20
- 21 Keywords: Advanced glycation end products (AGEs), Glycation, Diabetic
- 22 complications, *Eucommia ulmoides*
- 23

24 Abstract

25	Proteins non-enzymatically react with reducing sugars to form advanced glycation
26	end-products (AGEs), resulting in the induction of protein denaturation. Because the
27	levels of AGE increase with age and are elevated in age-related diseases, such as
28	diabetes and atherosclerosis, the intake of compound(s) that inhibit the formation of
29	AGEs by daily meal may represent a potential strategy for preventing age-related
30	disease. In this study, we measured the inhibitory effects of several Eucommia ulmoides
31	extracts on the formation of AGEs, N^{ε} -(carboxymethyl)lysine (CML) and
32	N^{ω} -(carboxymethyl)arginine (CMA). Although crude extract obtained from <i>E. ulmoides</i>
33	bark is widely used as herbal medicine, E. ulmoides leaf extract (ELE) inhibited CML
34	and CMA formation more effectively during incubation of gelatin with ribose.
35	Therefore, the inhibitory effects of compounds present in ELE on CML and CMA
36	formation were studied. As a result, isoquercetin showed the strongest inhibitory effect
37	of all the tested ELE components. These results indicate that the oral intake of ELE may
38	inhibit the formation of AGEs, thereby ameliorating age-related diseases.
39	
40	Keywords: Advanced glycation end products (AGEs), Glycation, Diabetic
41	complications, Eucommia ulmoides

3

43 Introduction

44	Lifestyle-related disease such as diabetes and atherosclerosis are serious problems that
45	accounted for 63% of the total deaths worldwide in 2008 ¹ . As the fundamental
46	treatment of lifestyle-related diseases is difficult, the inhibition of disease pathogenesis
47	by daily meal consumption is expected to become an effective means of preventing
48	lifestyle-related diseases. Non-enzymatic reactions between reducing sugars and
49	proteins generate advanced glycation end products (AGEs) via the Maillard reaction.
50	The formation of AGEs proceeds in vivo by several reactions, including oxidation and
51	condensation between reducing sugars and proteins, resulting in the induction of protein
52	denaturation ² . In fact, AGEs accumulate in the body along with aging ^{3 4} , with such
53	accumulation being enhanced by aging-related diseases such as diabetic complications.
54	Furthermore, increased levels of AGEs have been reported in several diseases including
55	atherosclerosis, diabetic nephropathy ⁵ , and retinopathy ⁶ , where the accumulation of
56	AGEs in pathological lesions is actively implicated in the development of organ damage.
57	Therefore, AGE inhibitors have been developed to prevent lifestyle-related diseases
58	such as diabetic complications and atherosclerosis. Pyridoxamine was originally
59	proposed to be an inhibitor of the oxidative degradation of fructosamine ⁷ and has been
60	shown to inhibit the formation of AGEs, as well as products of lipid peroxidation ⁸ .

61	Pyridoxamine also inhibited the development of retinopathy and neuropathy in rats with
62	streptozotocin (STZ)-induced diabetes ^{9, 10} . Furthermore, thiamine and its hydrophobic
63	derivative, benfotiamine, decreased the formation of intracellular methylglyoxal-derived
64	AGEs by increasing transketolase activity, thus inhibiting the development of
65	complications in animal models of diabetes ^{11, 12} and in humans ¹³ . Therefore, treatment
66	with AGE inhibitors may represent a potential strategy for preventing clinical diabetic
67	complications. A range of AGE structures have been reported and the present study
68	focused on N^{ε} -(carboxymethyl)lysine (CML) and N^{ω} -(carboxymethyl)arginine (CMA).
69	CML is known to be a major AGE antigenic determinant ¹⁴ that accumulates in lens
70	crystallins in an age-dependent manner ¹⁵ . The formation of several AGEs, such as
71	CML, and pentosidine are required for oxidation. For instance, in the formation of
72	pentosidine, fluorescent intensity and cross-linking was inhibited under anti-oxidative
73	conditions ¹⁶ . Furthermore, CML was generated by the oxidative cleavage of Amadori
74	products by hydroxyl radical ¹⁷ , peroxynitrite ¹⁸ , and hypochlorous acid ¹⁹ , indicating
75	that CML may be an important marker for oxidation in vivo. Reactive oxygen species
76	are reported to be related to aging and age-related diseases ²⁰ , and the accumulation of
77	CML is observed in patients who have severe complications, including nephropathy and
78	atherosclerosis ²¹ . We previously demonstrated that CML was generated by the

 $\mathbf{5}$

79	oxidative cleavage of Amadori products by hydroxyl radicals ¹⁷ and peroxynitrite ¹⁸ ,
80	thus suggesting that CML is an important biological marker of oxidative stress in vivo.
81	CMA has been identified in glycated collagen ²² , suggesting that it may function as a
82	marker of collagen glycation. Eucommia ulmoides Oliv. is a member of the plant family
83	Eucommiaceae. E. ulmoides (Cortex Eucommiae) bark crude extract (EBE) and E.
84	ulmoides leaves are widely used as herbal medicine, such as analeptic, sedative,
85	antihypertensive, diuretic and antidiabetic agents in China and Korea ²³⁻²⁸ , and E .
86	ulmoides leaf extract (ELE) is used in beverages (referred to as Tochu-cha (E. ulmoides
87	leaves tea)) in Japan. With the rapidly increasing population of patients with
88	lifestyle-related diseases, disease prevention through daily meal consumption has
89	become more important. E. ulmoides leaf extract (ELE) containing leaf glycoside is
90	used as a food for specified health use ²⁹ . Previous studies have reported that ELE also
91	exhibited anti-hypercholesterolemic and anti-hypertriglyceridemic effects ³⁰⁻³⁵ .
92	In the present study, we measured the inhibitory effects of ELE and its principal
93	compounds on CML and CMA formation as ELE has been reported to have antioxidant
94	activity ³⁶ .
95	

96 Materials and Methods

97

98 Chemicals

99	Gelatin, O-phenylenediamine dihydrochloride (OPD) tablets, and hydrogen peroxide
100	were purchased from Wako (Osaka, Japan). D-Ribose was purchased from the Kanto
101	Chemical Co. (Tokyo, Japan). Horseradish peroxidase (HRP)-conjugated goat
102	anti-mouse IgG antibodies were purchased from Kirkegaard Perry Laboratories
103	(Gaithersburg, MD, USA). Anti-CML and anti-CMA antibodies were prepared as
104	previously described ³⁷ . All other chemicals were of the best grade available from
105	commercial sources.

106

107 **Preparation of crude extracts.**

Fresh *E. ulmoides* Oliv. leaves were collected in August ³⁸ 2005 at Chengdu, Sichuan Province, People's Republic of China. The leaves were briefly treated with steam at 100–110°C immediately after collection. Then, the extraction and isolation procedures were started successively. A voucher specimen (No. 200) was identified, transferred to a vacuum pack in a well-closed container, and deposited in the herbarium of the Department of Medicinal Plants Garden, Sojo University, Kumamoto, Japan. *E.*

114	ulmoides leaves were studied to identify its activity components when used as
115	Tochu-cha. Dried E. ulmoides leaves (577.6 g) were extracted with hot water for 10 h at
116	60°C to produce E. ulmoides leaf extracts (ELE). Commercially available dried bark
117	and root of E. ulmoides were also collected at People's Republic of China and these
118	samples were extracted in the same manner as ELE to give E. ulmoides bark extracts
119	(EBE) and E. ulmoides root extracts (ERE). EBE and ERE were prepared for activity
120	comparison with ELE.

122 **Purification of flavonoid glycosides from ELE**

As shown in Figure 1A, ELE were subjected to Diaion HP-20P (Mitsubishi Chemical 123Co., Tokyo, Japan) column chromatography with a gradient of H₂O, 30% MeOH, 50% 124MeOH, 80% MeOH, and MeOH to yield fractions (Fr.) 1-5, in the order of elution. A 125part (2.0 g) of Fr. 3 eluted by 50% MeOH on Diaion HP-20 (9.0 g) was subjected to 126127Sephadex LH-20 (GE Healthcare Bioscience Co., Uppsala, Sweden) column chromatography eluted with MeOH to yield isoquercetin (4, 134 mg) and Fr. 3a. Fr. 3a 128(441 mg) was chromatographed over Chromatorex ODS (Fuji Silysia, Kasugai, Japan) 129with a gradient of H₂O-MeOH (3:7 to 1:1) to yield quercetin 3-O-sambubioside (5, 155 130mg) and Fr. 3a-1. Fr. 3a-1 (12 mg) was subjected to preparative HPLC by using a 131

132	Cosmosil AR-II column (5 $\mu m, \phi 10.0 \times 250$ mm, Nacalai Tesque Inc., Kyoto, Japan)
133	with 50% MeOH to yield kaempferol 3-O-rutinoside (6, 6 mg). Fr. 4 eluted by 80%
134	MeOH on Diaion HP-20 (2.4 g) was chromatographed over Sephadex LH-20 with
135	MeOH to yield Fr.4b. Fr.4b (387 mg) was purified by Chromatorex ODS with a gradient
136	of H ₂ O-MeOH (6:4 to 4:6) to yield rutin (1,40 mg), astragalin (2, 117 mg), and
137	6"-O-acetyl-astragalin (3, 8 mg). Quercetin and kaempferol were prepared by acid
138	hydrolysis of isoquercetin and astragalin, respectively. The chemical structures and
139	purities of all compounds obtained from ELE were confirmed by ¹ H- and ¹³ C-NMR data
140	compared with reference literature (Fig. 1B). ³⁹⁻⁴¹
141	Carbohydrate-induced AGE formation of gelatin

Each carbohydrate (33 mM glucose, mannose, galactose, fructose, or ribose) was incubated with 2 mg/mL of soluble collagen, gelatin in 200 mM of phosphate buffer

- 144 (pH 7.2) at 37°C for 7days prior to the measurement of CMA and CML formation by a
- 145 noncompetitive enzyme-linked immunosorbent assay (ELISA) and liquid
- 146 chromatography-tandem mass spectrometry (LC-MS/MS), as described below.
- 147

148 Effects of *E. ulmoides* extracts on CML and CMA formation

149 Ribose-gelatin was prepared by incubating 2 mg/mL of gelatin with 33 mM ribose in

150	200 mM of phosphate buffer (pH 7.2) at 37°C for seven days in the presence of natural
151	crude E. ulmoides extracts or purified compounds (100 μ M), followed by the
152	determination of CML and CMA formation using a noncompetitive ELISA, as
153	previously described ⁴² . Briefly, each well of a 96-well microtiter plate was coated with
154	100 μ L of gelatin in phosphate-buffered saline (PBS) at the indicated protein coating
155	concentration and incubated for 2 h. The wells were washed three times with PBS
156	containing 0.05% Tween 20 (washing buffer). The wells were then blocked with 0.5%
157	gelatin in PBS for 1 h. After three washes, the wells were incubated for 1 h with 100 μL
158	of monoclonal anti-CMA antibody (1 $\mu\text{g/mL})$ or anti-CML antibody (0.1 $\mu\text{g/mL}).$ The
159	wells were washed three times and incubated with HRP-conjugated anti-mouse IgG
160	followed by 1,2-phenylenediamine dihydrochloride. The reaction was terminated with
161	100 μL of 1.0 M sulfuric acid, and the absorbance was measured at 492 nm using a
162	micro-ELISA plate reader.
163	Statistical analysis-

- 164 Differences between the groups were examined for statistical significance using
- 165 either Student's *t*-test or the one-way analysis of variance (ANOVA) with
- 166 Newman-Keuls *post-hoc* test. P values of <0.05 were considered to indicate
- 167 statistical significance.

169 The measurement of CMA and CML by LC-MS/MS

170	Carbohydrate-gelatin samples were digested by enzymes as described previously ⁴³ .
171	Standard [¹³ C ₆] CMA, [² H ₂] CML (PolyPeptide Laboratories, Strasbourg, France) and
172	[¹³ C ₆] Lysine (Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA) was added
173	to the pellets, which were digested with enzymes. The dried sample was resuspended in
174	1 ml of distilled water and passed over a Strata-X-C column (Phenomenex, Torrance,
175	CA, USA) which had been pre-washed with 1 ml of methanol and equilibrated with 1
176	ml of distilled water. The column was then washed with 3 ml of 2% formic acid and
177	eluted with 3 ml of 7% ammonia. The pooled elution fractions were dried and
178	resuspended in 1 ml of 20% acetonitrile containing 0.1% formic acid. The samples were
179	subjected to an LC-MS/MS assay using a TSQ Vantage triple stage quadrupole mass
180	spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). LC was conducted on a
181	ZIC®-HILIC column (150 x 2.1 mm, 5 µm) (Merck Millipore, Billerica, MA, USA).
182	The mobile phase was performed using solvent A (distilled water containing 0.1%
183	formic acid) and solvent B (acetonitrile containing 0.1% formic acid). The flow rate was
184	0.2 ml/min and the column was kept at 40°C. The retention time for CMA, CML and
185	lysine were approximately 12-14 min. CMA, CML, lysine, and the standard were

186	detected by electrospray positive ionization-mass spectrometric multiple reaction
187	monitoring. The parent ions of CMA and $[^{13}\mathrm{C}_6]$ CMA were 233 (m/z) and 239 (m/z),
188	respectively. Fragment ions of 116 (m/z) and 121 (m/z) from each parent ion were
189	measured for the analysis of CMA and $[^{13}C_6]$ CMA in the samples. The parent ions of
190	CML and $[^{2}H_{2}]$ CML were 205 (m/z) and 207 (m/z), respectively. Fragment ions of 130
191	(m/z) from each parent ion were measured for the analysis of CML and $\left[^2H_2\right]$ CML in
192	the samples.

195	The present study measured the effects of a range of carbohydrates on the formation of
196	CMA and CML. The carbohydrates (glucose, mannose, galactose, fructose, and ribose)
197	were incubated with gelatin for up to one week, followed by ELISA determination of
198	the CMA and CML levels. As shown in Figure 2A, the CMA level increased in a
199	time-dependent manner following exposure of gelatin to ribose, whereas it was only
200	slightly increased following exposure to hexose. A similar tendency was also observed
201	in the formation of CML. Thus, ribose produced the highest CML formation, whereas
202	CML increased gradually from hexoses (Fig. 2B). As shown in Figure 2B, less CML
203	formation was detected following exposure to glucose in a time-dependent manner.
204	These results demonstrated that CMA and CML were rapidly generated in gelatin
205	incubated with ribose. CMA and CML contents in glycated gelatins were also measured
206	by LC-MS/MS. The typical fragment ion chromatograms of CMA and $[^{13}C_6]$ CMA (10
207	pmol) by LC-MS/MS in the samples are shown in Figure 3A. Typical fragment ion
208	chromatograms of CML and $[^{2}H_{2}]$ CML (10 pmol) are also shown in Figure 3B. Using
209	this method, the levels of CML and CMA in glycated gelatins were measured. As shown
210	in Figure 3C, ribose showed the highest contents of CML and CMA. These data
211	demonstrated that the detection of AGEs by the ELISA system using anti-AGE

antibodies correlated with the results of LC-MS/MS, thereby validating this assay

system.

214	Because CMA and CML were generated more rapidly by ribose than by the hexoses,
215	ribose was used to screen potential inhibitors of CMA and CML formation. As shown in
216	Figure 4A, ELE completely inhibited CMA formation, whereas EBE or ERE partially
217	inhibited CMA formation. Furthermore, ELE partially inhibited CML formation,
218	whereas EBE or EBR did not show any inhibitory effects on CML formation (Fig. 4B).
219	This result strongly demonstrates that ELE contained compound(s) capable of inhibiting
220	the formation of CMA and CML. Therefore, the ELE components were isolated as
221	described in the Materials and Methods section. In the same manner, reported structures
222	such as quercetin and kaempferol were also tested. As shown in Figure 5, several
223	isolated compounds, including isoquercetin, 6"-O-acetyl-astragalin, rutin, and astragalin,
224	showed stronger inhibitory effects on CMA and CML formation than aminoguanidine,
225	whereas kaempferol 3-O-rutinoside showed enhancing effects rather than weak
226	inhibitory effects. Furthermore, ELE compounds inhibited the formation of CMA more
227	effectively than that of CML. Acid hydrolyzates of isoquercetin, astragalin, quercetin
228	and kaempferol also showed stronger inhibitory effects on CMA and CML formation
229	than aminoguanidine.

230 **Discussion**

CMA, an acid-labile AGE, was originally identified in glycated collagen using 231enzymatic digestion ⁴⁴. Our previous study employing monoclonal anti-CMA antibody 232demonstrated that CMA was generated specifically on glycated collagen, thereby 233altering dermal fibroblast functions such as collagen secretion ³⁷. Therefore, ingestion of 234235natural compounds that inhibit CMA formation on a daily basis may help to prevent pathologies associated with glycation ^{5, 6}. The detection of CMA is difficult due to its 236susceptibility to acid hydrolysis. Furthermore, because there were no reports of a 237specific CMA antibody until 2011³⁷, the biological significance of CMA remains poorly 2386"-239understood. Nevertheless. natural compounds such as isoquercetin. O-acetyl-astragalin, rutin, and astragalin, which inhibited the formation of both CMA 240and CML (Fig. 5), would be helpful to evaluate the role of glycation in age-related 241242diseases. Although E. ulmoides bark contains lignans, which possess antioxidant activity, the lignan content of the leaves is very low^{39, 40}, indicating that lignans in the leaves 243may not work as inhibitors of AGEs formation. Furthermore, as our preliminary 244experiments using iridoids such as geniposidic acid and asperuloside did not show a 245significant inhibitory effect on AGEs formation (data not shown), we focused on 246flavonoids in ELE. We also measured the inhibitory effects of natural compounds on the 247

248	formation of CML, one of the major antigenic AGE structures produced by the Maillard
249	reaction and lipid peroxidation. CML is implicated in the pathogenesis of age-related
250	disorders such as diabetic complications and is recognized by the receptor for AGE
251	(RAGE). CML-RAGE interactions activate the NF-kB signaling pathway, while also
252	enhancing the expression of vascular cell adhesion molecule-1 (VCAM-1) in human
253	umbilical vein endothelial cells ⁴⁵ . Alikhani et al. ⁴⁶ demonstrated that CML-collagen
254	was recognized by RAGE and induced fibroblast apoptosis by activating cytoplasmic
255	and mitochondrial caspase pathways. Thus, the demonstration that the <i>in vitro</i> formation
256	of CML was inhibited by ELE points to a potentially novel therapeutic strategy for
257	preventing the development of diabetic complications, such as diabetic nephropathy,
258	retinopathy, and neuropathy, by inhibiting AGE formation.
259	It was reported that ELE controlled the plasma glucose levels in a rat model of
260	type 1 diabetes and a mouse model of type 2 diabetes (C57BL/KsJ-db/db mice) ^{27,28} .
261	Experiments with fructose-drinking rats fed ELE suggested that long-term ELE
262	treatment effectively prevented the development of insulin resistance and ameliorated
263	abnormal perivascular innervation in these animals ⁴⁷ . Fujikawa <i>et al.</i> reported that the
264	chronic administration of ELE or E. ulmoides green leaf powder improved insulin
265	resistance in a rat model of high-fat diet (HFD)-induced obesity ⁴⁸ , with concomitant

266	increases in the plasma adiponectin levels and the suppression of both the plasma
267	resistin and TNF- α levels. These findings raised the possibility that ELE may improve
268	atherosclerosis and diabetic nephropathy. This anti-obesity effect was dependent on the
269	asperuloside content of the <i>E. ulmoides</i> leaf ⁴⁹ . Furthermore, the chronic administration
270	of asperuloside decreased body weight, white adipose tissue (WAT) weight, and plasma
271	lipid parameters in mice fed a HFD ⁵⁰ . Because ELE inhibits the formation of AGEs, we
272	believe that the daily intake of ELE is expected to become an effective means of
273	preventing lifestyle-related diseases. Although the inhibitory effect of ELE on AGEs
274	formation in vivo has not yet been clarified, we hope that our findings will encourage
275	further physiological studies. Taken together, there is a possibility that the daily intake
276	of ELE ameliorates AGEs formation, resulting in the prevention of diabetic
277	complications.

278

279 Acknowledgments

280 We are grateful to Kenji Nakajima and Atsunori Wada for their collaborative endeavors.

281 We are also grateful to Chieko Yasuma for providing the *E. ulmoides* leaves. This work

was supported by JSPS KAKENHI Grant No. 15H02902 and 15K12364 to Ryoji Nagai.

283

284

285 Figure legends

- 286 Figure 1. Isolation and purification process and identified structures by ¹H- and
- 287 ¹³C-NMR data. The isolation and purification process of *E. ulmoides* Oliv. leaves are
- shown in the flow chart, as described in the Materials and Methods (A). The chemical
- structures of isolated compounds from ELE are demonstrated (B).
- 290

```
291 Figure 2. Comparison of AGE formation by carbohydrates. The indicated carbohydrates
```

- 292 were incubated with gelatin and the formation of CMA (A) and CML (B) was measured
- by a noncompetitive ELISA, as described in the Materials and Methods. Coated antigen
- 294 concentration was 10 μ g/mL. The data are presented as the means \pm SD (n=3).
- 295

296	Figure 3. The measurement of CMA and CML levels by LC-MS/MS. The parent ions of
297	CMA and $[^{13}C_6]$ CMA were 233 (m/z) and 239 (m/z), respectively. Peaks of the
298	fragment ions of CMA and $[^{13}C_6]$ CMA (10 pmol) were detected in the samples (A).
299	The parent ions of CML and $\left[^{2}\mathrm{H}_{2}\right]$ CML were 205 (m/z) and 207 (m/z), respectively.
300	Peaks of the fragment ions of CML and $[^{2}H_{2}]$ CML (10 pmol) were detected in the
301	samples (B). The CMA (open bar) and CML (closed bar) levels in the incubated
302	carbohydrates with gelatin were measured by LC-MS/MS (C), as described in the

303 Materials and Methods.

304

305	Figure 4. Inhibitory effects of <i>E. ulmoides</i> extracts from bark, root, and leaves (ELE) on
306	CMA and CML formation. Gelatin and ribose were incubated in the presence of 0.1
307	mg/mL ELE or pyridoxamine for 7 days, followed by the determination of CMA (A)
308	and CML (B) by a noncompetitive ELISA, as described in the Materials and Methods.
309	Data was expressed as inhibition (%) compared with control (without samples). For the
310	control, only gelatin and ribose were incubated. Abbreviation: px, pyridoxamine. X axis
311	shows the coated antigen concentration.

312

Figure 5. Inhibitory effects of compounds purified from ELE on CMA and CML 313formation. Gelatin and ribose were incubated in the presence of 0.1 mM of the indicated 314compounds for 7 days, followed by the determination of CMA and CML by a 315316 noncompetitive ELISA. Coated antigen concentration was 10 µg/mL. Data was expressed as inhibition (%) compared with control (without samples). For the control, 317 only gelatin and ribose were incubated. Abbreviations: IQ, isoquercetin; AAs, 6"-318O-acetyl-astragalin; K, kaempferol; Q, quercetin; R, rutin; KR, kaempferol 3193-O-rutinoside; As, astragalin; AG, aminoguanidine. For the control, only gelatin and 320

321	ribose were incubated for 7 days. The data are presented as the means \pm SD (n=3). **, P
322	< 0.01, *, P < 0.05 vs. control.
323	
324	

326 **REFERENCES**

- 1. Nagai R, Shirakawa J, Fujiwara Y, Ohno R, Moroishi N, Sakata N, Nagai M. 2014.
- 328 Detection of AGEs as markers for carbohydrate metabolism and protein
- denaturation. J Clin Biochem Nutr. 55(1):1-6
- 330 2. World Health Organization. 2010. Global status report on noncommunicable
- 331 diseases. ISBN 978 92 4 068645 8 (PDF).
- 332 http://www.who.int/nmh/publications/ncd_report_full_en.pdf
- 333 3. Araki N, Ueno N, Chakrabarti B, et al. 1992. Immunochemical evidence for the
- presence of advanced glycation end products in human lens proteins and its positive

correlation with aging. *J Biol Chem* **267**: 10211–10214.

- 4. Kimura T, Takamatsu J, Ikeda K, et al. 1996. Accumulation of advanced glycation
- end products of the Maillard reaction with age in human hippocampal neurons.
- 338 *Neurosci Lett* **208**: 53–56.
- 339 5. Makino H, Shikata, K, Hironaka K, Kushiro M, Yamasaki Y, Sugimoto H, Ota Z,
- 340 Araki N, Horiuchi S. 1995. Ultrastructure of nonenzymatically glycated mesangial
- 341 matrix in diabetic nephropathy. *Kidney Int* **48(2)**: 517-526.
- 342 6. Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S. 1997. The
- 343 relationship between accumulation of advanced glycation end products and

344	expression	of	vascular	endothelial	growth	factor	in	human	diabetic	retinas
0.4 7		· .		7(0)						
345	Diabetologi	ıa 4	U(7): /64-	/69.						

- 346 7. Booth AA, Khalifah RG, Todd P, Hudson BG. 1997. In vitro kinetic studies of
- 347 formation of antigenic advanced glycation end products (AGEs). Novel inhibition of
- 348 post-Amadori glycation pathways. *J Biol Chem* **272(9)**: 5430-5437.
- 8. Metz TO, Alderson NL, Chachich ME, Thorpe SR, Baynes JW. 2003. Pyridoxamine
- 350 Traps Intermediates in Lipid Peroxidation Reactions in Vivo. *J Biol Chem* 278(43):
 351 42012-42019.
- 352 9. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW,
- Thorpe SR, Baynes JW. 2002. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. *Kidney Int* **61(3)**: 939-950.
- 355 10. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C,
- 356 Januszewski AS, Chachich M, Baynes JW, Thorpe SR. 2002. The AGE inhibitor
- 357 pyridoxamine inhibits development of retinopathy in experimental diabetes.
- 358 *Diabetes* **51(9)**: 2826-2832.
- 359 11. Khalifah RG, Baynes JW, Hudson BG. 1999. Amadorins: novel post-Amadori
- 360 inhibitors of advanced glycation reactions. *Biochem Biophys Res Commun* **257(2)**:
- 361 251-258.

362	12. Voziyan PA, Hudson BG. 2005. Pyridoxamine as a multifunctional pharmaceutical:						
363	targeting pathogenic glycation and oxidative damage. Cell Mol Life Sci 62(15):						
364	1671-1681.						
365	13. Balakumar P, Rohilla A, Krishan P, Solairaj P, Thangathirupathi A. 2010. The						
366	multifaceted therapeutic potential of benfotiamine. Pharm Res 61(6): 482-488.						
367	14. Ahmed MU, Thorpe SR, Baynes JW. 1986. Identification of						
368	$N^{\epsilon}\mbox{-}(carboxymethyl)lysine as a degradation product of fructoselysine in glycated$						
369	protein. J Biol Chem 261(11): 4889-4894.						
370	15. Dunn JA, Patrick JS, Thorpe SR, Bavnes JW. 1989. Oxidation of glycated proteins:						
371	age-dependent accumulation of N^{ϵ} -(carboxymethyl)lysine in lens proteins.						
372	<i>Biochemistry</i> 28(24) : 9464–9468.						
373	16. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW. 1994.						
374	Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics,						
375	mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes.						
376	43(5) :676-83.						
377	17. Nagai R, Ikeda K, Higashi T, Sano H, Jinnouchi Y, Araki T, Horiuchi S. 1997.						
378	Hydroxyl radical mediates N^{ϵ} -(carboxymethyl)lysine formation from Amadori						
379	product. Biochem Biophys Res Commun 234(1): 167-172.						

380	18. Nagai R, Unno Y, Hayashi MC, Masuda S, Hayase F, Kinae N, Horiuchi S. 2002.
381	Peroxynitrite induces formation of N^{ϵ} -(carboxymethyl) lysine by the cleavage of
382	Amadori product and generation of glucosone and glyoxal from glucose: novel
383	pathways for protein modification by peroxynitrite. <i>Diabetes</i> 51(9) : 2833-2839.
384	19. Mera K, Nagai R, Haraguchi N, Fujiwara Y, Araki T, Sakata N, Otagiri M. 2007.
385	Hypochlorous acid generates N^{ϵ} -(carboxymethyl)lysine from Amadori products.
386	<i>Free Radic Res.</i> 41(6) :713-8.
387	20. Singh R, Devi S, Gollen R. 2015. Role of free radical in atherosclerosis, diabetes
388	and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 31(2):113-26.
389	21. E D Schleicher, E Wagner, A G Nerlich. 1997. Increased accumulation of the
390	glycoxidation product $N^{\epsilon}\mbox{-}(carboxymethyl)lysine in human tissues in diabetes and$
391	aging. J Clin Invest. 99(3): 457–468.
392	22. Iijima K, Murata M, Takahara H, Irie S, Fujimoto D. 2000. Identification of
393	N^{ω} -carboxymethylarginine as a novel acid-labileadvanced glycation end product in
394	collagen. Biochem J 347: 23–27.
395	23. Chinese Materia Medica Dictionary Jiangsu. New Medical College, ed., Shanghai
396	Science and Technology Publishing House, Shanghai. 1977, 1031.
397	24. Qin ZD, Wu YZ, Yu ZQ, Wu ZH. 1997. Studies on the Eucomia cortex and leaves.

398	West-North	Univ J	7 : 64–71.

399	25. Guizhou Province Institute for Drug Control and Guizhou Province Chinese
400	Medicine Research Laboratories. 1978. Studies on the Eucommia cortex of the use
401	of Eucommia leaves. Zhong cao yao yan jiu 8: 59–63.
402	26. Hong ND, Rho YS, Won DH, Kim NJ, Cho BS. 1987. Studies on the anti-diabetic
403	activity of Eucommia ulmoides Oliver. Korean J Pharmacognosy 18: 91-100.
404	27. Hosoo S, Koyama M, Kato M, Hirata T, Yamaguchi Y, Yamasaki H, Wada A, Wada
405	K, Nishibe S, Nakamura K, 2015, The Restorative Effects of Eucommia ulmoides
406	Oliver Leaf Extract on Vascular Function in Spontaneously Hypertensive Rats.
407	<i>Molecules</i> 20 : 21971–21981
408	28. Kai He, Xuegang Li, Xin Chen, Xiaoli Ye, Jing Huang, Yanan Jin, Panpan Li, Yafei
409	Deng, Qing Jin, Qing Shi, Hejing Shu. 2011. Evaluation of antidiabetic potential of
410	selected traditional Chinese medicines in STZ-induced diabetic mice. Journal of
411	Ethnopharmacology 137: 1135–1142
412	29. Choi MS, Jung UJ, Kim HJ, Do GM, Jeon SM, Kim MJ, Lee MK. 2008. Di-Zhong
413	(Eucommia ulmoides Oliver) leaf extract mediates hypolipidemic action in hamsters
414	fed a high-fat diet. Am J Chin Med 36(1): 81-93

415 30. Metori K, Ohashi S, Takahashi S, Tamura T. 1994. Effects of Du-Zhong leaf extract

416	on serum and hepatic lipids in rats fed a high-fat diet. Biol Pharm Bull 17 (7): 917-
417	920.
418	31. Lee MK, Kim MJ, Cho SY, Park SA, Park KK, Jung UJ, Park HM, Choi MS. 2005.
419	Hypoglycemic effect of Du-Zhong (Eucommia ulmoides Oliv.) leaves in
420	streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 67 (1): 22-28.
421	32. Park SA, Choi MS, Jung UJ, Kim DJ, Park HM, Park YB, Lee MK. 2006.
422	Eucommia ulmoides Oliver leaf extract increases endogenous antioxidant activity in
423	type 2 diabetic mice. J Med Food 9 (4): 474–479.
424	33. Choi MS, Jung UJ, Kim HJ, Do GM, Jeon SM, Kim MJ, Lee MK. 2008. Du-Zhong
425	(Eucommia ulmoides Oliver) leaf extract mediates hypolipidemic action in hamsters
426	fed a high-fat diet. Am J Chin Med 36 (1): 81-93.
427	34. Horii Y, Tanida M, Shen J, Hirata T, Kawamura N, Wada A, Nagai K. 2010. Effects
428	of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food
429	intake, and body weight. Neurosci Lett 479 (3): 181-186.
430	35. Kobayashi Y, Hiroi T, Araki M, Hirokawa T, Miyazawa M, Aoki N, Kojima T,
431	Ohsawa T. 2012. Facilitative effects of Eucommia ulmoides on fatty acid oxidation
432	in hypertriglyceridaemic rats. J Sci Food Agric 92 (2): 358-365.
433	36. Zhang, Qiang; Su, Yin-quan; Fan, Zi-ye; Zhu, Ming-qiang, 2011, Effects of de-

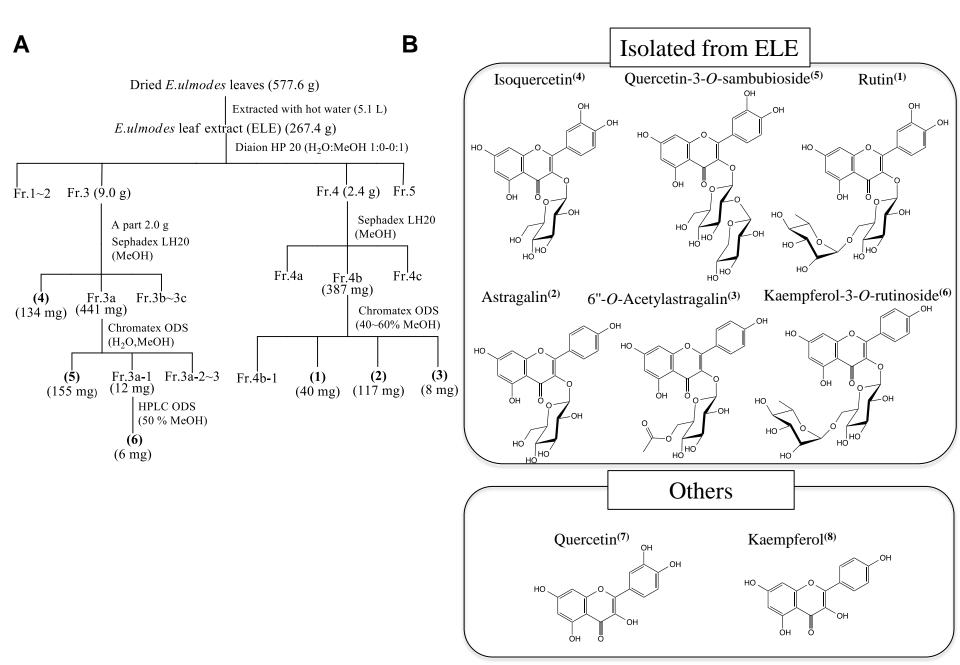
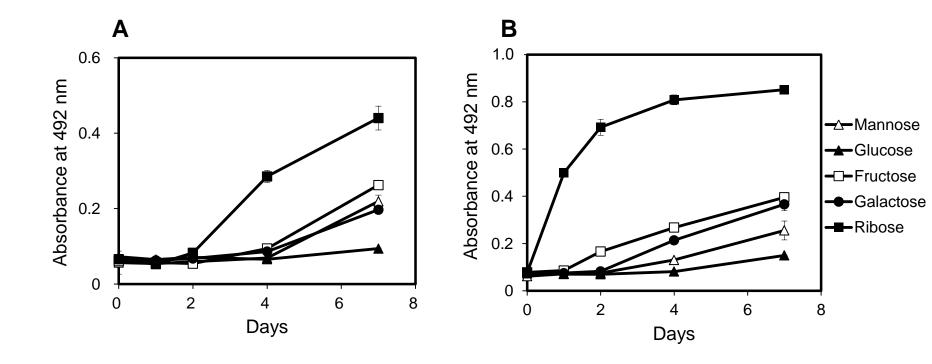
434	enzyme process on the antioxidant activity of Eucommia leaves, 157-160
435	37. Shimasaki S, Kubota M, Yoshitomi M, Takagi K, Suda K, Mera K, Fujiwara Y,
436	Nagai R. 2011. N [@] -(carboxymethyl)arginine Accumulates in Glycated Collagen and
437	Klotho-deficient Mouse Skin. Anti-Aging Medicine 8 (6): 82-87.
438	38. Qiang Zhang, Yinquan Su and Jingfang Zhang. 2013. Seasonal Difference in
439	Antioxidant Capacity and Active Compounds Contents of Eucommia ulmoides
440	Oliver Leaf. Molecules 2013, 18, 1857-1868.
441	39. Nakamura, T., Nakazawa, Y., Onizuka, S., Tanaka, C., Yahara, S., & Nohara, T. 1998.
442	Twelve phenolics from leaves of Eucommia ulmoides. Nat. Med. (Tokyo), 52(5),
443	460.
443 444	460. 40. Takamura, T., Hirata, T., Yamaguchi, Y., Ono, M., Miyashita, H., Ikeda, T., Nohara,
444	40. Takamura, T., Hirata, T., Yamaguchi, Y., Ono, M., Miyashita, H., Ikeda, T., Nohara,
444 445	40. Takamura, T., Hirata, T., Yamaguchi, Y., Ono, M., Miyashita, H., Ikeda, T., Nohara, T. 2007. Studies on the chemical constituents of green leaves of <i>Eucommia ulmoides</i>
444 445 446	 40. Takamura, T., Hirata, T., Yamaguchi, Y., Ono, M., Miyashita, H., Ikeda, T., Nohara, T. 2007. Studies on the chemical constituents of green leaves of <i>Eucommia ulmoides</i> Oliv. <i>J. Nat. Med.</i> 61, 220–221
444 445 446 447	 40. Takamura, T., Hirata, T., Yamaguchi, Y., Ono, M., Miyashita, H., Ikeda, T., Nohara, T. 2007. Studies on the chemical constituents of green leaves of <i>Eucommia ulmoides</i> Oliv. <i>J. Nat. Med.</i> 61, 220–221 41. Hirata, T., Ikeda, T., Fujikawa, T., & Nishibe, S. 2014. The chemistry and bioactivity
444 445 446 447 448	 40. Takamura, T., Hirata, T., Yamaguchi, Y., Ono, M., Miyashita, H., Ikeda, T., Nohara, T. 2007. Studies on the chemical constituents of green leaves of <i>Eucommia ulmoides</i> Oliv. <i>J. Nat. Med.</i> 61, 220–221 41. Hirata, T., Ikeda, T., Fujikawa, T., & Nishibe, S. 2014. The chemistry and bioactivity of Eucommia ulmoides oliver leaves. <i>Studies in Natural Products Chemistry. Vol.</i>

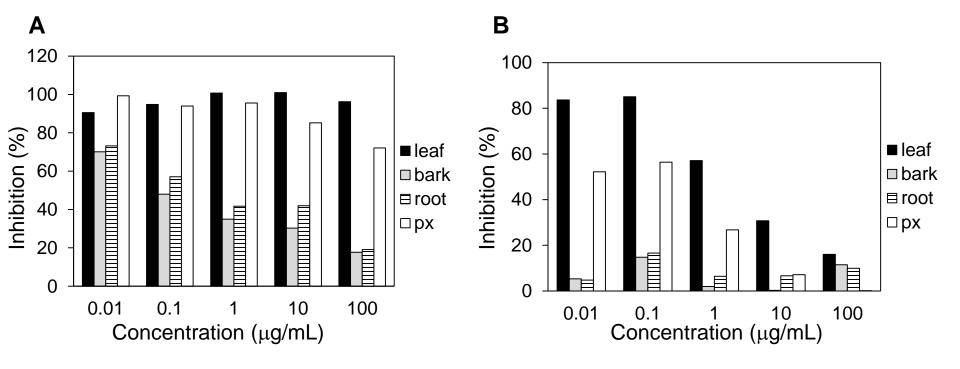
452	Amadori product and generation of glucosone and glyoxal from glucose: novel
453	pathways for protein modification by peroxynitrite. <i>Diabetes</i> 51(9) : 2833-2839.
454	43. Ahmed N, Dobler D, Dean M, Thornalley PJ. 2005. Peptide mapping identifies
455	hotspot site of modification in human serum albumin by methylglyoxal involved in
456	ligand binding and esterase activity. J Biol Chem 280(7): 5724-5732.
457	44. Iijima K, Murata M, Takahara H, Fujimoto D. 2000. Identification of
458	N^{ω} -carboxymethylarginine as a novel acid-labile advanced glycation end product in
459	collagen. <i>Biochem J</i> 347 : 23–27.
460	45. Lieuw-a-Fa ML, Schalkwijk CG, Enqelse M, van Hinsbergh VW. 2006. Interaction
461	of N^{ϵ} -(carboxymethyl)lysine- and methylglyoxal-modified albumin with endothelial
462	cells and macrophages. Splice variants of RAGE may limit the responsiveness of
463	human endothelial cells to AGEs. Thromb Haemost 95(2): 320-328.
464	46. Alikhani Z, Alikhani M, Boyd CM, Nagao K, Trackman PC, Graves DT. 2005.
465	Advanced glycation end products enhance expression of pro-apoptotic genes and
466	stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J
467	Biol Chem 280(13): 12087-12095.
468	47. Jin X, Amitani K, Zamami Y, Takatori S, Hobara N, Kawamura N, Hirata T, Wada A,
469	Kitamura Y, Kawasaki H. 2010. Ameliorative effect of Eucommia ulmoides Oliv.

470	leaves extract (ELE) on insulin resistance and abnormal perivascular innervation in
471	fructose-drinking rats. J Ethnopharmacol 128 (3): 672-678.
472	48. Fujikawa T, Hirata T, Wada A, Kawamura N, Yamaguchi Y, Fujimura K, Ueda T,
473	Yurugi Y, Soya H, Nishibe S. 2010. Chronic administration of Eucommia leaf
474	stimulates metabolic function of rats across several organs. Br J Nutr 104 (12):
475	1868-1877.
476	49. Hirata T, Kobayashi T, Wada A, Ueda T, Fujikawa T, Miyashita H, Ikeda T,
477	Tsukamoto S, Nohara T. 2011. Anti-obesity compounds in green leaves of
478	Eucommia ulmoides. Bioorg Med Chem Lett 21: 1786–1791.
479	50. Fujikawa T, Hirata T, Hosoo S, Nakajima K, Wada A, Yurugi Y, Soya H, Matsui T,
480	Yamaguchi A, Ogata M, Nishibe S. 2012. Asperuloside stimulates metabolic
481	function in rats across several organs under high-fat diet conditions, acting like the
482	major ingredient of Eucommia leaves with anti-obesity activity. J Nutr Sci 1: e1-11.

483

Figure 1. Sugawa et al.,


Figure 2. Sugawa et al.,

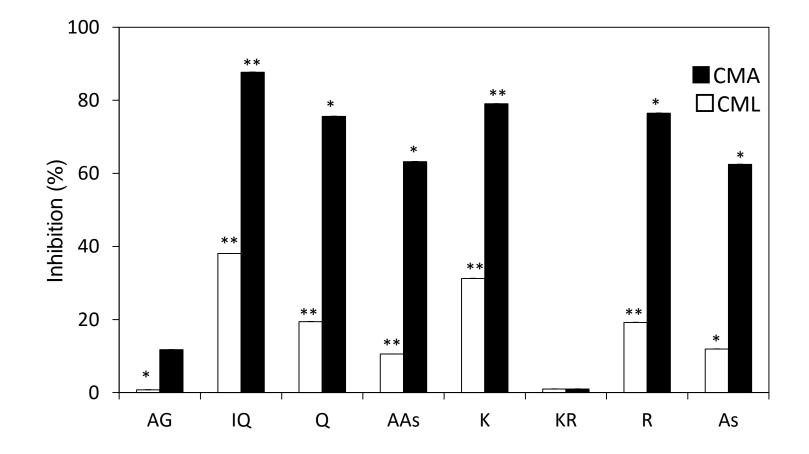

Figure 3. Sugawa et al.,

Figure 4. Sugawa et al.,

Figure 5. Sugawa et al.,

