Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Protective effects of rice dreg protein hydrolysates against hydrogen
2	peroxide-induced oxidative stress in HepG-2 cells
3	Xinxia Zhang, Li Wang*, Ren Wang, Xiaohu Luo, Yanan Li, Zhengxing Chen*
4	Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of
5	Education ,State Key Laboratory of Food Science and Technology, National
6	Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University,
7	Lihu Road 1800, Wuxi 214122, China
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	*Corresponding author
20	Tel: +86-510-8519 7856;
21	Fax: +86-510-8519 7856;
22	E-mail: <u>zxchen_2008@126.com</u>

1

23 Abstract

In this paper, the effects of rice dreg protein hydrolysates (RDPHs) obtained by 24 25 various proteases on hydrogen peroxide-induced oxidative stress in HepG-2 cells 26 were investigated. Cell cytotoxicity was evaluated through the aspects of cell viability, 27 ROS level, antioxidant enzyme activity, and production of malondialdehyde (MDA). 28 Cell apoptosis was assessed by flow cytometry. Molecular weight distribution was 29 analyzed by gel permeation chromatography, and amino acid composition was 30 measured using an automatic amino acid analyzer. The survival of cells and the activities of superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) were 31 significantly increased through the pre-incubation of HepG-2 cells with RDPHs 32 33 before H_2O_2 exposure. Additionally, these pretreatments also resulted in a reduction in ROS and MDA levels. As a result, apoptosis and loss of mitochondrial membrane 34 35 potential of the HepG-2 cells were alleviated. Furthermore, the protective effects of protein hydrolysates obtained by various proteases were noticeably distinct, in which 36 37 RDPHs prepared by alkaline protease showed higher antioxidant activities. The difference in the protective effects might be attributed to the specific peptide or amino 38 39 acid composition. Therefore, enzymatic hydrolysis with different enzymes studied here could attenuate H₂O₂ induce cell damage, and the type of protease greatly 40 influenced the anti-oxidative activity. Particularly, optimum use of Alcalase could 41 42 produce peptides with higher antioxidant activity.

Key words: Rice dreg protein; Protease type; Antioxidant activity; Hydrogen peroxide;
HepG-2 cells

Food & Function Accepted Manuscript

Food & Function Accepted Manuscript

45 **1. Introduction**

Rice dreg protein (RDP), which contains up to 50% of protein in its dry form¹, 46 is a rice by-product produced during the starch extraction process. RDP is gaining a 47 lot of interest in food industry due to its unique nutritional value and nutraceutical 48 properties. It is also gaining interest because it is plentiful and readily available^{2, 3}. 49 However, these protein residues are normally used as low-cost animal feed because of 50 their low digestibility and poor solubility at a neutral PH⁴. In order to overcome these 51 defects, protease enzymatic protein modification can be applied. The functional 52 properties of RDP can be improved through the proteases treatment⁵. Several 53 researchers have found that RDP is also a potential protein resource needed to 54 improve the biological activities of RDP, such as its anti-oxidative and 55 ACE-inhibitory properties^{6, 7}. These studies indicated that RDPH might serve as an 56 inexpensive and efficient dietary source of protein for human nutrition. 57

Although the antioxidant activities of rice protein have been documented through chemical tests^{8, 9}, the particular effects of hydrolyzed rice protein on cells with radical-initiated oxidative damage have not been studied extensively. To the best of our knowledge, influence of enzyme type on the effects of hydrolysates against H_2O_2 induced cell damage has never been reported.

Generally, equilibrium between the generation and elimination of reactive
oxygen species (ROS) in normal cell systems is maintained by the antioxidant system.
However, when ROS generation grows beyond the capacity of the cellular antioxidant
system, or when the normal antioxidant defenses of the cell are inhibited, such

67 balance is broken, and oxidative stress occurs. Oxidative stress-induced cell damage 68 causes many human chronic diseases such as many cardiovascular diseases, aging, neurodegenerative diseases, diabetes, and cancer¹⁰. Human HepG-2 cells, which are 69 well-differentiated transformed cell lines from hepatic origins, have been used for the 70 development of cell-based bioassays for food antioxidant activity analysis¹¹⁻¹³. 71 72 Hydrogen peroxide (H_2O_2) is thought to be a particularly important contributor to 73 oxidative stress. Therefore, treating HepG-2 with hydrogen peroxide could serve as a model for evaluating the antioxidant activity of food. In addition, studies supported 74 the protective role that natural antioxidants might play in controlling and mitigating 75 oxidative stress-induced diseases¹³⁻¹⁵. 76

In this study, five commercially available and low-cost proteases were selected to hydrolyze the RDP. The RDPHs prepared with various enzymes were evaluated for their protective effects against hydrogen peroxide-induced oxidative stress in HepG-2 cells by considering cytotoxicity and cell viability, intracellular ROS level, activities of antioxidant enzymes, lipid peroxide level, apoptosis, and the related mechanisms.

82 **2.** Materials and methods

83 **2.1. Materials**

Rice dreg protein (82.9% protein, 7.9% water, 1.35% ash, 6.25% lipid, 1.60%
sugar) was provided by Shanyuan Biotechnology Co. LTD (Wuxi, China). Alcalase
(2.4 L), Neutrase (0.8 L), Flavourzyme, and Protamex (2.4 AU/g) were purchased
from Novozymes (Beijing, China). Trypsin was obtained from Sinopharm Chemical
Reagent Co. LTD. HepG-2 cells were purchased from the Institute of Biochemistry

89	and Cell Biology, SIBS, CAS (Shanghai, China). Modified Eagle's Medium (DMEM),
90	fetal bovine serum (FBS), and other cell culture materials were purchased from Gibco
91	BRL, LifeTechnologies (USA). A Cell Counting Kit-8 (CCK-8), a Reactive Oxygen
92	Species Assay Kit, Malondialdehyde (MDA), superoxide dismutase (SOD), and
93	glutathione peroxidase (GSH-Px) assay kits were all purchased from Beyotime
94	Biotechnology Co. LTD (Shanghai, China). An Annexin V-FITC Apoptosis Detection
95	Kit, and a Mitochondrial membrane potential assay kit with JC-1 were also obtained
96	from Beyotime Biotechnology Co. LTD (Shanghai, China). A Reactive Oxygen
97	Species Assay Kit was purchased from Nanjing Jiancheng Bioengineering Institute
98	(Nanjing, China). These and all other chemicals and reagents were of analytical grade
99	or higher.

100 **2.2. Preparation of RDP hydrolysate with various enzymes.**

Five commercially available proteases were chosen to hydrolyze the RDP. The
hydrolysis followed the conditions given in parenthesis: Alcalase 2.4 L (pH 8.5,
55 °C), Neutrase 0.8 L (pH 7, 45 °C), Protamex (PH 7, 50 °C), Flavourzyme (pH 6,
50 °C), Trypsin (PH 8, 50 °C).

The RDP was stirred into distilled water (5% [w/v]) for 30 min at the optimum temperature for each enzyme. Reactions were then carried out with proteases for 2 h at each enzyme's respective optimum hydrolysis conditions as described above. The enzyme to substrate (E/S) ratio was 1:100 (w/w) and the pH level of the slurry was kept constant with 1 M NaOH. The resulting hydrolysates were heated in a boiling water bath for 10 min to inactivate the enzyme. After cooling, the hydrolysates were

Food & Function Accepted Manuscript

each adjusted to a pH level of 7.0 and centrifuged at 10000 g for 20 min. The
solutions were then freeze-dried and stored at -20 $^\circ C$ before use.
2.3. Analysis of cell cytotoxicity and viability
Cell culture: HepG-2 cells were cultured in Dulbecco's Modified Eagle's Medium
(DMEM), which contains 10% fetal bovine serum (FBS), 100 units/mL penicillin, and
100 μ g/mL streptomycin under conditions of 5% CO ₂ and 37 °C in an incubator.
Cells were inoculated into a 96-well plate $(4 \times 10^5 \text{ cells/mL for cytotoxicity})$
analysis and 1×10^5 cells/mL for viability analysis) and incubated at 37 °C in a CO ₂
incubator for a specific amount of time (72 h for cytotoxicity analysis and 24 h or 48
h for viability analysis). After that, 10 μ l of the prepared CCK-8 solution was added
into each well of the plate and then incubated for another 4 h. Absorbance was
measured at 450 nm by a microplate reader (M5, Molecular Devices, USA). The
percentage of cell growth inhibition and cell viability was expressed as the following
a musticant

125 Cell Cytotoxicity =
$$(A_{control} - A_{treated})/A_{control} *100\%$$

Cell Viability = $A_{\text{treated}}/A_{\text{control}} *100\%$

2.4. Measurement of intracellular reactive oxygen species (ROS)

The level of ROS was determined using the Reactive Oxygen Species Assay Kit. HepG-2 cells were incubated with five RDPHs (1 mg/ml) for 48 h and then 0.4 mM H₂O₂ was added for 4 h. After washing the cells with PBS three times, DCFH-DA (10 mM) was added and the cells were incubated for 30 min at 37 °C in the dark. The DCF fluorescence of the treated cells was measured by a laser scanning confocal

microscope (LSM 710, Carl Zeiss AG, German). Relative DCF fluorescence wasprovided directly by the apparatus.

135 **2.5. Measurements of SOD, MDA and GSH-Px**

The assay for superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px), 136 catalase (CAT) and m-alondialdehyde (MDA) was carried out suing commercial 137 138 assay kits (Beyotime Biotechnology Co. LTD, Shanghai, China). All the steps were 139 taken in strict accordance with the kit-specified method. Briefly, SOD activity was 140 assayed by detecting the concentration of formazan dye (450 nm) formed from WST-8 141 after it reacted with superoxide ions produced from the xanthine-xanthine oxidase system. One unit of SOD activity was defined as the inhibition rate when the above 142 response reached 50%. GSH-Px was detected through the catalytic oxidation of 143 glutathione using t-Bu-OOH as peroxide. Then the presence of glutathione reductase 144 145 could catalyze the reduction of the GSSH generated above to GSH and the oxidation of the NADPH to NADP+, which could be monitored at 340 nm. One unit of GSH-Px 146 147 was defined as the 1 µmol NADPH oxidized in 1 min. The assay for CAT was based on its ability to scavenge H_2O_2 . The content of MDA was determined by measuring 148 149 the absorbance of MDA-TBA reacted by MDA and TBA at 450 nm.

150 2.6. Cell apoptosis and mitochondrial transmembrane potential ($\Delta \Psi m$) analysis

An Annexin V-FITC apoptosis detection kit was used to evaluate the apoptosis of the cells. Briefly, after the HepG-2 cells were pre-incubated with RDPHs for 48 h, 0.4 MH_2O_2 were added and the cells were incubation for another 4 h. The treated cells were harvested by trypsinization, washed with PBS once, and centrifuged to collect

Food & Function Accepted Manuscript

the cell pellet. Then they were stained with 5 μ L Annexin V-FITC, and 10 μ L propidium iodide (PI) for 15 min at room temperature in the dark. The cells were analyzed on a flow cytometer (FACSCalibur, BectonDickinson, USA).

The HepG-2 cells were harvested after the above treatment and the mitochondrial transmembrane potential ($\Delta \Psi m$) was examined using a Mitochondrial Membrane Potential assay kit with JC-1. In brief, the collected cells were incubated with 0.5 mL of a JC-1 working solution for 20 min at 37 °C in the dark, then washed twice with a JC-1 staining buffer, and re-suspended in 0.5 mL of PBS. Flow cytometry (FACSCalibur, BectonDickinson, USA) was used to analyze the cells.

164 **2.7. Determination of molecular weight distribution**

The molecular weight distribution of the RDPHs was measured by gel 165 permeation chromatography (1260 Infinity, Agilent Technologies, USA) on a 166 TSKgel2000 SW XL column (7.8 mm i.d. × 300 mm; Tosoh, Tokyo, Japan) with a 167 168 detector at 220 nm. The following describes the mobile phase: UV 169 acetonitrile/water/trifluoroacetic acid was 45/55/0.1 (V/V), at a flow rate of 0.5 170 ml/min. The following four protein standards were taken to make a reference curve: 171 cytochrome C (12.5 kDa), bacitracin (1450 Da), tetrapeptide GGYR (451 Da), and tripeptide GGG (189 Da) (Sigma St. Louis, MO, USA). 172

173 **2.8. Amino acid analysis**

174 200 mg of RDPHs were hydrolyzed in 8 ml of 6 M HCl and heated in a sealed 175 tube for 24 h at 110 °C. After being evaporated under nitrogen at 60 °C, the 176 hydrolysates were diluted with water to 100 mL and then filtered. Amino acid analysis

177 of the filtrate was measured using an automatic amino acid analyzer (L-8800, Hitachi,

178 Japan).

179 2.9. Statistical analysis

Data were analyzed using IMB SPSS statistics 2.0 software. The differences between the mean values of samples were determined using the least significant difference (LSD) test at a level of 0.05.

3. Results and discussion

184 **3.1.** Cell viability of HepG-2 cells injured with H₂O₂

185 A reliable in-vitro cellular model was required to represent what occurs in the human body more accurately¹⁶. In this study, the H₂O₂-induced injury on HepG-2 186 187 cells was assessed. As shown in Figure 1A and Figure 1B, time-dependent and 188 dose-dependent decreases in cell viability were indicated by CCK-8 assays in cells exposed to H₂O₂. Furthermore, considering the state of cell growth and sensitivity to 189 the H_2O_2 , pre-culture of the cells before H_2O_2 injury for 48 h was better than 24 h. 190 191 After pre-culture for 48 h, the cell viability decreased to $53.95\% \pm 2.08$ when the 192 HepG-2 cells were then treated for another 4 h with 0.4 mM H₂O₂ (Figure 1A and 1B). When treatment time or H_2O_2 concentration increased, the cell viability decreased 193 194 slightly. From the previous studies, H_2O_2 -injuried cellular models were established as the cell viability reduced by 50%~70%^{5, 7}. Therefore, further experiments were 195 carried out with 0.4 mmol/l of H₂O₂ for 4 h. 196

197 **3.2.** Cytotoxic and proliferative effects of RDPHs on HepG-2 cells

198 Firstly, the CCK-8 assay was used to examine whether or not RDPHs (1 mg/ml)

Food & Function Accepted Manuscript

199 alone would cause cell death. Figure 1C shows that the cytotoxicity levels of RDPHs 200 obtained by five different proteases were all within 10%, suggesting that there was no toxicity to cells at the concentration used in this study¹⁷. Then, HepG-2 cells were 201 pre-treated with RDPHs over various periods of time (24 h and 48 h) in the 202 concentration of 1 mg/ml before H_2O_2 incubation (0.4 mmol/l for 4 h). As shown in 203 Figure 1D, pretreatment with RDPHs prior to H_2O_2 exposure markedly increased the 204 205 cell viability of HepG-2 cells when compared to the cells treated with H_2O_2 alone (P < 206 (0.05). The protective effects were more pronounced when cells were pre-treated with 207 various RDPHs for 48 h. Samples hydrolyzed with Alcalase and Trypsin showed the 208 strongest inhibitory effect against H₂O₂-induced cytotoxicity, while after 48 h of pretreatment, the Flavourzyme hydrolysate was the least efficient, with cell viability 209 210 values of $86.33\% \pm 2.78$, $85.80\% \pm 2.19$, and $60.13\% \pm 1.22$, respectively. This 211 indicated that the RDPHs had the potential to protect HepG-2 cells against the injury induced by H_2O_2 . The differences in the ability to suppress H_2O_2 -induced cell death 212 might be attributed to the different proteases employed¹⁸. During hydrolysis, enzymes 213 214 with special action sites generated a wide variety of smaller peptides and free amino 215 acids. Moreover, peptide chain length, size, level, and composition of free amino acids greatly influenced the antioxidant activities of the hydrolysates^{19, 20}. 216 217 Hydrolysates of Alcalase and Trypsin seemed to contain more anti-oxidative peptides 218 than the other hydrolysates.

3.3. RDPHs inhibited the ROS formation induced by H₂O₂

220 The intracellular content of ROS provides insights into the anti-oxidative activity

221	of RDPHs. In order to assess the levels of intracellular ROS in RDPHs-treated
222	HepG-2 cells, a DCFH-DA fluorescent probe was used. The fluorescent signal of
223	RDPHs prepared with various proteases for 2 h are shown in Figure 2A. There were
224	significant differences in the fluorescent signals of RDPHs obtained with various
225	proteases. In decreasing order they were: Alcalase > Trypsin > Neutrase > Protamex >
226	Flavourzye. Furthermore, the signal for each of the hydrolysates-protected groups was
227	considerably lower than that of the H_2O_2 -induced group (p < 0.05). The results show
228	that RDPHs can efficiently protect the cells from intracellular ROS damage induced
229	by H ₂ O ₂ . Additionally, RDP enzymatic hydrolysis by Alcalase showed the highest
230	scavenging activity of intracellular ROS. In contrast, the use of Flavourzye released
231	the least scavenging groups when compared to the other proteases. Images of the
232	HepG-2 cells treated with different proteases demonstrate the same result (Figure 2B).
233	Lower fluorescent signals indicate more scavenging of free radicals. As can be seen,
234	the brightness group was the one treated with $\mathrm{H_2O_2}$ alone. However, the average
235	brightness of the Alcalase-treatment group tended to be more muted than that of the
236	groups pre-treated with the other four kinds of RDPHs. These results provide
237	evidence that rice protein hydrolysates can effectively reduce oxidative damage
238	induced by H_2O_2 . Generally, exogenous treatment with H_2O_2 can induce abnormal
239	accumulation of intracellular ROS and damage cellular antioxidant defenses ²¹ .
240	Furthermore, excess ROS results in protein and lipid oxidation, causes destruction of
241	nuclear DNA and mitochondrial integrity, and ultimately leads to cell death ^{22, 23} .
242	However, pre-treatment of cells with RDPHs at the concentration of 1 mg/ml

Food & Function Accepted Manuscript

243 dramatically abrogated these negative impacts by reducing the ROS levels in cells, 244 indicating that the anti-apoptosis properties of the RDPHs was related to ROS 245 scavenging. Moreover, when cells were pre-treated with the same amount of added 246 hydrolysates, the considerable differences among RDPHs might be due to the fact that RDP was more susceptible to the enzymatic attack by Alcalase, resulting in a release 247 of anti-oxidative amino acids and a change in ROS scavenging ability, as previously 248 reported²⁴. The peptides released from RDP by various enzymes also reveal distinct 249 250 peptide chain lengths (Table 1), causing a discrepancy in the ability to enter cells and play a protective $role^{20}$. 251

3.4. Effects of RDPHs on the activities of antioxidant enzymes and lipid peroxide levels in H₂O₂-treated HepG-2 cells

254 As mentioned above, the levels of intracellular ROS increased sharply after the H₂O₂ damage (Figure 2A). Nevertheless, the redundant ROS could be eliminated by 255 several pivotal antioxidant enzymes, including SOD and GSH-Px^{25, 26}. As shown in 256 257 Figure 3A, the activities of SOD and GSH-Px in HepG-2 cells that were exposed to 258 H_2O_2 at 0.4 mM for 4 h were reduced by 50.59% and 49.07%, respectively, when 259 compared to the control group. However, pretreatment with RDPHs significantly 260 attenuated the loss of enzyme activity in H_2O_2 -treated cells. An H_2O_2 -induced 261 decrease in SOD activity was restored by 40.93% in HepG-2 cells pretreated with 262 Alcalase hydrolyzed RDP, which was higher than the restoration obtained by other 263 RDPHs. Similar to the results seen for SOD, GSH-Px and CAT activity rose significantly in HepG-2 cells that were pretreated with RDPHs when compared with 264

12

265	the control group, and the highest activity was observed for the Alcalase hydrolysates
266	(Fig.3B and C). On the other hand, Malondialdehyde (MDA), a product of lipid
267	peroxides induced by reactive oxygen species, was also detected. As can be seen in
268	Figure 3D, cells that were subject to H_2O_2 stress had a marked increase in the
269	intracellular MDA (nearly 4-fold vs the control group). However, the overproduction
270	of MDA induced by H ₂ O ₂ was significantly inhibited when the cells were pre-treated
271	with RDPHs. Again, the Alcalase hydrolysates showed the strongest inhibitory effect,
272	with the MDA content decreased by 49.28% compared to the control group. The
273	addition of hydrolysates obtained by the other four kinds of enzymes (Trypsin,
274	Neutrase, Protamex, and Flavourzye) reduced the content of MDA by 46.80%,
275	30.73%, 22.07%, and 10.94%, respectively, when compared to the control group.

276 In summary, excessive ROS readily results in damage of the biomolecules within 277 the cell, causes proteins to denature and aggregate along with the collapse of cell membrane, and eventually leads to cell apoptosis²⁷. Pre-incubation with RDPHs 278 clearly activates the intracellular antioxidant system, facilitates the expressions of 279 antioxidant enzymes, and thus protects the cells against H₂O₂-induced damage by 280 281 scavenging intracellular ROS. Additionally, the decrease of MDA content indicates 282 that RDPHs protects the fragile cell membrane from oxidative damage, inhibits the lipid peroxidation and, thus, prevents reactive oxygen from pouring into the cells²⁸. 283 One of the probable reasons for the inhibition of the H_2O_2 -induced oxidative stress by 284 RDPHs is found in the antioxidant activities of some peptide fractions²⁹. During the 285 286 same hydrolysis time, RDPs were substantially fragmented into peptides by the

cleavage reaction of the various proteases⁵. Moreover, there were differences in the exposure of polypeptide chains among the hydrolysates. Stronger inhibitory activity was observed for the hydrolysates prepared by Alcalase and Trypsin, indicating that both contain more essential amino acids and significantly smaller peptides, which greatly enhances the antioxidant properties and thereby effectively inactivates free radicals, than the other hydrolysates.

3.5. Effects of RDPHs on apoptosis of H₂O₂-treated HepG-2 cells

294 The degree of apoptosis was determined by the Annexin V-FITC/PI assay based 295 on flow cytometry. In Figure 4A, normal cells are seen in the lower left quadrant. Cells in the lower right quadrant are classified as early apoptotic. The cell population 296 297 in the upper right quadrant has been described as advanced apoptotic or necrotic. 298 When compared to the control group, H_2O_2 -injured HepG-2 cells increased the apoptosis rate from 6.64% to 44.98%. However, the ratio of apoptosis was 299 300 significantly decreased in response to RDPH pretreatment when compared with the 301 control group, indicating clearly that pre-incubation of HepG-2 cells with RDPHs 302 protects the cells against H_2O_2 -induced apoptosis. In terms of protective efficiency, Alcalase and Trypsin hydrolysates were found to be the most efficient, while 303 304 Flavourzyme protease hydrolysates were the least efficient, with apoptosis rates of 305 18.33%, 19.52%, and 38.13%, respectively, after 48 h of incubation. On the other 306 hand, accumulation of intracellular ROS leads to a profound alteration in 307 mitochondrial function. This is closely related to a steep fall in the level of mitochondrial membrane potential³⁰. To assess the change of $\Delta \psi m$ during apoptosis 308

309	induced by H_2O_2 in HepG-2 cells, flow cytometric analysis was carried out using JC-1.
310	In addition, a decrease of the red/green ratio indicates dissipation of the mitochondrial
311	$\Delta \psi m$. As shown in Figure 4B, a marked drop in the mitochondrial membrane
312	potential was observed when cells were exposed to 0.4 mM $\mathrm{H_2O_2}$ for 4 h (the
313	red/green ratio decreased from 2.62 ± 0.09 to 0.68 ± 0.7). Pre-incubation with various
314	hydrolysates significantly reduced the changes in $\Delta \psi m$ induced by H ₂ O ₂ , indicating
315	that H ₂ O ₂ -induced mitochondrial membrane depolarization was partly suppressed by
316	pretreatment with RDPHs. The inhibiting effect of RDPHs prepared with Neutrase,
317	Protamex, and Flavourzyme were relatively low, with a red/green ratio of 1.63 ± 0.12 ,
318	1.48 ± 0.11 , and 1.08 ± 0.07 , respectively. The inhibitory effect of RDPHs hydrolysed
319	with Alcalase and Trypsin were much higher than those hydrolysed with other
320	proteases, mainly due to their ability to scavenge high levels of intracellular ROS
321	(Figure 2B). Generally, H_2O_2 can diffuse freely into and out of cells and tissues,
322	destroying the intracellular environment, and ultimately leading to cell death via
323	apoptosis ^{25, 30} . In fact, cell apoptosis is one of the most easily demonstrable factors for
324	oxidation-induced changes. Furthermore, mitochondrion plays a fundamental role in
325	the apoptotic process, and the level of mitochondrial membrane potential ($\Delta \psi m$) is
326	considered to be an indicator of apoptosis ^{31, 32} . Our results reveal that RDPHs can
327	efficiently attenuate H_2O_2 -induced apoptosis and inhibit the decrease of the
328	mitochondrial membrane potential. These positive effects can be attributed to the
329	hydrolysates' capability to neutralize H ₂ O ₂ -induced oxidative stress to some extent
330	(Figure 2) and to ensure the membrane integrity of the mitochondria by avoiding

oxidation of the cell membrane (Figure 3C). Alcalase and Trypsin may be a better
choice for the production of peptides with anti-oxidative properties. Apart from high
peptide levels resulting from enzymatic hydrolysis, specific amino acid composition
may also be a vital factor for this choice, because both of the indicators are closely
correlated with oxidation resistance.

336 3.6. Molecular weight distribution and amino acid composition of RDPHs

337 RDPHs obtained by various proteases were found to exhibit antioxidant abilities by 338 protecting the cells against H_2O_2 -induced damage, and the protective effects were 339 noticeably distinct. This phenomenon may be associated with peptide length, which is closely related to biological activities³³. Smaller peptides with low molecular weights 340 341 resulting from enzymatic hydrolysis were more activated. Table 1 shows the 342 molecular weights of peptides hydrolysed by different proteases for 2 h. The peptides released from RDP by various enzymes were mainly composed of low 343 344 molecular-weight peptides (< 3 kDa). Meanwhile, differences in the distribution of 345 molecular weights were observed among the hydrolysates prepared by various 346 proteases. For Alcalase, the percentages for < 3 and 1-3 kDa fractions were 95.24% and 17.18%, respectively, while only half of the peptides hydrolyzed by Flavourzyme 347 348 had a molar mass lower than 1kDa. The neutral protease hydrolysates were mainly 349 composed of 1-3 and < 1 kDa fractions (22.17% and 70.39% for Neutrase, 20.19% and 68.9% for Protamex). In addition, the use of Trypsin also produced small peptides, 350 351 with 93.34% of the peptides falling in the range of 120 to 3,000 Da. This result 352 indicates that Alcalase was much more efficient at producing smaller peptides than

353 were the other proteases.

354 On the other hand, amino acid composition is considered to be critical to the 355 antioxidant properties of the hydrolysates. The amino acid composition of RDPHs at 356 2 h of hydrolysis time is indicated in Table 2. The RDPHs are rich in Asp, Glu, Arg, phe, pro, and Leu, most of which reportedly are related to antioxidant activities either 357 in their free forms or as residues in proteins and peptides³⁴. Moreover, after hydrolysis 358 359 with different enzymes, the amino acid compositions of RDPHs were noticeably 360 distinct, reflecting the differences in exposure of the terminal amino groups. As shown 361 in Table 2, the content of amino acids related to anti-oxidation (take Asp and Glu as representative)²⁴ was higher for the alkaline protease hydrolysates (Alcalase 22.76 362 g/100g and Trypsin 22.48 g/100g) when compared with the neutral protease 363 364 hydrolysates (21.58 g/100g for Neutrase; 20.96 g/100g for Protamex). In addition, the 365 use of Flavourzyme resulted in the lowest amount of Asp and Glu (14.85 g/100g).

These outcomes, in combination with the data for the H_2O_2 -induced cell damage model, suggests that peptide chain lengths and amino acids could greatly influence the antioxidant activities of the hydrolysates, and that Alcalase may be the best choice for the production of peptides with anti-oxidative properties.

4. Conclusion

This study demonstrated that the anti-oxidative peptides prepared from five commercially available and low cost proteases were highly capable of inhibiting H_2O_2 -induced oxidative damage in human HepG-2 cells. This protection was associated with the ability to neutralize H_2O_2 -induced ROS, thereby enhancing certain

375	antioxidant enzymes, protecting the fragile cell membrane from oxidative damage,
376	and alleviating cell apoptosis. In addition, the protective effects were significantly
377	influenced by the type of enzyme used for hydrolysis. Samples hydrolyzed with
378	Alcalase and Trypsin showed the strongest protective effects against H ₂ O ₂ -induced
379	cytotoxicity, while the Flavourzyme hydrolysate was the least efficient, possibly
380	because of the difference in molecular weight distribution and amino acid
381	composition. This work provided the foundation to produce peptides with high
382	antioxidant activity.
383	5. Acknowledgments
384	This research was supported by National Natural Science Foundation of China
385	(31471616& 31201381), a grant from National Key Technology R&D Program
386	(2012BAD34B02&2012BAD37B02) and the National High Technology Research
387	Development Program of China (863 Program) (2013AA102206).
388	
389	
390	
391	
392	
393	
394	
395	
396	

Food & Function Accepted Manuscript

18

397	References							
398	1.F. F. Shih, Nahrung-Food, 2003, 47, 420-424.							
399	2.A. Fiocchi, M. Travaini, E. D'Auria, G. Banderali, L. Bernardo and E. Riva, Clinical							
400	and Experimental Allergy, 2003, 33 , 1576-1580.							
401	3.YJ. Chen, YY. Chen, CT. Wu, CC. Yu and HF. Liao, Journal of Cereal							
402	Science, 2010, 51 , 189-197.							
403	4.I. Paraman, N. S. Hettiarachchy and C. Schaefer, Cereal Chemistry, 2008, 85,							
404	76-81.							
405	5.Q. Zhao, H. Xiong, C. Selomulya, X. D. Chen, H. Zhong, S. Wang, W. Sun and Q.							
406	Zhou, Food Chemistry, 2012, 134, 1360-1367.							
407	6.J. Chen, S. Liu, R. Ye, G. Cai, B. Ji and Y. Wu, Journal of Functional Foods, 2013,							
408	5, 1684-1692.							
409	7.T. Yang, H. Zhu, H. Zhou, Q. Lin, W. Li and J. Liu, Food Research International,							
410	2012, 48 , 736-741.							
411	8.W. Chanput, C. Theerakulkait and S. Nakai, Journal of Cereal Science, 2009, 49,							
412	422-428.							
413	9.K. Zhou, C. Canning and S. Sun, Lwt-Food Science and Technology, 2013, 50,							
414	331-335.							
415	10.A. A. Adly, Res J Immunol, 2010, 3 , 129-145.							
416	11.M. V. Eberhardt, K. Kobira, A. S. Keck, J. A. Juvik and E. H. Jeffery, Journal of							
417	Agricultural and Food Chemistry, 2005, 53, 7421-7431.							
418	12.L. Goya, Martín, M Angeles, Ramos, Sonia, Mateos, Raquel, Bravo, Laura,							
419	Current Nutrition & Food Science, 2009, 5, 56-64.							
420	13.K. L. Wolfe and R. H. Liu, Journal of Agricultural and Food Chemistry, 2007, 55,							
421	8896-8907.							
422	14.H. Hong and G. Q. Liu, <i>Life Sciences</i> , 2004, 74 , 2959-2973.							
423	15.A. T. Serra, A. A. Matias, R. F. M. Frade, R. O. Duarte, R. P. Feliciano, M. R.							
424	Bronze, M. E. Figueira, A. de Carvalho and C. M. M. Duarte, <i>Journal of</i>							
425	<i>Functional Foods</i> , 2010, 2 , 46-53.							
426	16.F. Cheli and A. Baldi, <i>Journal of Food Science</i> , 2011, 76, R197-R205.							
427	17.D. L. Felice, J. Sun and R. H. Liu, <i>Journal of Functional Foods</i> , 2009, I , 109-118.							
428	18.S. Y. Jun, P. J. Park, W. K. Jung and S. K. Kim, European Food Research and							
429	Technology, 2004, 219 , 20-26.							
430	19.H. M. Chen, K. Muramoto, F. Yamauchi, K. Fujimoto and K. Nokihara, <i>Journal of</i>							
431	Agricultural and Food Chemistry, 1998, 46 , 49-53.							
432	20.H. C. Wu, H. M. Chen and C. Y. Shiau, Food Research International, 2003, 36,							
433	949-95/.							
434	21.D. Y. Yu, S. J. Cringle, V. A. Alder and E. N. Su, <i>The American journal of</i>							
435	physiology, 1994, 207, H2498-2007.							
436	22. N. INAKA, I. IVIUIAGUCIII, I. FIOSIII AND A. HIFAO, Antioxidants & Redox Signaling,							
43/	2000, 10, 1003-1094. 22 M. D. Tomple Derrone Cabriel C. Dewes Jan W. Trends in cell history, 2005, 15							
438	25. W. D. Temple, Ferrone, Gabrier G, Dawes, Ian W., <i>Trends in cell biology</i> , 2005, 15 , 210, 226							
439	517-520.							

440	24.A. Saiga, S. Tanabe and T. Nishimura, Journal of Agricultural and Food Chemistry,
441	2003, 51 , 3661-3667.
442	25.B. Halliwell, Nutrition Reviews, 2012, 70, 257-265.
443	26.B. Ryu, S. W. A. Himaya, ZJ. Qian, SH. Lee and SK. Kim, Peptides, 2011, 32,
444	639-647.
445	27.D. A. Butterfield, A. Castegna, C. B. Pocernich, J. Drake, G. Scapagnini and V.
446	Calabrese, Journal of Nutritional Biochemistry, 2002, 13, 444-461.
447	28.Y. H. Cheng, Z. Wang and S. Y. Xu, Journal of Central South University of
448	Technology, 2006, 13 , 160-165.
449	29.H. M. Chen, K. Muramoto, F. Yamauchi and K. Nokihara, Journal of Agricultural
450	and Food Chemistry, 1996, 44, 2619-2623.
451	30.Z. L. Wei, O. Bai, J. S. Richardson, D. D. Mousseau and X. M. Li, Journal of
452	<i>Neuroscience Research</i> , 2003, 73 , 364-368.
453	31. M. Leist and M. Jaattela, Nature Reviews Molecular Cell Biology, 2001, 2,
454	589-598.
455	32. HC. Wang, JH. Yang, SC. Hsieh and LY. Sheen, <i>Journal of Agricultural</i>
456	and Food Chemistry, 2010, 58, 7096-7103.
457	33. C. C. Udenigwe and R. E. Aluko, Journal of Food Science, 2012, 77,
458	R11-R24.
459	34. L. Zhu, J. Chen, X. Tang and Y. L. Xiong, <i>Journal of Agricultural and Food</i>
460	<i>Chemistry</i> , 2008, 56 , 2714-2721.
461	
462	
102	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	

473 Fig. 1. (A) (B) Cell viability in H₂O₂-injuried HepG-2 cell. Cells were challenged 474 with H₂O₂ in 0.4 mM concentration for 2 h, 4 h and 6 h respectively, or for 4 h in 475 concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 mM. (C) The cytotoxic effects of RDPHs on 476 HepG-2 cells. Cells were co-cultured with RDPHs for 72 h and measured by CCK-8 477 analysis. (D) Proliferative effects of RDPHs on HepG-2 cells. Cells were 478 pre-incubated with RDPHs (1.00 mg/mL) for 24 h or 48 h prior to treatment with 0.4 479 mmol/L H₂O₂ for 4 h. After the treatment, cell viability was determined by CCK-8 480 analysis. Data were shown as means \pm S.D.

Food & Function Accepted Manuscript

Fig. 2. Effect of RDPHs on intracellular ROS level. HepG-2 cells were pretreated with RDPHs for 48 h before treatment with 0.4mM H_2O_2 for 4 h. Then cells were exposed to DCFH-DA for 30 min. DCF fluorescence of treated cells were measured by laser scanning confocal microscope. Data were shown as means \pm S.D.

Fig. 3. The effect of RDPHs on SOD, GSH-Px, CAT and MDA activity in H₂O₂-treated HepG-2 cells. RDPHs were added to the culture 48 h prior to H₂O₂ addition, then cells were incubated with 0.4 mM H₂O₂ for 4 h. Data were shown as means \pm S.D.

Fig. 4. Protective effects of RDPHs against H_2O_2 -induced apoptosis in HepG-2 cells. The cells were pretreated with RDPHs for 48 h before treatment with 0.4 mM H_2O_2 for 4 h. Then, cells were measured by Flow cytometric. (A) Apoptosis detection: Annexin V-FITC assay of HepG-2 cells. (B) Alterations of mitochondrial membrane potential ($\Delta\psi$ m) detection : JC-1 assay of HepG-2 cells. Data were shown as means ± S.D.

531

532

533

534

535

536

	Protease	Percentage of RDPHs fractions (%)				
		>5kD	3-5 kD	1-3 kD	<1 kD	
	Alcalase 2.4L	1.68±0.03	3.09±0.08	17.18±0.13	78.06±0.15	
	Trypsin	2.94±0.07	3.72±0.09	16.39±0.15	76.95±0.09	
	Neutrase 0.8L	2.25±0.10	5.19±0.06	22.17±0.07	70.39±0.21	
	Protamex	6.17±0.09	4.74±0.12	20.19±0.11	68.9±0.11	
	Flavourzyme	13.67±0.11	9.64±0.09	27.08±0.09	49.62±0.08	
538						
539						
540						
541						
542						
543						
544						
545						
546 547						
548						
549						
550						
551						
552						
553						
554						
555						
556						
557						
558						
559						
561						
562						
563						
564						
565						

Table 1. The molecular weight distribution profiles of RDPHs

	RDPHs prepared by five enzymes				
Amino acid	Alcalase 2.4L	Trypsin	Neutrase 0.8L	Protamex	Flavourzyme
Asp	8.26±0.17	8.12±0.09	8.05±0.05	7.66±0.04	5.32±0.12
Glu	14.50±0.10	14.36±0.22	13.54±0.15	13.30±0.16	9.53±0.32
Ser	3.03±0.10	3.15±0.16	3.17±0.14	3.02±0.11	2.04±0.15
His	1.95±0.06	2.09±0.06	1.95±0.08	$1.90{\pm}0.04$	1.22±0.09
Gly	3.68±0.05	3.79±0.14	3.83±0.04	3.76±0.06	2.47±0.07
Thr	2.57±0.06	2.65±0.04	2.60±0.04	2.53±0.06	1.69 ± 0.04
Arg	7.12±0.13	7.07±0.19	6.97±0.05	6.76±0.06	4.42±0.22
Ala	4.21±0.13	4.29±0.08	4.20±0.26	4.12±0.19	3.01±0.27
Tyr	2.87±0.17	3.18±0.13	3.02±0.07	3.05±0.06	2.26±0.13
Cys-s	0.49±0.32	0.46±0.12	0.45±0.19	0.43±0.28	0.10±0.33
Val	5.38±0.07	5.44±0.04	5.04±0.07	4.93±0.08	3.20±0.08
met	1.61±0.03	1.53 ± 0.07	1.38±0.07	1.41±0.10	0.50 ± 0.04
Phe	4.28±0.09	4.35±0.05	4.22±0.07	4.16±0.14	2.70±0.19
Ile	3.71±0.10	3.74±0.05	3.52±0.06	3.43±0.08	2.27±0.29
Leu	6.20±0.03	6.27±0.10	5.95±0.11	5.77±0.11	3.90±0.11
Lys	2.88±0.43	3.00±0.35	2.91±0.49	2.87±0.33	2.16±0.75
Pro	3.55±0.07	3.45±0.13	3.34±0.04	3.34±0.06	2.44±0.04

Table 2. Amino acid composition (g/100 g of protein) of RDPHs.

568

-