Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	In vitro Assessment of Antimicrobial Potentials of Lactobacillus helveticus Strains
2 3	Isolated from Traditional Cheese in Sinkiang China against Food-borne Pathogens
4	Xin Bian, Smith Etareri Evivie, Zafarullah Muhammad, Guang-Wen Luo,
5	Hong-Zhang Liang, Na-Na Wang and Gui-Cheng Huo [*]
6 7	Affiliations:
8	Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural
9	University, Harbin, Heilongjiang, 150030, China
10	
11	
12	*Corresponding Author's Details:
13	Name: Gui-Cheng Huo [*] , PhD, Professor of Dairy Science
14	Tel: 0086-451- 55191807
15	Fax: 0086-451-55190577
16	E-mail address: guichenghuo1958@163.com
17	Address: Key Laboratory of Dairy Science-Ministry of Education, Northeast
18	Agricultural University, Harbin, Heilongjiang, 150030, China
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29 Abstract

30 The *Lactobacillus helveticus*, an obligatory hetero-fermentative LAB, as it is Generally 31 Recognized as Safe (GRAS) and gaining popularity for application in dairy products. Lactic acid 32 bacteria (LAB) plays remarkable role to inhibit the growth of pathogenic bacteria in food 33 products, without disturbing the sensory attributes of food. In this study, Screening of 34 antimicrobial potential of Lactobacillus helveticus KLDS1.8701 against four food-borne pathogens including Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 35 36 14028, Staphylococcus aureus ATCC 25923, Escherichia coli.O157:H7 ATCC 43889 in vitro 37 was inspected by using Oxford cup method and mixed culture inhibition assays. The organic 38 acids productions and antimicrobial potential of cell-free supernatants (CFS) have been 39 evaluated via different treatments and analysis by high performance liquid chromatography 40 (HPLC). Analysis results revealed that KLDS1.8701 exhibited highest antimicrobial potential as 41 compared to other antimicrobial strains. The antimicrobial activity of KLDS1.8701 resulted from 42 organic acids in culture and CFS. From the study, it was depicted that carbon sources as well as 43 organic acids production accelerate the antimicrobial activity of KLDS1.8701 and the 44 fructooligosaccharides (FOS) were considered best to improve proliferation of KLDS1.8701 45 support its the antimicrobial action. Results of mixed culture inhibition assay showed part of 46 antimicrobial activity resulted from inhibitory action of bacteria itself in culture, and this action 47 required cellular contact between food-borne pathogens and KLDS1.8701. Conversely, results of 48 antimicrobial spectrum assay revealed that Some Lactobacilli were remained unaffected by 49 KLDS1.8701. KLDS1.8701 might be favorable to be also used as a supplementary starter in 50 fermented dairy productions. Furthermore, KLDS1.8701 could survive well under GI tract 51 conditions. Further studies on in vivo inhibition assays and probiotic effects are recommended.

52

Key words: Antimicrobial potentials, Assay, Food-borne diseases, *Lactobacillus helveticus*,
 food-borne pathogens, Tolerance to GI tract

- 55
- 56
- 57
- 58
- 59

60 1 Introduction

61	Food-borne diseases (FBDs), defined by the World Health Organization was the ingestion
62	of foodstuffs contaminated with microorganisms or chemicals. The adverse effects of
63	contaminated foods on human health have been reported all over the world. It has been published
64	that, in the United States, millions of people have been died due to FBDs. ^{1,2,3,4} Multi-organ
65	failure, gastrointestinal, complications in immunological, gynaecological and neurological are
66	common symptoms of attack of different food-borne pathogens, such as Listeria monocytogenes,
67	Salmonella typhimurium, Staphylococcus aureus, Escherichia coli.O157. Consequently, the
68	investigation and control of FBDs are multi-disciplinary tasks requiring skills in the area of
69	clinical medicine, epidemiology, laboratory medicine, food microbiology and chemistry, food
70	safety, food control, risk communication as well as food management. ^{1,5,6}

71 Lactic acid bacteria (LAB) plays remarkable role to inhibit the growth of pathogenic bacteria in food products, without disturbing the sensory attributes of food.^{7,8} Strong evidence 72 has been reported about the use of probiotic LABs for the prevention of antibiotic associated 73 diarrhea.⁹ Probiotic LABs have ability to produce substances organics acids (mainly lactic and 74 75 acetic acids) and bacteriocins etc. which are considered as antimicrobial compounds. Probiotic 76 bacteria adhere to intestinal epithelial cells prevent the colonization of pathogenic bacteria as well as stimulate immunity in the host.^{10,11,12} Some *in vitro* studies have confirmed the ability of 77 probiotics to obstruct the growth of pathogens like, *Escherichia coli* and *Campylobacter jejuni*,¹³ 78 79 to compete for adhesion to Caco-2 cells and prevent the enteropathogens from CaCO₂ cell surface layer.¹⁴ However, many studies have demonstrated that, the use of LABs in different food 80 81 products to increase its food chain value, ultimate enhancement in the food security, which

yielded positive results in line with IDF's requirements for probiotic bacteria content in dairy
 products.^{15,16}

84	The Lactobacillus helveticus, an obligatory hetero-fermentative LAB, as it is Generally
85	Recognized as Safe (GRAS) gaining popularity for application in dairy products. Lactobacillus
86	helveticus, used as a starter culture in the manufacture of semi-hard cheeses and fermented milk
87	products. ^{17,18,19} It has been revealed that this microorganism produces substantially higher
88	amounts (549 mg/mL) of exo-polysaccharides (EPS) under acidic culture conditions when grown
89	in milk at 37°C. ²⁰ Traditionally, <i>L. helveticus</i> used for the manufacture of Swiss-type cheeses and
90	long-ripened Italian cheeses i.e. Emmental, Gruyere, Grana Padano and Parmigiano Reggiano. It
91	has the potential to produce bioactive peptides or bacteriocins, and exerts symbiotic effect, when
92	associated with prebiotics in fermented dairy products. ²⁰ Thus, this multifunctional LAB strain
93	holds promising potentials for the food and dairy industries.

94 Although many researches have been conducted to disclose the use of Lactobacillus *rhamnosus*,²¹ *Lactobacillus plantarum*²² as a probiotic, but less literature is available about the 95 96 multiplications of *Lactobacillus helveticus*. In present study, we explored the antimicrobial 97 properties of five strains of Lactobacillus helveticus isolated from traditional cheese in Sinkiang 98 and preserved in KLDS (KLDS 1.0203, KLDS 1.8701, KLDS 1.9202, KLDS 1.9204 and KLDS 99 1.9207) against four food-borne pathogens: Listeria monocytogenes ATCC 19115, Salmonella 100 Typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923, Escherichia coli.O157:H7 101 ATCC 43889. We also examined the antimicrobial spectrum of selected Lactobacillus helveticus 102 strains used in this study, as well as the effects of carbon source on the antimicrobial properties 103 of selected Lactobacillus helveticus and part of antibacterial mechanism were also studied. It is

104	expected that these findings will upturn the use of <i>L. helveticus</i> in the dairy and allied-industries.
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	2 Materials and methods
121	2.1 Bacteria Strains and Growth Conditions
122	Lactobacillus helveticus KLDS 1.9202, 1.9204, 1.9207, 1.0203, 1.8701 and other
123	Lactobacilli used for antimicrobial spectrum were isolated from traditional cheese in Sinkiang
124	and stored in Key Lab Dairy Science (KLDS), Ministry of Education, China. They were
125	identified by 16S rDNA sequence analysis ²³ and were anaerobically incubated in modified

126	deMan, Rogosa, and Sharpe (mMRS) broth at 37°C. The components of 100 mL mMRS were
127	shown in Table 1. Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 14028,
128	Staphylococcus aureus ATCC 25923, Escherichia coli.O157:H7 ATCC 43889 (provided by
129	Heilongjiang entry-exit Inspection and Quarantine Bureau, China) used as the indicator
130	bacterium for antimicrobial assays were incubated in brain heart infusion broth (BHI; Beijing
131	China) in aerobic condition at 37°C. Aspergillus oryzae 3.800, Aspergillus niger 3.1858, 3.4309,
132	Rhizopus 3.866 (obtained from Institute of Microbiology Heilongjiang Academy of Sciences,
133	China) and Bacillus subtilis used for antimicrobial spectrum were cultured in Potato Dextrose
134	Agar Medium (PDA) or Czapek–Dox Medium at 28°C or BHI at 37°C.
135	2.2 Preparation of cell-free supernatants (CFS)
136	2 mL Lactobacillus helveticus strain (10 ⁸ CFU mL ⁻¹) was inoculated into 100 mL of mMRS
137	broth and incubated for 24 h at 37 $^{\circ}$ C. Then culture was centrifuged at 10,000×g for 10 min at 4 $^{\circ}$ C.
138	The bacteria precipitate was discarded and the CFSs were treated with 2 M NaOH for different pH
139	levels (pH=3.5, 4, 5, 6, 6.5 and 7). The remaining CFSs after adjusting at pH=6.5 were treated
140	with 1 mg mL ⁻¹ proteinaseK, 1 mg mL ⁻¹ papain and 5 mg mL ⁻¹ catalase for 2 h, respectively
141	according to the method of Ghanbari, et al. ²⁴ . Then they were readjusted at the initial pH by 2 M
142	hydrochloric acid in order to recover to original conditions and exclude effects of proteases. The
143	last three samples were used as control. All of supernatants were filter-sterilized, through a sterile
144	0.22 µm-pore-size filter by an injector. CFS were obtained and preserved in a refrigerator at 4°C.
145	2.3 Screening of antimicrobial potential of Lactobacillus helveticus using Oxford cup method
146	Antimicrobial potential of Lactobacillus helveticus against food-borne pathogens were
147	investigated by Oxford cup method according to Wang, et al., and Wang, et al, ^{25,26} with some

148	modifications. Firstly, 15 mL of 1.5% (w/v) agar medium was poured into plate and allowed to
149	solidify. Then 1% of indicator pathogen strain in the stationary phase $(10^7 - 10^9 \text{ CFU} \cdot \text{mL}^{-1})$ was
150	inoculated into 15 mL of 1.2% (w/v) of BHI agar at 45° C. The mixtures were poured onto agar
151	medium and allowed to solidify. Three Oxford Cups were put on BHI agar surface and pressed
152	lightly so that there is no interspace between cups and agar surface. Afterwards, 200 μL of
153	culture and the same volume of cell-free supernatants (CFS) by different process were poured
154	into two cups, respectively. 50 μ L of sterile water added into the rest cup as a control. The plates
155	were incubated under anaerobic conditions at 37°C for 24 or 48 h and antimicrobial activity
156	reflected by growth-free inhibition zones around the Oxford Cups. Inhibition zones were
157	measured in mm from the edge of the cups. This experiment was carried out in triplicate.
158	2.4 Antimicrobial spectrum of Lactobacillus helveticus KLDS1.8701
159	The antimicrobial spectrum of Lactobacillus helveticus KLDS1.8701 was assessed against
160	18 indicator strains including food-borne pathogens, fungi, Bacillus subtilis and Lactobacillus
161	(shown in Table 3) using Oxford Cups method. Firstly, 15 mL of 1.5% (w/v) agar medium
162	poured intoplate and waited for becoming solid. 1% of indicator strain in the stationary phase
163	was inoculated into 15 mL of 1.2% (w/v) of appropriate agar medium at 45° C. The mixture was
164	poured onto agar medium and allowed to solidify. The remaining procedure was carried out
165	following the description as outlined in section 2.3. The plates were incubated under anaerobic
166	conditions at appropriate temperature for 24 or 48 h and measured inhibition zones in mm
167	around the Oxford Cups. This experiment was carried out in triplicate.
168	2.5 Determination of antimicrobial substances of Lactobacillus helveticus KLDS1.8701

169 In order to determine the antimicrobial substances of KLDS1.8701, CFS were processed by

170	adding different component including 2 M NaOH, 5 mg mL $^{-1}$ catalase and 1mg mL $^{-1}$
171	proteinase K and 1mg mL ⁻¹ papain according to preparation methods of CFSs in section 2.2. CFS
172	with no process, was as control. The remaining antimicrobial activities against L. monocytogenes
173	ATCC 19115, Salmonella Typhimurium ATCC 14028 and Escherichia coli.O157:H7 ATCC
174	43889, were assessed using an indicator bacteria by Oxford Cups method follow as described in
175	section 2.4. The data were presented as percentage (%). Each experiment was replicated three
176	times.
177	2.6 Determination of organic acid production
178	Organic acids concentration was determined by following the procedure of Zhang et al. ¹⁴
179	with some modifications. The yields of organic acids produced by KLDS 1.8701 after culturing
180	24 h in mMRS were determined by high performance liquid chromatography (HPLC). Acid
181	separation was using an AMINEX HPX-87H ion exchange column (BioRad Labs, Berkeley,
182	California, USA) and organic acids were detected by differential refraction detector using 5mM
183	H ₂ SO ₄ . Acid identification was carried out by comparing the retention times of the samples with
184	that of the standards of organic acids.

185 2.7 Effect of carbon source on Antimicrobial activity of Lactobacillus helveticus KLDS1.8701

186 1% of fructose, glucose, lactose, sucrose and FOS as supplementation carbon sources, were 187 added into mMRS broth with 1% glucose respectively and mMRS broth with 1% glucose was 188 used as control. Then *Lactobacillus helveticus* KLDS1.8701 was inoculated into these MRS 189 broths at 37°C for 24h. part of cultures via appropriate dilutions, every four hours were spread 190 onto mMRS agar plates and incubated at 37°C for 24 h. Colonies of KLDS 1.8701 was counted. 191 Then CFSs of *Lactobacillus helveticus* KLDS1.8701 were prepared by the rest part of cultures as

211

Food & Function

192	previously described in section 2.2. Antimicrobial activities of CFSs were carried out as
193	mentioned above in section 2.3. The organic acid productions of CFSs supplemented with
194	different saccharides were measured by HPLC. Experiments were carried out every 4 hours and
195	in triplicate.
196	2.8 Mixed culture inhibition assay
197	Antimicrobial potential against L. monocytogenes ATCC 19115, Salmonella Typhimurium
198	ATCC 14028, Escherichia coli.O157:H7 ATCC 43889 of KLDS1.8701 cell was carried out by
199	the use of mixed culture method. Equivoluminal of pathogens above (10^3 CFU mL ⁻¹) and
200	KLDS1.8701 (10^6 CFU mL ⁻¹) were co-inoculated into BHI broth and a diffusion chamber
201	separated with a filter size of 0.22 μm with BHI broth according to Saraoui, et al. 27 and incubated
202	at 37 $^\circ \rm C$ for 24 h. 1% pathogens above (10 3 CFU mL $^{-1})$ and 1% KLDS1.8701 (10 6 CFU mL $^{-1})$
203	monocultured into BHI broth under the same conditions were used as control. All of cultures via
204	appropriate dilutions, every four hours were spread onto BHI and mMRS agar plates and
205	incubated at 37°C for 24 h. Colonies of pathogens and KLDS 1.8701 were counted. The pHs of
206	above mentioned cultures was measured by PHS-3C electrode pH meter (METTLER TOLEDO,
207	Switzerland), after every four hours. Each experiment was carried out in triplicate.
208	2.9 Tolerance of KLDS 1.8701 under conditions simulating the human GI tract
209	Tolerance of the KLDS 1.8701 to simulated gastric juice was tested according to the method
210	of Charteris et al. 28 with some modifications. KLDS 1.8701was cultured in mMRS at 37 $^\circ C$ for

212 (pH 7.3) and suspended in PBS. 0.3 mg/mL pepsin was added into PBS (pH=2, 2.5, 3, 3.5 and 4)

24h, and its cells were collected at 4°C for 5 min (10000 \times g), washed twice with PBS buffer

as simulated gastric juice. 3% (w/w, nearly 10⁸ CFU mL⁻¹) of washed cell suspensions were

Food & Function Accepted Manuscript

214	inoculated into 1 mL simulated gastric juice and 0.3 mL NaCl (0.5%, w/v), mixed and incubated
215	at 37 $^{\circ}$ C. Viable counts were calculated at 0, 1, 2 and 3h for testing the tolerance of gastric juice
216	during the digest food in the stomach. Tolerance to small intestine juice was tested in PBS
217	solution (pH 8.0) with 0.1 mg/mL pancreatin (Sigma). 3% (w/w, nearly 10^8 CFU mL ⁻¹) of
218	washed cell suspensions were added into and incubated at 37° C. Viable counts were calculated at
219	0, 1, 2 and 3h for testing the tolerance of gastric juice during the digest food in small intestinal. ²⁹
220	Tolerance to bile salt was tested in PBS with 1% (w/v) Oxgall (Sigma). 4% (w/w, nearly 10^8
221	CFU mL ⁻¹) of washed cell suspensions were added into and incubated at 37° C. Viable counts
222	were calculated at 0, 1, 2 and 3h for testing the tolerance of bile salt during the digest food in
223	small intestinal. All of experiments above were carried out in triplicate.
224	2.10 Statistical analysis
224 225	2.10 Statistical analysis All the analysis done in triplicate manner and collected the data. Statistical treatment of data
225	All the analysis done in triplicate manner and collected the data. Statistical treatment of data
225 226	All the analysis done in triplicate manner and collected the data. Statistical treatment of data was conducted by analysis of variances (ANOVA) of SPSS PASW Statistics v18.0 and Duncans
225 226 227	All the analysis done in triplicate manner and collected the data. Statistical treatment of data was conducted by analysis of variances (ANOVA) of SPSS PASW Statistics v18.0 and Duncans Test was used to compare the means when the overall P value of the experiment was below the
225 226 227 228	All the analysis done in triplicate manner and collected the data. Statistical treatment of data was conducted by analysis of variances (ANOVA) of SPSS PASW Statistics v18.0 and Duncans Test was used to compare the means when the overall P value of the experiment was below the value of significance ($P < 0.05$). Mean values and the standard errors were calculated and
 225 226 227 228 229 	All the analysis done in triplicate manner and collected the data. Statistical treatment of data was conducted by analysis of variances (ANOVA) of SPSS PASW Statistics v18.0 and Duncans Test was used to compare the means when the overall P value of the experiment was below the value of significance ($P < 0.05$). Mean values and the standard errors were calculated and
 225 226 227 228 229 230 	All the analysis done in triplicate manner and collected the data. Statistical treatment of data was conducted by analysis of variances (ANOVA) of SPSS PASW Statistics v18.0 and Duncans Test was used to compare the means when the overall P value of the experiment was below the value of significance ($P < 0.05$). Mean values and the standard errors were calculated and

- 234
- 235

237 3.1 Screening of antimicrobial potential by Oxford cup method

238 The results of the antimicrobial potential of Lactobacillus helveticus strains against all 239 provided food-borne pathogens were studied by Oxford cup method and the results are shown in 240 Tables 2 and 3. KLDS1.8701 showed the strongest antimicrobial capability of all Lactobacillus 241 helveticus strains against all provided pathogens especially, inhibition zone of L. monocytogenes 242 ATCC 19115 reached 12.63±0.11 mm by culture and 8.79±0.04 mm by CFS, but its CFS had no 243 significant effect (P<0.05) on Staphylococcus aureus, KLDS 1.0203 and its CFS only showed 244 antimicrobial capability against L. monocytogenes, (7.71±0.07 mm and 5.35±0.13 mm 245 respectively) but no significant effect (P<0.05) on S.typhimurium, Staphylococcus aureus and 246 Escherichia coli. KLDS 1.9202, KLDS 1.9204 and KLDS 1.9207 all showed antimicrobial 247 capability against L. monocytogenes and Staphylococcus aureus, but no effect (P < 0.05) on 248 S.typhimurium and Escherichia coli. Furthermore, inhibition zones by their cultures were larger 249 than those by their CFSs. Results above also suggest that part of antimicrobial capability of 250 KLDS 1.8701 might be from bacteria itself. So based on the results of the screening of 251 antimicrobial potential, Lactobacillus helveticus KLDS 1.8701 were found to be most effective 252 for the inhibition of food-borne pathogens and used in further experiments.

There has been a significant interest in the use of LAB for application to inhibit pathogens in vitro. Multiple species of the genera *Lactobacillus, Lactococcus*, have been studied for their ability to inhibit the growth of Gram-positive and Gram-negative pathogens in model systems.³⁰ In this study, *Lactobacillus helveticus* KLDS1.8701 showed strong antimicrobial activities against two Gram-negative pathogens (*Salmonella Typhimurium* ATCC 14028, *Escherichia*

Food & Function Accepted Manuscript

258 coli.O157:H7 ATCC 43889) and one Gram-positive pathogen (Listeria monocytogenes ATCC 259 19115). Result might suggest that, KLDS1.8701 was more useful to inhibit Gram-negative 260 pathogens than Gram-positive pathogens. The antimicrobial activity of Lactobacillus helveticus PJ4 and 50P1 against pathogens has been reported.^{31,32} They also showed strong antimicrobial 261 262 activities against Salmonella typhimurium and Escherichia coli. and large inhibition zones were 263 obtained. 264 3.2 Antimicrobial Spectrum of KLDS1.8701 265 The results for the antimicrobial spectrum of KDLS 1.8701 are as shown in Table 3. 266 KLDS1.8701 had antimicrobial capability against all food-borne pathogens, Bacillus subtilis, 267 fungi except for, Aspergillus niger 3.4309 and some Lactobacillus strains such as L. paracasei 268 KLDS1.0201, L. plantarum KLDS 1.0344, L. helveticus KLDS 1.9202 and L. helveticus KLDS

269 1.9207 which inhibition zones less than 5mm. However, there were no significant effects 270 (P<0.05) on some provided LABs used as starter cultures in fermented dairy products including 271 Lactobacillus Bulgaricus KLDS 1.0205, Sterptococcus Thermophilus KLDS 3.0207, Lactococcus 272 lactis KLDS 4.0325, Lactobacillus helveticus KLDS 1.0203 and 1.9204. Inhibition zones of 273 KLDS1.8701 culture for most microbes were also larger than those of its CFSs. Results indicated 274 that KLDS1.8701, showed a relatively stronger and broader spectrum of antibacterial effects, but 275 did not impede growth of some LABs used as starter cultures. So this might suggest 276 KLDS1.8701 could be used as a supplementary start culture in yogurt and cheese productions.

277 Previous antimicrobial spectrum assays have been carried out in many studies to confirm 278 wide antimicrobial activities by bacteriocins of *Lactobacillus* species and the results showed 279 strong antimicrobial activities against some *Lactobacillus* strains.^{33,34} However, some studies

280	showed that the antimicrobial activity of L. casei Shirota and L. rhamnosus GG was solely due to
281	the production of lactic acid. ³⁵ And in vitro evaluation of the antimicrobial activities of L .
282	helveticus (PXN 45) and other Lactobacillus strains also have found evidence for organic acids
283	against pathogens. ¹⁰ So it is important to confirm the antimicrobial substances which showed a
284	relatively stronger and broader inhibitory spectrum in the study.
285	3.3 Determination of antimicrobial substances
286	Table 4 showed antimicrobial activities of CFSs of KLDS1.8701 treated with NaOH at
287	different pH, proteinase K, Papain and catalase. The CFSs remained antimicrobial activities after
288	2 h treatment with catalase, proteinase K, papain and adjusted pH from 3.5 to 4. When pH was
289	increased from 4 to 6, antimicrobial activities of CFSs declined and disappeared after adjusting
290	at pH 6.5 and 7. Results suggested that antimicrobial activity of CFS of KLDS1.8701 was
291	primarily related to organic acids produced by this strain.
292	Most of the LABs produce organic acids by the main metabolites of glucose fermentation.
293	Lactobacillus helveticus is an obligatory heterofermentative LAB. So component of organic
294	acids produced were not just lactic acid. In this study, it was confirmed that composition of
295	organic acids produced by KLDS1.8701 were primarily acetic acid and lactic acid. Concentration
296	of total organic acids after 24 h fermentation reached 12.63 mg mL ⁻¹ (Fig. 1). Concentrations of
297	acetic acid and lactic acid were 10.74 mg mL ⁻¹ and 1.89 mg mL ⁻¹ , respectively (data not shown).
298	This is consistent with the findings of Tejero-Sarinena, et al., ¹⁰ who reported the production of
299	lactic acid and acetic acid by Lactobacillus bacteria. Production of lactic acid and acetic acid was
300	nearly the same as result in our study. The findings of this study also agree with earlier assertions

their ability to produce antimicrobial properties. Such as organic acids (mainly lactic and acetic
acids) as well as stimulate immune processes in the host, thus imputing health-promoting
features.^{36,11,12}

305 3.4 Antimicrobial activity of KLDS1.8701 cultured by adding different carbon source

306 Results in this part of study showed that concentrations of total organic acids and viable 307 counts of KLDS1.8701 in mMRS supplemented with different carbon sources both increased 308 during 24 cultures, and the data of FOS group was higher than other saccharides groups (Fig 1). 309 It also suggests that FOS could improve growth of KLDS1.8701 and increase productions of 310 total organic acids much better than other saccharides. It was also observed that KLDS1.8701 311 which cultured in mMRS supplemented with different carbon sources all showed antimicrobial 312 activities against L. monocytogenes ATCC 19115, Salmonella typhimurium ATCC 14028 and 313 Escherichia coli.O157:H7 ATCC 43889 (Fig.2). The antimicrobial activities observed were due 314 to the presence of FOS, fructose, lactose, glucose and sucrose along with productions of organic 315 acids. Overall, results not only showed that carbon source played a crucial role on enhancing the 316 production of organic acids (lactic and acetic), thus giving rise to the corresponding 317 antimicrobial capability of KLDS1.8701 but also that FOS was a better carbon source for 318 antimicrobial actions than other saccharides. These observations are in line with a previous 319 research which compared LABs cultured in mMRS with FOS to mMRS with glucose in order to 320 study the effect of carbon source on antimicrobial activities of LABs. Results from that study showed that FOS was more useful than glucose to inhibit pathogens.¹⁰ Prebiotics have been 321 applied to the food industry as functional ingredients in food products.³⁷ Previous studies have 322 323 demonstrated that FOS could stimulate the growth of probiotic such as bifidobacteria. It has also

324

Food & Function

been shown to increase the growth of lactic acid bacteria (LAB) as well as butyrate and lactate

325	production.given these properties, FOS may thus benefic intestinal inflammation. ^{38,39} These
326	observations were also found for KLDS1.8701 in our studies. That is to say that FOS could also
327	be useful to improve the growth and probiotic action such as antimicrobial activities of some
328	Lactobacillus hevelticus strains.
329	3.5 Mixed culture inhibition assay
330	In section 3.1, it is shown that the inhibition zones of L. monocytogenes ATCC 19115,
331	Salmonella typhimurium ATCC 14028, Escherichia coli.O157:H7 ATCC 43889 by KLDS1.8701
332	culture were larger than those obtained for its CFS. So there might be a part of antimicrobial
333	capability related to action of KLDS1.8701 itself. Mixed culture inhibition assay were studied
334	for antimicrobial activity verification and exploration of antimicrobial mechanism and results are
335	shown in Fig. 3 A, B and C. In co-cultured with three pathogens group, viable counts of L.
336	helveticus KLDS1.8701 all increased rapidly. Diffusion chamber group and monoculture group
337	had the same increase trend, but viable counts of KLDS1.8701 have significant differences
338	between different groups (P<0.05). The pH of cultures in all three groups also showed significant
339	(P<0.05) decrease. Results suggested that KLDS1.8701 can survive well in BHI and produce
340	organic acids using glucose from BHI. Viable counts of three pathogens increased in
341	monoculture group but decreased in diffusion chamber group. This appearance showed organic
342	acids of culture possess antimicrobial effect to impede the growth of three pathogens. Moreover,
343	viable counts of three pathogens rapidly decreased to 0 log CFU mL^{-1} in the co-culture group
344	whereas it decreased to 0 log CFU mL ⁻¹ after 24 h in the diffusion chamber group. However, pH
345	values of BHI in three groups were not significantly different (P>0.05). This might suggest that

346	the part of antimicrobial activity resulted from the action of L. helveticus KLDS1.8701. This
347	implies that inhibition against three pathogens in the co-culture group might resulted from both
348	organic acids in CFS and the action of bacteria itself, but only organic acids participated in
349	inhibition of three pathogens in diffusion chamber group. It can thus be hypothesized that KLDS
350	1.8701 could come in contact and thus interact with three pathogens in co-culture group, but not
351	in diffusion chamber group. This may indicate that the inhibitory action of KLDS1.8701 itself
352	against three pathogens requires contact between the two bacteria cells. In addition, results from
353	Fig. 3 A, B and C showed viable counts of three pathogens decreased at least 3 logs in in
354	co-culture group and diffusion chamber group. These results were similar with the study of
355	Atassi ⁴⁰ which showed that <i>L. helveticus</i> strain KS300 lessened <i>S. typhimurium</i> SL1344,
356	pathogenic E. coli IH11128 and C1845 with a decrease of 2.0-5.5 logs in viable bacteria. We
357	must also accentuate that other factors may be responsible for these results and more promising
358	factors could further lower pathogenic growth. Previous studies have carried out on co-culture
359	inhibition and provided an antimicrobial mechanism which called Contact dependent inhibition
360	(CDI) mechanism. ^{41,42,43,27} In this study, it was confirmed that part of antimicrobial activity was
361	related to bacteria itself and antimicrobial activity of co-culture group was stronger than the
362	diffusion chamber group. This meant that, antimicrobial activity of bacteria itself might be
363	interrelated to above described CDI mechanism. CDI mechanism can be explicated by exchange
364	of information between bacteria. Such exchange of information included conjugation, secretion
365	systems, contact dependent inhibition, allolysis and nanotubes. ²⁷ We therefore recommend
366	further studies on the description of CDI mechanism of Lactobacillus KLDS1.8701, as these will
367	be useful in increasing the applicability of this KLDS LAB strain.

368 3.6 Tolerance of the Lactobacillus strains to simulated GI tract

369	Although probiotics usually pass through the stomach to reach the small intestine, most
370	microorganisms cannot survival under gastric environment with complex digestive enzymes and
371	acids as well as intestinal environment. It is thus necessary to study tolerances of Lactobacilli to
372	artificial gastric juice, small intestine juice and bile salts. From our results, it was observed that
373	viable counts of KLDS 1.8701 could keep about 7 Logs at pH 2, 2.5, and 3 after inoculated into
374	artificial gastric juice for 3 h, but gradually decreased at pH 1.5 and reach 0 Log at 3 h (Table 5
375	A). These results were also similar with the findings of previous study by Fernandez et al. 44 and
376	suggested that KLDS 1.8701 could be conveyed through the acidic conditions of the stomach in
377	significant quantities to the intestine where it can proliferate significantly and exert
378	health-promoting effects. KLDS 1.8701 also could survive well at pH 8.0 conditions with
379	trypsine and in 1% (w/v) bile salts solution for 3 h. Viable counts of KLDS 1.8701 after 3 h of
380	exposure under artificial small intestine juice was no loss compare to the initial (Table 5 B).
381	Results showed that KLDS 1.8701 showed strong capacities against simulated GI tract. This
382	might suggest that KLDS 1.8701 could enter into gastrointestinal tract and play inhibitory roles
383	against food-borne pathogens. This result was in accordance with some previous studies which
384	showed most strains could survive well under small intestine conditions and bile salts. ^{45,46} The
385	results above indicated that KLDS 1.8701 could endure GI tract challenge and commendably
386	play probiotic role in intestinal systems.

387

388

389

Food & Function Accepted Manuscript

390 5 Conclusions

391	This study investigated the antimicrobial capability of the Lactobacillus helveticus
392	KLDS1.8701 against food-borne pathogens, especially, L.monocytogenes in vitro. It was
393	confirmed that antimicrobial activity resulted from organic acids including acetic and lactic acids,
394	as well as action of KLDS1.8701 itself. FOS was more valuable for KLDS1.8701 to improve the
395	proliferation of KLDS 1.8701 and inhibit pathogens than other saccharides studied. The
396	inhibitory action of bacteria itself requires cellular contact between pathogens and KLDS1.8701.
397	KLDS1.8701 also had high antimicrobial potential against Salmonella typhimurium and E. coli
398	and could survive well under GI tract conditions. Further studies in understanding the
399	antagonism mechanism against these two pathogens by KLDS1.8701 and probiotic properties of
400	KLDS1.8701 in vivo are recommended.
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	

412	2 Acknowledgements
413	This work was financially supported by 863 program of China: characteristic resources base
414	of Lactic acid bacteria and research on lactic acid bacteria starter and metabolic engineering
415	technology (2011AA100902) and Synergetic Innovation Center of Food Safety and Nutrition.
416	The authors are also grateful for the financial support of the Ministry of Education, China.
417	
418	3
419	
420	
421	
422	
423	
424	L Contraction of the second
425	;
426	$\overline{0}$
427	
428	3
429	
430	
431	
432	
433	

434 References

- 435 1 The World Health Organisation, Online, http://www.who.int/topics/foodborne_diseases/en/.
- 436 Accessed on 2015/04/17.
- 437 2 J. Kadariya, T.C. Smith, and D. Tapaliya, Biomed Res Int., 2014, 6, 660-677.
- 438 3 J. McEntire, D.Acheson, A. Siemens, S. Eilert and M. Robach, *Food Prot Trends*, 2014, 34,
- 439 <u>386-392</u>.
- 440 4 A. Gálvez, H. Abriouel, R. L. López and N. B. Omar, Int J Food Microbiol, 2007, 120,
- 441 51-70.
- 442 5 N. Skovgaard, Int J Food Microbiol. 2009, 135, 184-185.
- 443 6 J.A. Flint, Y. T. Van Duynhoven, F. J. Angulo, S. M. DeLong, P. Braun, M. Kirk, E. Scallan, M.
- 444 Fitzgerald, G. K. Adak, P. Sockett, A. Ellis, G. Hall, N. Gargouri, H. Walke and P. Braam. Clin
- 445 Infect Dis., 2005, 41, 698–704.
- 446 7 M. Ghanbari, M. Jami, K. J. Domig, W. Kneifel, Food Sci. Technol., 2013,54, 315-324.
- 447 8 M. E. Stile, Antonie Leeuwenhoek, 1996, 70, 331-345.
- 448 9 M. Kotowska, P. Albrecht and H. Szajewska, *Aliment Pharmacol Therap.*, 2005, 21,
 449 583-590.
- 450 10 S. Tejero-Sariñena, S. Janine Barlow, A. Costabile, G. R. Gibson and I. Rowland, Anaerobe,
- 451 2012, 18, 530-538.
- 452 11 I. Rowland, L. Capurso, K. Collins, J. Cummings, N. Delzenne, O. Goulet, F. Guarner, P.
- 453 Marteau and R. Meier, *Gut Microbes*, 2010, 1, 436-439.
- 454 12 G. R. Gibson, R. Fuller, J. Nutr., 2000, 130, 391S-3955S.
- 455 13 P. P.Lin, Y. M.Hsieh, C. C. Tsai, Anaerobe, 2009, 15, 122-126.

- 456 14 Y. C. Zhang, L. W. Zhang, M. Du, H. Yi, C. Guo, Y. Tuo, X. Han, J. Li, L. Zhang and L.
- 457 Yang, *Microbiol Res.*, 2011, 167, 27-31.
- 458 15 S. E. Evivie, J. Appl. Natural Sci. 2013, 205, 488-496.
- 459 16 S. Nualkaekul, D. Lenton, M. T. Cook, V. V. Khutoryanskiy and D. Charalampopoulos,
- 460 *Carbohydr Polym.*, 2012, 90, 1281-1287.
- 461 17 G. Giraffa, Front Microbiol., 2014, 5, 338.
- 462 18 K. C. Johnson-Henry, K. E. Hagen, M. Gordonpour, T. A. Tompkins and P. M. Sherman, Cell
- 463 *Microbiol*, 2007, 9, 356-367.
- 464 19 G. Vinderola, C. Matar, J. Palacios and G. Perdigón, *Int J Food Microbiol.*, 2007, 115,
 465 180-186.
- 466 20 M. I. Torino, M. P. Taranto, F.Sesma and G. F. de Valdez, *J Appl Microbiol.*, 2001, 91,
 467 846-852.
- 468 21 E.M. Lehto, S.J. Salminen, FEMS Immunol Med Microbiol., 1997, 18, 125-132.
- 469 22 Y. Xie, H. R. An, Y. L. Hao, Q. Q. Qin, Y. Huang, Y. B. Luo and L. B. Zhang, Food Control,
- 470 2011,22, 1027-1031.
- 471 23 J. H. Yun, L. K. Beom, ,S. Y. Kyoung, K. E. Bae, L. H. Gu and C. Y. Jaie, J Basic
- 472 *Microbiol.*, 2009, 49, 220-226.
- 473 24 M. Ghanbari, M. Jami, W. Kneifel and K. J. Domig, Food Control, 2013, 32, 379-385.
- 474 25 X. Wang, Z. Chi, L. Yue and J. Li, Curr Microbiol, 2007, 55, 396-401.
- 475 26 Y. Wang, Z. X. Lu, H. Wu and F. X. Lv, Int J Food Microbiol, 2009, 136,71-74.
- 476 27 T. Saraoui, P. A. Fall, F. Leroi, J. P. Antignacc, S. Chéreauc and M. F. Pilet, Food
- 477 *Microbiol. online*, 2015, 1-9.

- 478 28 W. P. Charteris, P. M. Kelly, L. Morelli, and J. K. Collins, *J Appl Microbiol.*, 1998, 84,
- 479 759-768.
- 480 29 P. A. Maragkoudakis, G. Zoumpopoulou, C. Miaris, G. Kalantzopoulosa, B. Potb and E.
- 481 Tsakalidou. Int. Dairy J., 2006, 16, 189-199.
- 482 30 T. F. Cálix-Lara, M. Rajendran, S. T. Talcott, S.B. Smith, R. K. Miller, A. Castillo, J.M.
- 483 Sturino and T. M. Taylor, *Food Microbiol*, 2014, 38, 192-200.
- 484 31 P. K. Jena, D. Trivedi, H. Chaudhary, T. K. Sahoo and S. Seshadri, Appl Biochem
- 485 *Biotechnol*,2013,169, 2088-2100.
- 486 32 D. Nikolova, M. Petrova and Y. Evstatieva, Trakia J. Sci, 2009, 7, 40-44.
- 487 33 H. Holo, Z. Jeknic, M. Daeschel, S. Stevanovic and I. F. Nes, *Microbiol*, 2001, 147, 643-651.
- 488 34 F. B. Elegado, M.A. Guerra, R. A. Macayan, H. A. Mendoza and M. B. Lirazan, Int J Food
- 489 *Microbiol.*, 2004, 95, 11-18
- 490 35 J. E. Powella, R. C. Witthuhna, S. D. Todorovb, L. M. T. Dicks, Int. Dairy J., 2007, 17,
- 491 190-198.
- 492 36 L. Makras, V. Triantafyllou, D. Fayol-Messaoudi, T. Adriany, G. Zoumpopoulou, E.
- 493 Tsakalidou, A. Servin and L. D. Vuyst, *Res Microbiol*, 2006, 157, 241-247...
- 494 37 V. Tavernitiand and S. Guglielmetti, Front. Microbiol., 2012, 3, 392
- 495 38 V. Sridevi, V. Sumathi, M. G. Prasad and S.K. M., J. Pharmacy Res, 2014, 8, 321
- 496 39 C. Cherbut, C. Michel and G. Lecannu, *J Nutr*, 2003, 133, 21-27.
- 497 40 C. E Rycroft, M. R. Jones and G. R. Gibson, J Appl Microbiol., 2001, 91, 878-887
- 498 41 S. K. Aoki, R. Pamma, A. D. Hernday, J. E. Bickham, B.A. Braaten and D.A. Low, Science,
- 499 2005,309,1245-1248.

500	42	F. Atassi, D. Brassart, P. Grob, F. Graf and A. L. Servin. J Appl Microbiol, 2006, 101,
501		647-654.
502	43	T. D. H. Woo, K. Oka, M. Takahashi, F. Hojo, T. Osaki, T. Hanawa, S. Kurata, H. Yonezawa
503		and S. Kamiya, J. Med. Microbiol. 2011, 60, 1617-1625.
504	44	J. Bavananthasivam, R. P. Dassanayake, A. Kugadas, S. Shanthalingam, D. R. Call, D. P.
505		Knowles and S. Srikumaran, Appl Environ Microbiol, 2012, 78, 6683-6688.
506	45	M. F. Fernández, S. Boris, C. Barbés, J Appl Microbiol. 2003, 94, 449-55.
507	46	M. Du Toit, C. M. A. P Franz, L. M. T. Dicks, U. Shillinger, P. Haberer and B. Warlies, Int J
508		<i>Food Microbiol</i> , 1998, 40, 93-104.
509	47	M. du Toit, C. M. Franz, L. M. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens and
510		W.H. Holzapfel, Int J Food Microbiol, 1998, 40, 93-104.
511		
512		
513		
514		
515		
516		
517		
518		
519		
520		
521		
522		
523		
524		
525		
526		
527		
528		
529		
530		
531		
532		

533 Tables534

Table 1 The components of modified MRS (100 mL)

components	content	
yeast extract	0.5 g	
tryptone	1 g	
beef extract	0.5 g	
peptone	0.5 g	
glucose	2 g	
Tween-80	0.1 mL	
dipotassium hydrogen phosphate	0.2 g	
diammonium citrate	0.2 g	
sodium acetate	0.5 g	
magnesium sulfate monohydrate	0.058 g	
manganese sulfate monohydrate	0.025 g	
deionized water	95 mL	
agar	2 g	

Table 2 Antimicrobial potential against indicator strains of *Lactobacillus helveticus KLDS 1.9202, 1.9204, 1.9207, 1.0203, 1.8701* and their CFSs

					Inhibition z	ones ^a (mm)				
Indicator	KLDS1.0203		KLDS1.8701		KLDS1.9202		KLDS1.9204		KLDS1.9207	
bacterium	Culture	CFS	Culture	CFS	Culture	CFS	Culture	CFS	Culture	CFS
	pH 4.71±0.08	pH 4.66±0.02	pH 3.73±0.10	pH3.69±0.05	pH 5.45±0.11	pH 5.41±0.07	pH 4.59±0.03	pH 5.55±0.04	pH 5.67±0.06	pH5.65±0.07
L.monocytogene s ATCC19115	7.71±0.07	5.35±0.13	12.63±0.11	8.79±0.04	6.92±0.16	3.88±0.34	9.05±0.21	5.55±0.14	4.38±0.25	3.02±0.11
<i>S.Typhimurium</i> ATCC 14028	-	-	5.33±0.23	4.59±0.09	-	-	-	-	-	-
S. aureus, ATCC 25923	-	-	3.15±0.06	-	3.07±0.25	2.88±0.18	6.14±0.22	5.74±0.13	4.05±0.08	3.82±0.14
<i>E. coli</i> O157:H7 ATCC 43889	-	-	6.95±0.02	4.11±0.17	-	-	-	-	-	-

^a Results are presented as the mean value of triplicate trials \pm standard deviation (SD).

-

570 **Table 3** Spectrum of antimicrobial activity of culture of *Lactobacillus helveticus KLDS 1.8701* and its CFS

indicator bacterium	Medium	temperature(℃)	Sensitivity a by culture (pH 3.73±0.10)	Sensitivity by CFS (pH 3.69±0.05)
L.monocytogenes ATCC 19115	BHI	37	+++	++
S. Typhimurium ATCC 14028	BHI	37	+	+
Staphylococcus aureus ATCC 25923	BHI	37	+	-
Escherichia. coli ATCC 43889	BHI	37	++	+
Aspergillus oryzae 3.800	PDA	28	+++	++
Aspergillus niger 3.1858	Czapek–Dox	28	+++	++
Aspergillus niger 3.4309	Czapek–Dox	28	-	-
Rhizopus 3.866	PDA	28	++	++
bacillus subtilis	BHI	37	+++	+++
Lactobacillus paracasei KLDS1.0201	mMRS	37	+	+
Lactobacillus Bulgaricus KLDS 1.0205	mMRS	43	-	-
Sterptococcus Thermophilus KLDS3.0207	M17	37	-	-
Lactobacillus plantarum KLDS 1.0344	mMRS	37	+	+
Lactococcus lactis KLDS 4.0325	M17	37	-	+
Lactobacillus helveticus KLDS 1.0203	mMRS	37	-	-
Lactobacillus helveticus KLDS 1.9202	mMRS	37	+	+
Lactobacillus helveticus KLDS 1.9204	mMRS	37	-	-
Lactobacillus helveticus KLDS 1.9207	mMRS	37	+	+

^a Inhibition zone (mm): -, no inhibition +, 1-5 mm; ++, 5-10 mm; +++, >10 mm;

Treatment catalase 1mg/mL proteinase K 1mg/mL papain pH 3.5 pH 4 pH 5 pH 6 pH 6.5 pH 7	L.monocytogenes ATCC 19115 92.43±0.05 100±0 100±0 100±0 75.22±0.25 12.61±0.19 0±0 0±0	S.typhimurium ATCC 14028 96.27±0.22 100±0 100±0 100±0 72.35±0.33 12.13±0.20 0±0 0±0	E. coli O157:H7 ATCC 43889 94.16±0.18 100±0 100±0 100±0 74.23±0.11 10.39±0.12 0±0 0±0
lmg/mL proteinase K lmg/mL papain pH 3.5 pH 4 pH 5 pH 6 pH 6.5	92.43 \pm 0.05 100 \pm 0 100 \pm 0 100 \pm 0 100 \pm 0 75.22 \pm 0.25 12.61 \pm 0.19 0 \pm 0	$\begin{array}{c} 96.27 \pm 0.22 \\ 100 \pm 0 \\ 100 \pm 0 \\ 100 \pm 0 \\ 100 \pm 0 \\ 72.35 \pm 0.33 \\ 12.13 \pm 0.20 \\ 0 \pm 0 \end{array}$	$\begin{array}{c} 94.16 \pm 0.18 \\ 100 \pm 0 \\ 100 \pm 0 \\ 100 \pm 0 \\ 100 \pm 0 \\ 74.23 \pm 0.11 \\ 10.39 \pm 0.12 \\ 0 \pm 0 \end{array}$
lmg/mL proteinase K lmg/mL papain pH 3.5 pH 4 pH 5 pH 6 pH 6.5	100±0 100±0 100±0 75.22±0.25 12.61±0.19 0±0	$100\pm0\\100\pm0\\100\pm0\\72.35\pm0.33\\12.13\pm0.20\\0\pm0$	$100\pm0\\100\pm0\\100\pm0\\100\pm0\\74.23\pm0.11\\10.39\pm0.12\\0\pm0$
1 mg/mL papain pH 3.5 pH 4 pH 5 pH 6 pH 6.5	100±0 100±0 100±0 75.22±0.25 12.61±0.19 0±0	100±0 100±0 100±0 72.35±0.33 12.13±0.20 0±0	$100\pm0\\100\pm0\\100\pm0\\74.23\pm0.11\\10.39\pm0.12\\0\pm0$
pH 3.5 pH 4 pH 5 pH 6 pH 6.5	100±0 100±0 75.22±0.25 12.61±0.19 0±0	100±0 100±0 72.35±0.33 12.13±0.20 0±0	100 ± 0 100 ± 0 74.23 ± 0.11 10.39 ± 0.12 0 ± 0
pH 4 pH 5 pH 6 pH 6.5	100±0 75.22±0.25 12.61±0.19 0±0	100±0 72.35±0.33 12.13±0.20 0±0	100±0 74.23±0.11 10.39±0.12 0±0
рН 5 рН 6 рН 6.5	75.22±0.25 12.61±0.19 0±0	72.35±0.33 12.13±0.20 0±0	74.23±0.11 10.39±0.12 0±0
рН 6 рН 6.5	12.61±0.19 0±0	12.13±0.20 0±0	10.39±0.12 0±0
pH 6.5	$0{\pm}0$	0±0	0±0
-			
pH 7	0±0	0±0	<u>0±0</u>

	0.3 mg/ml pepsin (log CFU mL ⁻¹)			
рН	0h	1h	2h	3h
1.5	7.32±0.15	5.19±0.24	3.87±0.22	0
2	7.34±0.23	7.35±0.31	7.33±0.17	7.34±0.35
2.5	7.32±0.32	7.33±0.23	7.31±0.21	7.30±0.26
3	7.36±0.18	7.35±0.14	7.35±0.19	7.31±0.32
^a Data are n	nean \pm deviation of	three independent exp	periments.	

589 Table 5 A Viable counts under conditions simulating the human gastric juice of KLDS 1
--

of	KLDS 1.8701	
Time (h)	0.1 mg/ml pancreatin, pH 8.0 (log CFU mL ⁻¹)	1% Oxgall (log CFU mL ⁻¹
0	7.40±0.41	7.43±0.71
1	7.48±0.39	7.45±0.55
2	7.33±0.27	7.54±0.64
3	7.39±0.45	7.34±0.76
^a Data are mea	$n \pm$ deviation of three independent experiments.	

665 Figure Captions

666 667

Fig. 1 Productions of total organic acids and viable counts of KLDS 1.8701 in MRS culture with different carbon sources during 24h culture. (\blacksquare , \blacktriangle , \blacklozenge , +, \bullet and \times with solid line) represent contents of total organic acids in MRS broth supplemented with 1 % of fructose, lactose, glucose, sucrose, fructooligosaccharides and no saccharide supplementation (control) during 24h culture. (\blacksquare , \bigstar , \blacklozenge , +, \bullet and \times with dotted line) represent viable counts of KLDS 1.8701 in MRS broth supplemented with 1 % of different saccharide and no saccharide supplementation during 24h culture. Bars represent means of duplicate ±SD.

675

676

Fig. 2 Antimicrobial activities against pathogens and total organic acids productions by KLDS 1.8701 in MRS broth with different carbon sources during 24h culture. (\blacklozenge , \blacksquare , \blacklozenge) represent inhibition zone diameters of plates of *L. monocytogenes* ATCC 19115, *S. typhimurium* ATCC 14028 and *E. coli* O157:H7 ATCC 43889 after treatment with CFS of KLDS 1.8701. Pillars represent total organic acids productions by KLDS 1.8701. Bars represent means of duplicate \pm SD.

683

684 Fig. 3 Growth of pathogens, KLDS 1.8701 and change of pH value in contact co-culture test. (685 with solid line, dotted line and \Box with solid line) represents viable counts of pathogens including 686 L.monocytogenes ATCC 19115(A), Salmonella Typhimurium ATCC 14028(B), E. coli O157:H7 687 ATCC 43889(C)) in co-cultured with KLDS 1.8701 group, diffusion chamber group and 688 monoculture group, respectively; (\bullet with solid line, dotted line and \bigcirc with solid line) 689 represents viable counts of KLDS 1.8701 in co-cultured with pathogens group, diffusion chamber 690 group and monoculture group, respectively; (\triangle and \triangle with solid line) represents pH of cultures 691 in co-culture group and diffusion chamber group, respectively.

692

693

694

695

696

697

698

699

700

701 702

702

/03

704

705

706

KLDS1.8701 showed wide antimicrobial spectrum especially food-borne pathogens and antimicrobial activities resulted from organic acids and contact dependent inhibition.