Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Fish oil diet modulates epididymal and inguinal adipocyte metabolism in mice
2	
3	Thereza Cristina Lonzetti Bargut,
4	Vanessa Souza-Mello,
5	Carlos Alberto Mandarim-de-Lacerda ¹ ,
6	Marcia Barbosa Aguila
7	
8	Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center,
9	Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

¹ <u>Corresponding author</u>: Laboratory of Morphometry, Metabolism and Cardiovascular
Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de
Setembro 87 fds, 20551-030 Rio de Janeiro, RJ, Brazil. Phone: (+55.21) 2868.8316. FAX:
2868.8033. E-mail: <u>mandarim@uerj.br</u>, Website: <u>www.lmmc.uerj.br</u>.

10 Abstract

11	We aimed to investigate the impact of different high-fat diets containing fish oil on adiposity
12	and white adipose tissue (WAT) function in mice, comparing the effects on epididymal
13	(eWAT) and subcutaneous (sWAT) depots. For this, we used C57BL/6 male mice fed four
14	types of diets for eight weeks: standard chow (SC), high-fat lard (HF-L), high-fat lard plus
15	fish oil (HF-L+FO), and high-fat fish oil (HF-FO). The HF-L group had a greater body mass
16	(BM) gain, insulin resistance, an increased gene expression related to lipogenesis (CD36, aP2,
17	SREBP1c, and FAS) and a decreased gene expression of perilipin in both eWAT and sWAT,
18	and reduced genes related to beta-oxidation (CPT-1a) and to mitochondrial biogenesis
19	(PGC1alpha, NRF1, and TFAM) in eWAT and sWAT. On the other hand, the HF-L+FO and
20	HF-FO groups showed a smaller BM gain and adiposity, and normalization of insulin
21	resistance and lipogenic genes in both eWAT and sWAT. These animals also showed a
22	decreased perilipin gene expression and an elevated beta-oxidation and mitochondrial
23	biogenesis genes in eWAT and sWAT. 'Beige' adipocytes were identified in sWAT of the
24	HF-FO animals. In conclusion, fish oil intake has anti-obesity effects through modulation of
25	both eWAT and sWAT metabolism in mice and is relevant in diminishing the BM gain,
26	adiposity, and insulin resistance even in concomitance with a high-fat lard diet intake in mice.
27	

28 Keywords: n-3 polyunsaturated fatty acids; fish oil; adipose tissue; browning; beige cells.

29	Introduction
30	Mammals have depots of white adipose tissue (WAT) in their body containing large
31	unilocular cells, the adipocytes, which have the primary function of store fat as
32	triacylglycerol. The adipocytes release fatty acids, in response to nutritional and hormonal
33	stimuli. The WAT also functions as an endocrine organ that secretes a range of mediators that
34	act controlling glucose metabolism and insulin signaling. ^{1,2}
35	Visceral white adipose tissue dysfunction underlies insulin resistance and the majority of
36	obesity comorbidities. ³ Conversely, subcutaneous white adipocytes exert a protective role.
37	Recently, the intra-abdominal transplant of subcutaneous white adipose tissue reverted
38	glucose intolerance, hepatic steatosis and systemic inflammation in mice fed a high-fat diet. ^{4,}
39	⁵ Also, the transdifferentiation of white-to-brown adipocytes, generating the beige cells,
40	occurs in subcutaneous WAT. White adipocytes acquire a multilocular appearance and high
41	levels of uncoupling protein (UCP) type 1. ^{6,7} These changes lead to elevated thermogenic
42	activity in this tissue with the improvement of obesity and insulin resistance. 8-10
43	Fish oil has high amounts of the n-3 PUFA eicosapentaenoic (EPA) and docosahexaenoic
44	acid (DHA). Much attention has been given to the beneficial effects of fish oil (and n-3
45	PUFA) on dyslipidemia, cardiovascular diseases, and inflammatory diseases, ¹¹ and we know
46	now that these fatty acids are also important in the prevention of obesity in humans ^{12, 13} and
47	animal models. ¹⁴⁻¹⁶ However, little is known about the mechanisms involved in the anti-
48	obesity effects of fish oil. ^{17, 18}
49	The present study aimed to investigate the impact of different high-fat diets containing fish
50	oil on adiposity and WAT function in mice, comparing the epididymal (visceral) and the
51	inguinal (subcutaneous) adipose tissue.

52 Materials and Methods

53

54 Animals and diet

All procedures were approved by the local Ethics Committee for Animal Experimentation 55 (Protocol Number CEUA/018/2013) in accordance with the conventional guidelines for 56 animal experimentation (NIH Publication number 85-23, revised 1996). The mice were 57 maintained under controlled conditions, group housed (five animals per cage) in ventilated 58 59 cages (Nexgen system, Allentown Inc., PA, USA), $20 \pm 2^{\circ}$ C, 12 h/12 h dark/light cycle, and 60 free access to food and water. Forty 3-mo-old C57Bl/6 male mice were randomly assigned to 61 four groups (n = 10/group): a) Standard-chow group (SC): 40 g soybean oil/Kg diet, 10 % of the total energy content 62 63 of lipids; b) High-fat lard group (HF-L): (40 g soybean oil + 238 g lard)/Kg diet, 50% of the total 64 energy content of lipids; 65 c) High-fat lard plus fish oil group (HF-L+FO): (40 g soybean oil + 119 g lard + 119 g 66 FO)/Kg diet, 50 % of the total energy content of lipids; and 67 d) High-fat fish oil group (HF-FO): (40 g soybean oil + 238 g FO)/Kg diet, 50 % of the 68 total energy content of lipids. 69 70 The diets were elaborated with purified nutrients by PragSolucoes (Jau, SP, Brazil) based on the American Institute of Nutrition's recommendations (AIN 93M).¹⁹ The diets were 71 72 offered over an eight-week period (Table 1).

5

73	Energy intake and body mass gain
74	Energy intake was monitored daily through the difference between what was offered and what
75	was left in the cage. The body mass (BM) gain was calculated as the difference between BM
76	at the end of the experiment and BM at baseline.
77	
78	Blood analyses
79	At sacrifice, animals were deprived of food for 6 h, the fasting glycemia was measured
80	(glucometer Accu-Check, Roche, SP, Brazil), and then the animals were deeply anesthetized
81	(150 mg/kg sodium pentobarbital intraperitoneal). Blood samples were obtained, and the
82	serum was separated by centrifugation (120 g, 15 min) and stored individually at -80° C for
83	further analyzes. Insulin was measured using the SinglePlex kit EZRMI-13K (Millipore,
84	Billerica, MA, USA). The homeostasis model assessment of insulin resistance index (HOMA-
85	IR) was calculated (fasting glucose in mmol/L multiplied by the fasting insulin level in
86	μ IU/L, divided by 22.5). ²⁰
87	
88	White adipose tissue
89	Both fat pads, epididymal (eWAT) and subcutaneous inguinal (sWAT) were carefully
90	removed, weighed and prepared for analyzes. Samples were rapidly frozen and stored at -80 $^\circ$
91	C for molecular analyzes. Alternatively, samples were kept in freshly made fixative solution
92	(4 % formaldehyde w/v, 0.1 M phosphate buffer; PH 7.2).
93	
94	Adipocyte morphometry
95	The distribution of the adipocytes based on their size was studied in eWAT and sWAT. The

96 tissues were embedded in Paraplast Plus (Sigma-Aldrich, St. Louis, MO, USA), the blocks

97 were sectioned at a nominal thickness of five micrometers, and the slices were stained with

98	hematoxylin and eosin. The analysis was made considering ten non-consecutive slices and at
99	least 50 adipocytes per animal had their small diameters measured, at random, in a blinded
100	manner (Leica DMBRE light microscope, Wetzlar, Germany; Infinity 1-5c camera Lumenera
101	Co., Ottawa, ON, Canada; Image Pro Plus software v. 7.01, Media Cybernetics, Silver Spring,
102	MD, USA).
103	In addition, the average cross-sectional area of the adipocytes was evaluated by stereology
104	as the ratio between the volume density of adipocytes (Vv[adipocyte]) and twice the
105	numerical density per area of adipocytes (Q _A [adipocyte]). Vv[adipocyte] was estimated by
106	point counting on a test system, and Q _A [adipocyte] was estimated as the ratio between the
107	number of adipocytes counted into a frame (without hit the "forbidden line" ²¹) and the test
108	area of the frame. ²²
109	
110	Immunofluorescence
111	For UCP-1 immunofluorescence, tissue sections were submitted to citrate buffer, pH 6.0, at
112	60° C for 20 min for antigen retrieval, glycine 2 %, and blocking buffer (PBS/ 5 % BSA). The
113	sWAT sections were incubated overnight at 4° C with anti-UCP1 antibody (SC-6529; Santa
114	Cruz Biotechnology), diluted 1:50 in PBS/ 1 % BSA, followed by an incubation for 1 h at
115	room temperature with fluorochrome-conjugated secondary antibody anti-goat IgG-Alexa 488
116	(Invitrogen, Molecular Probes, Carlsbad, CA, USA), diluted 1:50 in PBS/ 1 % BSA. After
117	rinsing in PBS, the slides were mounted with SlowFade Antifade (Invitrogen, Molecular
118	Probes, Carlsbad, CA, USA). Digital images were kept with the confocal laser scanning
119	microscopy (Nikon Model C2; Nikon Instruments, Inc., New York, USA).

120	RT-qPCR
121	Total RNA was extracted from approximately 50 mg of eWAT and sWAT using Trizol
122	reagent (Invitrogen, CA, USA). The quantity of RNA was determined using Nanovue
123	spectroscopy (GE Life Sciences). Then, 1 μ g RNA was treated with DNAse I (Invitrogen).
124	First-strand cDNA was synthesized using Oligo (dT) primers for mRNA and Superscript III
125	reverse transcriptase (both Invitrogen). Quantitative real-time PCR was performed using a
126	BioRad CFX96 cycler and SYBR Green mix (Invitrogen). The primers are described in Table
127	2. The endogenous expression of <i>beta</i> -actin was used to normalize the expression of the
128	selected genes.
129	In the eWAT we evaluated: cluster of differentiation 36 (CD36), adipocyte protein 2(aP2),
130	sterol regulatory element-binding transcription factor 1c (SREBP1c), fatty acid synthase
131	(FAS), perilipin, carnitine palmitoyiltransferase-1a (CPT-1a), peroxisome proliferator-
132	activated receptor gamma coactivator 1 alpha (PGC1alpha), nuclear respiratory factor 1
133	(NRF1), and mitochondrial transcription factor A (TFAM).
134	In the sWAT, we evaluated: SREBP1c, FAS, perilipin, CPT-1a, PGC1alpha, NRF1,
135	TFAM, beta3-adrenergic receptor (beta3-AR), UCP1, and a cluster of differentiation 137
136	(CD137).
137	After a pre-denaturation and polymerase-activation program (4 min at 95° C), 44 cycles of
138	95° C for 10 s and 60° C for 15 s were followed by a melting curve program (60° C to 95° C
139	with a heating rate of 0.1° C/s). Negative controls consisted of wells in which the cDNA was
140	substituted for deionized water. The relative expression ratio of the mRNA was calculated
141	using the equation $2^{-\Delta\Delta Ct}$, in which - ΔCT represents the difference between the number of
142	cycles (CT) of the target genes and the endogenous control.

Data analysis

144	Values are presented as the mean and the standard deviation. We tested the data for normal
145	distribution and homoscedasticity of the variances, and then the groups were compared with
146	one-way analysis of variance (ANOVA) and the posthoc test of Holm-Sidak. A P-value<0.05
147	was considered statistically significant (GraphPad Prism version 6.05 for Windows, GraphPad
148	Software, La Jolla CA USA).
149	
150	
151	Results
152	
153	Energy intake and body mass gain
154	The three HF groups presented elevated energy intake (+27%; P =0.0003, for the HF-L group;
155	+33%; <i>P</i> <0.0001, for the HF-L+FO group; +35%; <i>P</i> <0.0001, for the HF-FO group). There
156	were no differences among these three groups (Table 3).
157	The BM gain was greater in the HF-L group (+181 %; P <0.0001), and in the HF-L+FO
158	group (+112 %; $P=0.0011$) in comparison with the SC group. There was no difference in the
159	BM gain between the HF-FO and the SC groups (Table 3).
160	
161	Blood analyses
162	The HF-L group had a fasting glycemia higher than the SC group (+18 %; $P=0.013$) (Table
163	3). However, the HF-L+FO group (-28 %; P <0.0001), and the HF+FO group (-35 %;
164	P < 0.0001) had lower glycemia than the HF-L group.
165	The plasma insulin levels were 209 % higher in the HF-L group than in the SC group
166	(P=0.0013). Conversely, plasma insulin was normalized in both groups HF-L+FO and HF-FO

Food & Function Accepted Manuscript

167	groups (insulinemia was around 45 % lower in these FO groups than in the HF-L group;
168	P=0.018). The HOMA-IR index accompanied the insulin levels (Table 3).
169	
170	Fat pads
171	Epididymal fat pad mass
172	The HF-L group showed the heaviest epididymal fat pad mass, 53 % heavier than the SC
173	group (P <0.0001). The epididymal fat pad mass was 43 % heavier than the SC group (+112
174	%, $P=0.0026$), but 20 % lighter than the HF-L group ($P=0.0059$). The HF-FO group showed
175	the slightest epididymal fat pad mass, similar to the SC group (Table 3).
176	
177	Inguinal fat pad mass
178	The HF-L group showed the heaviest inguinal fat pad mass, 80 % heavier than the SC group
179	(P <0.0001). In the HF-FO group, which showed the lightest inguinal fat pad mass, it was 33
180	% smaller than the SC group ($P=0.0047$), 57 % smaller than the HF-L group ($P<0.0001$), and
181	40 % smaller than the HF-L+FO group ($P=0.0036$) (Table 3).
182	
183	Adipocytes
184	The adipocytes (diameter) in eWAT were 23 % bigger in the HF-L group than in the SC
185	group ($P=0.0002$). Compared to the HF-L group, the adipocytes were 8 % smaller in the HF-
186	L+FO group ($P=0.047$), and 20 % smaller in the HF-FO group ($P<0.0001$). Compared to the
187	SC group, the adipocytes were 13 % bigger in the HF-L+FO group ($P=0.013$), but equivalent
188	(no difference) in the HF-FO group. Similarly, the distribution per size of the adipocytes
189	showed larger adipocytes in the HF-L group and a fair number of large adipocytes in the HF-
190	L+FO group. The SC and the HF-FO group had a similar pattern of distribution per size of the

191 adipocytes (Fig. 1).

Food & Function Accepted Manuscript

1750/

192	In ewAI, the adipocytes showed a greater sectional area in the HF-L group (+1/5%;
193	P<0.0001), and a greater area in the HF-L+FO group (+66%, P =0.0218) than in the SC
194	group. The adipocyte sectional area had no difference between the HF-FO group and the SC
195	group (Table 3).
196	In sWAT, the HF-L group showed bigger adipocytes than the SC group (+20 %;
197	P=0.0464). The HF-L+FO group and the SC group showed similar adipocytes size. Lastly,
198	the HF-FO group showed smaller adipocytes than the other three groups (-39%, P =0.0011, in
199	comparison with the SC group; -49%, P<0.0001, compared with the HF-L group; and -39%,
200	P=0.0007, as compared with the HF-L+FO group) (Fig. 1).
201	The average sectional area of the adipocytes in sWAT was greater in the HF-L group
202	(+73%, P <0.0001), but in the HF-L+FO group it was similar to the SC group. The smallest
203	sectional area of adipocytes was seen in the HF-FO group: -55% (P <0.0001) than the SC
204	group; -74% (P <0.0001) than the HF-L group; and -54% (P =0.0001) than the HF-L+FO
205	group (Table 3).
206	
207	eWAT
208	a) Gene expression of lipogenesis
209	Compared to the SC group, the CD36 mRNA expression was higher in the groups HF-L, HF-
210	L+FO and HF-FO. The CD36 mRNA expression was +166 % in the HF-L group ($P=0.0031$)
211	+209 % in the HF-L+FO group (P =0.0011), and +228 % in the HF+FO group. The gene
212	expression of aP2 was higher in the groups HF-L (+370 %; P<0.0001) and HF-L+FO (+124
213	%; P=0.026). In addition, the gene expression of aP2 was lower in the HF-L+FO group than

- in the HF-L group (-52 %; P=0.0006) and in-between in the groups HF-FO and SC (Fig. 2).
- 215 In comparison with the SC group, the SREBP1c and FAS mRNA expressions were higher
- 216 in the HF-L group (SREBP1c +78 %; *P*=0.022; FAS +56 %; *P*=0.026). The HF-L+FO and

217	HF-FO groups showed SREBP1c and FAS mRNA expressions equivalent to the SC group
218	(Fig. 2).
219	
220	b) Gene expression of lipolysis and beta-oxidation
221	Compared to the SC group, the perilipin gene expression was lower in the groups HF-L (-39
222	%; <i>P</i> =0.0034), HF-L+FO (-36 %; <i>P</i> =0.0045), and HF+FO (-57 %; <i>P</i> =0.0002). The CPT-1a
223	mRNA expression was lower in the HF-L group (-70 %; $P=0.017$), but higher in the groups
224	HF-L+FO (+297 %; <i>P</i> <0.0001) and HF-FO (+539 %; <i>P</i> <0.0001) than in the SC group (Fig.
225	2).
226	
227	c) Gene expression of mitochondrial biogenesis
228	Compared to the SC group, the PGC1alpha and TFAM mRNA expressions were lower in the
229	HF-L group (PGC1 <i>alpha</i> -51 %, <i>P</i> =0.026; TFAM -48 %, <i>P</i> =0.030).
230	Relative to the SC group, the PGC1alpha, NRF1 and TFAM gene expressions were higher in
231	the HF-L+FO group (PGC1 <i>alpha</i> : +53 %; <i>P</i> =0.026; NRF1: +176 %; <i>P</i> =0.0090; TFAM: +45
232	%; <i>P</i> =0.030), and were higher in the HF-FO group (PGC1 <i>alpha</i> : +271 %; <i>P</i> <0.0001; NRF1:
233	+514 %; <i>P</i> <0.0001; TFAM: +184 %; <i>P</i> <0.0001) (Fig. 2).
234	
235	sWAT
236	a) Gene expression of lipogenesis
237	Compared to the SC group, the SREBP1c and FAS gene expressions were higher in the HF-L
238	group (SREBP1c +89 %; P=0.0003; FAS +212 %; P=0.0002), but normalized in both FO
239	groups (Fig. 3).

- 240 b) Gene expression of lipolysis and beta-oxidation
- Having the SC group at baseline, the perilipin gene expression was lower in the three HF
- 242 groups: HF-L group, -88 % (*P*=0.010); HF-L+FO group, -66 % (*P*=0.041); HF-FO group, -
- 243 79 % (P=0.030). On the other hand, CPT-1a was lower in the HF-L group (-78 %;
- 244 P=0.0021), but higher in the HF-FO group as compared with the other three groups (+361 %;
- P < 0.0001 in comparison with the SC group) (Fig. 3).
- 246
- 247 c) Gene expression of mitochondrial biogenesis
- 248 Compared to the SC group, the gene expressions of mitochondrial biogenesis were lower in
- 249 the HF-L group (PGC1*alpha* -51 %, *P*=0.039; NRF1 -34 %, *P*=0.029; TFAM -37 %,
- 250 P=0.014). PGC1*alpha* was higher in the HF-L+FO group (+61 %; P=0.036) and the three
- 251 gene expressions were higher in the HF-FO group (PGC1*alpha* +228 %, *P*<0.0001; NRF1
- 252 +42 %, *P*=0.011; TFAM +73 %, *P*=0.0002) (Fig. 3).
- 253
- 254 *d)* Gene expression of thermogenesis
- 255 Relative to the SC group, the gene expressions of *Beta3*-AR and UCP1 were lower in the HF-
- 256 L group (*Beta*3-AR, -45 %, *P*=0.0092; UCP1, -55 %, *P*=0.0032), normalized in the HF-
- 257 L+FO group and higher in the HF-FO group (*Beta*3-AR, +227 %, *P*<0.0001; UCP1, +237 %,
- 258 P < 0.0001) (Fig. 3D). The gene expression of CD137 was only higher in the HF-FO group
- than in the SC group (+525 %; *P*<0.0001) (Fig. 3).
- 260
- 261 Adipose tissue structure and Immunofluorescence
- 262 The HF-L group showed larger lipid droplets within sWAT. The fish oil intake was able to
- restore the adipose tissue structure in the HF-L+FO inducing a brown adipocyte-like

	13

264	phenotype in the HF-FO group. In addition, the HF-FO group, as compared to the other three
265	groups, showed a more intense UCP1 staining in sWAT (Fig. 4).

266

267

268 **Discussion**

269

270 The HF diets containing fish oil might diminish or prevent body adiposity, adipocyte 271 dysfunction, and insulin resistance in mice. These anti-obesity effects of fish oil are 272 associated with a reduction of genes related to lipogenesis and a decrease in perilipin gene expression, a stimulation of genes related to beta-oxidation, and increased mitochondrial 273 274 biogenesis in both eWAT and sWAT. Additionally, the findings suggest that fish oil may induce browning in sWAT. 275 276 As expected, the HF-L group presented a significant BM gain linked with an increased epididymal and inguinal fat pad masses. Of note, we also found hypertrophied adipocytes (i.e. 277 increased diameter and sectional area) in the HF-L group, as already shown by previous 278 literature.²³ Even though we did not measure adipocyte number in WAT depots, it is known 279 that a high-fat feeding promotes adipose tissue hyperplasia, ²⁴ and we believe that this might 280 281 be occurring in our HF-L group. 282 Interestingly, both diets HF-L+FO and HF-FO yielded a diminished BM gain, epididymal and inguinal fat pad masses. The partial substitution of a HF diet for n-3 PUFA resulted in a 283 reduced BM gain, mostly accounted for a decrease in the epididymal fat mass.²⁵ Animals 284 treated with a mix of EPA/DHA (both of which are present in fish oil), also showed a small 285 epididymal fat accumulation.¹⁸ In addition, EPA was able to reduce lipid accumulation in 286 3T3-L1 cells.¹ 287

288	In the HF-L group, we also observed hyperglycemia, hyperinsulinemia and elevated
289	HOMA-IR, indicating insulin resistance in these animals. On the contrary, in the HF-L+FO
290	and HF-FO groups, these data were normalized even in the HF-L+FO group (that consumed
291	lard). In a study in mice fed a HF diet partially substituted by EPA, although the animals
292	showed an increase in the BM and greater epididymal fat pad mass, the glycemia,
293	insulinemia, and HOMA-IR were alike the control group. ²⁶
294	Adipose tissue dysfunction included alterations in lipogenesis and lipolysis, the two
295	primary metabolic activities of WAT, and was associated with insulin resistance. Once fish
296	oil reduced/prevented the BM gain and associated adipocyte hypertrophy, it became necessary
297	to evaluate if these fatty acids were acting in WAT lipogenesis and lipid oxidation. The first
298	step to lipogenesis is the entrance of fatty acids into adipose tissue, through transport proteins,
299	such as CD36 and aP2. ²⁷ CD36 is crucial to long chain fatty acids uptake and processing
300	before mitochondrial entry. ²⁸ The aP2, also known as fatty acid binding protein 4 (FABP4),
301	acts transporting fatty acids to the site where triacylglycerol synthesis occurs. ^{27, 29}
302	Alternatively, fatty acids can derive from <i>de novo</i> lipogenesis, in which SREBP1c and FAS
303	play decisive roles. ^{30, 31} Since the gene expressions of these proteins were found elevated in
304	the HF-L group, we hypothesize that lipogenesis was in these animals in both WAT depots.
305	Accordingly, CD36 is increased in obese animals, ³² as well as aP2, SREBP1c and FAS are
306	related to the fat accumulation and insulin resistance. ²⁹⁻³¹ In contrast, the groups fed fish oil
307	showed different results, with a reduction of aP2, SREBP1c and FAS mRNA expressions in
308	eWAT and sWAT, suggesting that lipogenesis was normalized. In the inguinal adipocytes,
309	EPA might increase gene expression of CD36, indicating greater metabolization of the
310	available long chain fatty acids (present in fish oil). ⁸ In human WAT, supplementation with
311	n-3 PUFA reduced aP2 gene expression. ² In addition, in porcine adipocytes DHA was able to

312	reduce FAS mRNA expression, ³³ and rats fed a diet with alpha-linolenic acid (rich in n3-
313	PUFA) showed diminished mRNA expression of SREBP1c and FAS. ³⁰
314	The other primary metabolic activity of WAT, lipolysis, is also elevated in adipocyte
315	dysfunction. Perilipin is present on the surface of lipid droplets, preventing them from
316	suffering lipolysis. When perilipin is suppressed, the action of lipases is facilitated, and
317	triacylglycerol hydrolysis begin. Obesity and saturated fatty acids are associated with
318	decreased perilipin in adipose tissue, ^{2, 34} indicating that lipolysis was probably activated in
319	the HF-L group. Interestingly, perilipin is also found diminished in adipose tissue of humans
320	supplemented with n-3 PUFA, ² and 3T3-L1 cells treated with n-3 PUFA showed suppressed
321	gene expression of perilipin, ³⁵ as we saw in both WAT depots of our HF-L+FO and HF-FO
322	groups.
323	Increased CPT-1 is associated with fatty acid utilization and oxidation capacity. ^{36, 37}
324	Although our HF-L group showed enhanced expression of CD36 mRNA, the animals also had
325	lower levels of CPT-1a mRNA. The intracellular fatty acids resulting from the action of
326	CD36 may not enter the beta-oxidation pathway and, consequently, are deviated to
327	lipogenesis. ³⁶ On the contrary, our groups HF-L+FO and HF-FO had increased CD36,
328	perilipin, and CPT-1a, indicating that lipid metabolism was activated towards lipolysis and
329	beta-oxidation in both WAT depots. In addition, 3T3-L1 adipocytes treated with EPA suffer
330	increased lipolysis, with a concomitant increase in mRNA expression of CPT-1. ¹ Moreover,
331	in inguinal adipocytes, EPA was able to increase CPT-1a expression, ⁸ as we saw in our HF-
332	L+FO and HF-FO groups.
333	Sustained activation of beta-oxidation, clearly demonstrated in our FO groups in both
334	eWAT and sWAT, means a significant mitochondrial content in adipocytes and indicates a
335	high expression of PGC1 <i>alpha</i> . ³⁸ PGC1 <i>alpha</i> is a key transcription factor that regulates
336	mitochondrial fatty acid oxidation enzymes, and PGC1 <i>alpha</i> inhibition causes lipid

accumulation.³⁹ NRF1 is a transcription factor that is the main target of PGC1*alpha* while 337 TFAM is required for mitochondrial DNA replication and maintenance, and, together, they 338 are considered markers of mitochondrial biogenesis.⁴⁰ In addition, an EPA/DHA quantity 339 increased PGC1*alpha* and NRF1expressions together with an elevated WAT beta-oxidation in 340 mice. ⁴¹ Similarly, inguinal adipocytes treated with EPA showed upregulation of PGC1*alpha* 341 and NRF1, ⁸ corroborating with our results and indicating mitochondrial biogenesis in eWAT 342 343 and sWAT of both FO groups. Besides the above-mentioned anti-obesity effects related to lipogenesis and beta-oxidation, 344

a relevant subject of the present study was to analyze the browning induction by fish oil in
sWAT. 'Beige' adipocytes are cells located in WAT and are characterized by an elevated
adaptive thermogenic activity (i.e. expression of UCP1) that can be induced by several
regulatory factors, such as cold exposure and hormonal stimuli. ⁴² We observed that only the
HF-FO group showed 'beige' cells with their consequent thermogenic capacity, as

demonstrated by the elevated expression of CD137 in this group, a specific marker of browning. ^{7, 42} However, an issue to be clarified is if the 'beige' cells observed are explained by the elevated quantities of fish oil in the HF-FO diet or by the absence of lard intake of the animals.

In a culture of human subcutaneous adipocytes, it was found a reduction of the UCP1 gene expression in obese individuals compared with lean individuals, ⁴³ which suggests an

impairment of the thermogenic capacity of this tissue, as we saw in our HF-L group. On the

other hand, in the HF-FO group the thermogenic markers (*beta*3-AR and UCP1) were

upregulated indicating a shift in the metabolic profile of the sWAT cells towards a brown

359 phenotype. Recent reports announced that fish oil induces *beta*3-AR and UCP1

360 overexpression in brown adipose tissue of mice, ⁴⁴ and subcutaneous adipocytes treated with

361 EPA show thermogenic activity with increased gene expression of UCP1.⁸

362	Despite our results of gene expression in sWAT, we cannot affirm that these changes
363	culminated in functional relevance. Zhao and Chen demonstrated that cultured subcutaneous
364	adipocytes treated with EPA showed increased uptake of glucose and fatty acids, suggesting
365	increased activity of these cells. ⁸ A recent report showed that DHA increases glycerol release
366	to the media in adipocytes, indicating increased lipolysis. ³⁵ Another study demonstrated, in
367	mice supplemented with n-3 PUFA and submitted to caloric restriction, that mitochondrial
368	oxidative capacity was enhanced along with elevated palmitate oxidation in isolated
369	epididymal adipocytes, indicating a stimulation of energy expenditure. ⁴⁵ These studies allow
370	us to speculate that the alterations of sWAT gene expression in the current study might have
371	resulted in enhanced functionality of this tissue.
372	The present study also aimed to compare the effects of fish oil on eWAT and sWAT. Aside
373	from browning, the changes seen in both WAT depots were quite similar. Hypertrophied
374	eWAT release a great influx of free fatty acids and adipokines that ultimately will provoke
375	insulin resistance and dyslipidemia, among other effects. On the contrary, sWAT appears to
376	have a protective role in insulin resistance and dyslipidemia, acting, for example, as anti-
377	inflammatory. ^{5, 23} Besides, sWAT is also associated with augmented thermogenic capacity,
378	which can be one of the reasons for its beneficial effect. ⁸ In the current study, as expected,
379	the HF-L diet lead to dysfunction in both eWAT and sWAT that agree with recent literature
380	describing that both eWAT and sWAT are expanded in obesity, leading to tissue dysfunction
381	^{10, 23} . In the case of HF-L+FO and HF-FO, the fish oil intake was beneficial in blocking the
382	hypertrophy, and consequently the dysfunction, of both WAT depots, and was also capable of
383	inducing beneficial changes in sWAT. These results were expected and are in agreement with
384	other studies that showed improvement of eWAT dysfunction with fish oil intake in mice 46
385	and improvement of insulin sensitivity in sWAT of humans with metabolic syndrome

386	supplemented with n-3 PUFA. ⁴⁷ Moreover, it was also already proven that EPA can induce
387	the protective role of browning in subcutaneous adipocytes. ⁸
388	In conclusion, fish oil intake has anti-obesity effects through modulation of both eWAT
389	and sWAT metabolism in mice and is relevant in diminishing the BM gain, adiposity, and
390	insulin resistance even in concomitance with a high-fat lard diet intake in mice. The
391	mechanism of action of fish oil is associated with a reduction of lipogenesis, an increase of
392	lipolysis, beta-oxidation and mitochondrial biogenesis in both eWAT and sWAT, and
393	upregulation of thermogenic markers in sWAT. Interestingly, while the effects on eWAT
394	were seen as a result of both fish oil diets, in sWAT only the HF-FO diet was able to lead to
395	beneficial effects, especially in inducing browning.
396	
397	
398	Funding
399	This research was supported by the Brazilian agencies CNPq (Brazilian Council of Science
400	and Technology, <u>www.cnpq.br</u> , grant #302.154/2011-6 to CAML, and #306.077/2013-2 to
401	MBA), FAPERJ (Rio de Janeiro Foundation for Research, www.faperj.br, grant
402	#102.944/2011 to CAML, and #103.062/2011), and CAPES (Coordination for
403	Perfectionnement of Superior Personal, <u>www.capes.br</u>), scholarship to TLB.
404	
405	
406	Acknowledgements
407	The authors would like to thank Ms. Aline de Carvalho, Ms. Michele Soares and Ms. Gezileia

408 Lau for their technical assistance.

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

Food & Function

References 1. M. S. Lee, I. S. Kwun and Y. Kim, Genes Nutr, 2008, 2, 327-330. 2. A. Camargo, M. E. Meneses, P. Perez-Martinez, J. Delgado-Lista, Y. Jimenez-Gomez, C. Cruz-Teno, F. J. Tinahones, J. A. Paniagua, F. Perez-Jimenez, H. M. Roche, M. M. Malagon and J. Lopez-Miranda, Eur J Nutr, 2014, 53, 617-626. 3. B. Gustafson and U. Smith, Atherosclerosis, 2015, 241, 27-35. 4. M. E. D'Alessandro, D. Selenscig, P. Illesca, A. Chicco and Y. B. Lombardo, Food Funct, 2015, 6, 1299-1309. 5. S. L. Hocking, R. L. Stewart, A. E. Brandon, E. Suryana, E. Stuart, E. M. Baldwin, G. A. Kolumam, Z. Modrusan, J. R. Junutula, J. E. Gunton, M. Medynskyj, S. P. Blaber, E. Karsten, B. R. Herbert, D. E. James, G. J. Cooney and M. M. Swarbrick, Diabetologia, 2015. A. Giordano, A. Smorlesi, A. Frontini, G. Barbatelli and S. Cinti, Eur J Endocrinol, 6. 2014, **170**, R159-171. J. Wu, P. Bostrom, L. M. Sparks, L. Ye, J. H. Choi, A. H. Giang, M. Khandekar, K. A. 7. Virtanen, P. Nuutila, G. Schaart, K. Huang, H. Tu, W. D. van Marken Lichtenbelt, J. Hoeks, S. Enerback, P. Schrauwen and B. M. Spiegelman, Cell, 2012, 150, 366-376. M. Zhao and X. Chen, Biochemical and biophysical research communications, 2014, 8. **450**, 1446-1451. T. L. Rachid, A. Penna-de-Carvalho, I. Bringhenti, M. B. Aguila, C. A. Mandarim-de-9. Lacerda and V. Souza-Mello, Cell Biochem Funct, 2015, 33, 249-256. 10. T. L. Rachid, A. Penna-de-Carvalho, I. Bringhenti, M. B. Aguila, C. A. Mandarim-de-Lacerda and V. Souza-Mello, Mol Cell Endocrinol, 2015, 402, 86-94. 11. P. C. Calder, J Nutr, 2012, 142, 5928-5998.

- 433 12. C. Couet, J. Delarue, P. Ritz, J. M. Antoine and F. Lamisse, *Int J Obes Relat Metab*434 *Disord*, 1997, **21**, 637-643.
- 435 13. M. Kabir, G. Skurnik, N. Naour, V. Pechtner, E. Meugnier, S. Rome, A. Quignard-
- Boulange, H. Vidal, G. Slama, K. Clement, M. Guerre-Millo and S. W. Rizkalla, *Am J Clin Nutr*, 2007, 86, 1670-1679.
- 438 14. L. Lionetti, M. P. Mollica, R. Sica, I. Donizzetti, G. Gifuni, A. Pignalosa, G. Cavaliere
 439 and R. Putti, *Int J Mol Sci*, 2014, **15**, 3040-3063.
- 440 15. X. Liu, Y. Xue, C. Liu, Q. Lou, J. Wang, T. Yanagita, C. Xue and Y. Wang, Lipids
- 441 *Health Dis*, 2013, **12**, 109.
- 442 16. H. Q. Liu, Y. Qiu, Y. Mu, X. J. Zhang, L. Liu, X. H. Hou, L. Zhang, X. N. Xu, A. L. Ji,
- 443 R. Cao, R. H. Yang and F. Wang, *Nutr Res*, 2013, **33**, 849-858.
- 444 17. J. D. Buckley and P. R. Howe, *Nutrients*, 2010, **2**, 1212-1230.
- 18. J. Ruzickova, M. Rossmeisl, T. Prazak, P. Flachs, J. Sponarova, M. Veck, E. Tvrzicka,
- 446 M. Bryhn and J. Kopecky, *Lipids*, 2004, **39**, 1177-1185.
- 447 19. P. G. Reeves, F. H. Nielsen and G. C. Fahey, Jr., J Nutr, 1993, 123, 1939-1951.
- 448 20. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher and R. C.
- 449 Turner, *Diabetologia*, 1985, **28**, 412-419.
- 450 21. H. J. G. Gundersen, *J Microsc*, 1977, **111**, 219-227.
- 451 22. C. A. Mandarim-de-Lacerda, Ann Brazil Acad Sci, 2003, 75, 469-486.
- 452 23. S. Barbosa-da-Silva, J. C. Fraulob-Aquino, J. R. Lopes, C. A. Mandarim-de-Lacerda and
- 453 M. B. Aguila, *PLoS One*, 2012, **7**, e39837.
- 454 24. J. Jo, O. Gavrilova, S. Pack, W. Jou, S. Mullen, A. E. Sumner, S. W. Cushman and V.
 455 Periwal, *PLoS computational biology*, 2009, 5, e1000324.
- 456 25. P. Flachs, V. Mohamed-Ali, O. Horakova, M. Rossmeisl, M. J. Hosseinzadeh-Attar, M.
- 457 Hensler, J. Ruzickova and J. Kopecky, *Diabetologia*, 2006, **49**, 394-397.

Food & Function

26. N. S. Kalupahana, K. Claycombe, S. J. Newman, T. Stewart, N. Siriwardhana, N.

- Matthan, A. H. Lichtenstein and N. Moustaid-Moussa, *J Nutr*, 2010, 140, 1915-1922.
 27. A. R. Proenca, R. A. Sertie, A. C. Oliveira, A. B. Campana, R. O. Caminhotto, P.
 Chimin and F. B. Lima, *Braz J Med Biol Res*, 2014, 47, 192-205.
 28. J. Pohl, A. Ring, U. Korkmaz, R. Ehehalt and W. Stremmel, *Mol Biol Cell*, 2005, 16, 24-
 - 463 31.
 - 464 29. T. Garin-Shkolnik, A. Rudich, G. S. Hotamisligil and M. Rubinstein, *Diabetes*, 2014, 63,
 465 900-911.
 - 30. B. S. Muhlhausler, R. Cook-Johnson, M. James, D. Miljkovic, E. Duthoit and R. Gibson, *J Nutr Metabol*, 2010, **2010**.
 - J. Berndt, P. Kovacs, K. Ruschke, N. Kloting, M. Fasshauer, M. R. Schon, A. Korner,
 M. Stumvoll and M. Bluher, *Diabetologia*, 2007, 50, 1472-1480.
 - 470 32. L. Cai, Z. Wang, A. Ji, J. M. Meyer and D. R. van der Westhuyzen, *PloS one*, 2012, 7,
 471 e36785.
 - 472 33. B. H. Liu, C. F. Kuo, Y. C. Wang and S. T. Ding, *J Anim Sci*, 2005, 83, 1516-1525.
 - 473 34. H. Ray, C. Pinteur, V. Frering, M. Beylot and V. Large, *Lipids Health Dis*, 2009, 8, 58.
 - 474 35. E. Barber, A. J. Sinclair and D. Cameron-Smith, *Prostaglandins, leukotrienes, and*
 - 475 *essential fatty acids*, 2013, **89**, 359-366.
 - 476 36. D. C. Magliano, T. C. Bargut, S. N. de Carvalho, M. B. Aguila, C. A. Mandarim-de-
 - 477 Lacerda and V. Souza-Mello, *PLoS One*, 2013, **8**, e64258.
 - 478 37. Z. H. Yang, H. Miyahara, Y. Iwasaki, J. Takeo and M. Katayama, *Nutr Metab (Lond)*,
 479 2013, 10, 16.
 - 480 38. S. Bijland, S. J. Mancini and I. P. Salt, *Clin Sci (Lond)*, 2013, **124**, 491-507.
 - 481 39. R. B. Vega, J. M. Huss and D. P. Kelly, *Mol Cell Biol*, 2000, **20**, 1868-1876.
 - 482 40. D. P. Kelly and R. C. Scarpulla, *Genes Dev*, 2004, 18, 357-368.

- 483 41. P. Flachs, O. Horakova, P. Brauner, M. Rossmeisl, P. Pecina, N. Franssen-van Hal, J.
- 484 Ruzickova, J. Sponarova, Z. Drahota, C. Vlcek, J. Keijer, J. Houstek and J. Kopecky,
 485 *Diabetologia*, 2005, 48, 2365-2375.
- 486 42. T. Shan, X. Liang, P. Bi, P. Zhang, W. Liu and S. Kuang, *J Lipid Res*, 2013, 54, 2214487 2224.
- 488 43. A. L. Carey, C. Vorlander, M. Reddy-Luthmoodoo, A. K. Natoli, M. F. Formosa, D. A.
- Bertovic, M. J. Anderson, S. J. Duffy and B. A. Kingwell, *PloS one*, 2014, 9, e91997.
- 44. T. C. Bargut, E. S. A. C. Silva, V. Souza-Mello, C. A. Mandarim-de-Lacerda and M. B.
 Aguila, *Eur J Nutr*, 2015 (doi: 10.1007/s00394-015-0834-0).
- 492 45. P. Flachs, R. Ruhl, M. Hensler, P. Janovska, P. Zouhar, V. Kus, Z. Macek Jilkova, E.
- 493 Papp, O. Kuda, M. Svobodova, M. Rossmeisl, G. Tsenov, V. Mohamed-Ali and J.
- 494 Kopecky, *Diabetologia*, 2011, **54**, 2626-2638.
- 495 46. T. C. Bargut, C. A. Mandarim-de-Lacerda and M. B. Aguila, *J Nutr Biochem*, 2015, 26,
 496 960-969.
- 497 47. Y. Jimenez-Gomez, C. Cruz-Teno, O. A. Rangel-Zuniga, J. R. Peinado, P. Perez-
- 498 Martinez, J. Delgado-Lista, A. Garcia-Rios, A. Camargo, R. Vazquez-Martinez, M.
- 499 Ortega-Bellido, F. Perez-Jimenez, H. M. Roche, M. M. Malagon and J. Lopez-Miranda,
- 500 *Mol Nutr Food Res*, 2014, **58**, 2177-2188.

|--|

501

Ingredients (g/kg)	SC	HF-L	HF-L+FO	HF-FO
Casein (≥ 85% of protein)	140.0	175.0	175.0	175.0
Cornstarch	620.692	347.692	347.692	347.692
Sucrose	100.0	100.0	100.0	100.0
Soybean oil	40.0	40.0	40.0	40.0
Lard	-	238.0	119.0	-
Fish oil	-	-	119.0	238.0
Fiber	50.0	50.0	50.0	50.0
Vitamin mix ^{<i>a</i>}	10.0	10.0	10.0	10.0
Mineral mix ^{<i>a</i>}	35.0	35.0	35.0	35.0
L-Cystin	1.8	1.8	1.8	1.8
Choline	2.5	2.5	2.5	2.5
Antioxidant	0.008	0.060	0.060	0.060
Total mass	1,000.0	1,000.0	1,000.0	1,000.0
Proteins (% Energy)	14	14	14	14
Carbohydrates (% Energy)	76	36	36	36
Lipids (% Energy)	10	50	50	50
Energy content (kcal/kg)	3811	5000	5000	5000

503

^a Mineral and vitamin mixtures are in accordance with AIN 93M

505 Abbreviations: standard-chow (SC), high-fat lard diet (HF-L), high-fat lard plus fish oil diet

506 (HF-L+FO), and high-fat fish oil diet (HF-FO).

Table 2 – RT-qPCR	primers
-------------------	---------

Primer	5'-3'	Anti-sense
aP2	TGGAAGCTTGTCTCCAGTGA	AATCCCCATTTACGCTGATG
CD36	TGCATTTGCCAATGTCTAGC	CCCTCCAGAATCCAGACAAC
CD137	CCCACATATTCAAGCAACCA	GCTCATAGCCTCCTCCTCCT
CPT-1a	AAGGAATGCAGGTCCACATC	CCAGGCTACAGTGGGACATT
FAS	CACCCACTGGAAGCTGGTAT	TCGAGGAAGGCACTACACCT
NRF1	GTTGGTACAGGGGCAACAGT	GTAACGTGGCCCAGTTTTGT
Perilipin	AATATGCACAGTGCCAACCA	CGATGCTTCTCTTCCACTCC
PGC1a	GTGTGAGGAGGGTCATCGTT	GTCAACAGCAAAAGCCACAA
SREBP1c	AGCAGCCCCTAGAACAAACA	TCTGCCTTGATGAAGTGTGG
TFAM	GAAGAACGCATGGAGGAGAG	TTCTGGGGAGAGTTGCAGTT
UCP1	TCTCAGCCGGCTTAATGACT	TGCATTCTGACCTTCACGAC
β3-AR	ACAGGAATGCCACTCCAATC	AAGGAGACGGAGGAGGAGAG
β-actin	CTCCGGCATGTGCAA	CCCACCATCACACCCT

509

510 Abbreviations: aP2, adipocyte protein 2; CD36, cluster of differentiation 36; CD137, cluster 511 of differentiation 137; CPT-1a, carnitine palmitoyltransferase-1a; FAS, fatty acid synthase; 512 IL-6, interleukin-6; MCP1, monocyte chemotactic protein 1; NRF1, nuclear respiratory factor 513 1; PGC1 α , peroxisome proliferator-activated receptor *gamma* coactivator 1 *alpha*; SREBP1c, 514 sterol regulatory element-binding transcription factor 1c; TFAM, mitochondrial transcription 515 factor A; UCP1, uncoupling protein type 1; β 3-AR, *beta*3 adrenergic receptor.

516	Table	3 – Food behavior	r, adiposity, and insu	lin resistance	
517	Groups				
518	Data	SC	HF-L	HF-L+FO	HF-FO
	Food behavior				
519	Energy intake (KJ)	47.8±1.3	60.8±3.3 ^[a]	63.5±5.9 ^[a]	$64.6 \pm 7.9^{[a]}$
520	Adiposity				
501	Body mass gain (g)	2.3±0.9	$6.5 \pm 2.3^{[a]}$	$4.9{\pm}0.8^{[a,b]}$	$3.4 \pm 1.4^{[b,c]}$
521	Epididymal fat pad (g)	0.30 ± 0.03	$0.54{\pm}0.11^{[a]}$	$0.43{\pm}0.04^{[a,b]}$	$0.25 \pm 0.05^{[b,c]}$
522	Inguinal fat pad (g)	0.15±0.02	$0.23{\pm}0.05^{[a]}$	$0.17{\pm}0.04^{[b]}$	$0.10 \pm 0.02^{[a,b,c]}$
523	Adipocyte sectional area				
E 2 4	eWAT adipocyte (µm ²)	371.1±91.7	$1020.5 \pm 250.1^{[a]}$	$618.0{\pm}299.1^{[a,b]}$	$356.6 \pm 93.1^{[b,c]}$
524	sWAT adipocyte (µm ²)	305.8±109.2	530.5±92.3 ^[a]	$294.5 \pm 58.8^{[b]}$	136.6±30.6 ^[a,b,c]
525	Insulin resistance				
526	Fasting glycemia (mmol/L)	8.1 ± 0.6	$9.6 \pm 1.2^{[a]}$	$6.8 \pm 1.6^{[a,b]}$	$6.2{\pm}0.8^{[a,b]}$
520	Insulin (µUI/L)	15.9±8.5	$49.1 \pm 9.3^{[a]}$	26.7±9.8 ^[b]	28.2±10.5 ^[b]
527	HOMA-IR	5.6±3.8	18.5±7.2 ^[a]	8.5±3.3 ^[b]	8.0±3.5 ^[b]

Table 3 Food behavior adiposity and insulin resistance

528

529 Legend: Standard-chow group (SC); high-fat lard group (HF-L); high-fat lard plus fish oil group (HF-L+FO), and high-fat fish oil group (HF-FO). In the signaled cases, P≤0.05 when [a] compared to the SC group, [b] compared to the HF-L group, [c] compared to the HF-L+FO group 530

(one-way ANOVA and posthoc test of Holm-Sidak). Values are the means \pm SD, n = 5 per group. 531

532 Abbreviations: HOMA-IR, homeostasis model assessment of insulin resistance index.

Food & Function Accepted Manuscript

533	Figure legends
534	Figure 1. Adipocyte size distribution in eWAT and sWAT. Horizontal black bars are
535	medians, $n = 5$ per group. When indicated, $P < 0.05$ (one-way ANOVA and the posthoc test of
536	Holm-Sidak): $[a] \neq SC$, $[b] \neq HF-L$, $[c] \neq HF-L+FO$.
537	Groups: standard-chow group (SC), high-fat lard group (HF-L), high-fat lard plus fish oil
538	group (HF-L+FO), and high-fat fish oil group (HF-FO).
539	Figure 2. Gene expression of CD36, aP2, SREBP1c, FAS, perilipin, CPT-1a, PGC1 <i>alpha</i> ,
540	NRF1, and TFAM in eWAT. Values are the means \pm SD, n = 5 per group. When indicated,
541	<i>P</i> <0.05 (one-way ANOVA and the posthoc test of Holm-Sidak): $[a] \neq SC$, $[b] \neq HF-L$, $[c] \neq$
542	HF-L+FO.
543	Groups: standard-chow group (SC), high-fat lard group (HF-L), high-fat lard plus fish oil
544	group (HF-L+FO), and high-fat fish oil group (HF-FO).
545	Figure 3. Gene expression of SREBP1c, FAS, perilipin, CPT-1a, PGC1 <i>alpha</i> , NRF1,
546	TFAM , <i>beta</i> 3 -AR, UCP1, and CD137 in sWAT. Values are the means \pm SD, n = 5 per
547	group. When indicated, $P < 0.05$ (one-way ANOVA and the posthoc test of Holm-Sidak): [a] \neq
548	SC, $[b] \neq$ HF-L, $[c] \neq$ HF-L+FO.
549	Groups: standard-chow group (SC), high-fat lard group (HF-L), high-fat lard plus fish oil
550	group (HF-L+FO), and high-fat fish oil group (HF-FO).
551	Figure 4. Analysis of the sWAT (in the upper line, hematoxylin and eosin stain; in the lower
552	line, immunofluorescence for UCP1 (all photomicrographs have the same magnification, bar
553	= 50 μ m). The SC group showed typical white adipocytes, whereas the HF-L group showed
554	larger lipid droplets within sWAT. FO restored white adipocyte cytoarchitecture in the HF-
555	L+FO group and induced a brown adipocyte-like phenotype in the HF-FO group. Likewise,
556	tissues were labeled for UCP1 and showed the different intensity of positive
557	immunoreactions. The three groups SC, HF-L, and HF-L+FO, showed less intense
558	immunostaining. The HF-FO group showed the higher intensity of UCP1 labeling.
559	Groups: standard-chow group (SC), high-fat lard group (HF-L), high-fat lard plus fish oil

560 group (HF-L+FO), and high-fat fish oil group (HF-FO).

