This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Polysaccharide from *Pleurotus nebrodensis* induces apoptosis via mitochondrial pathway in HepG2 cells

Haiyan Cui, Shufen Wu, Yanping Sun, Tiantian Wang, Zhenjing Li, Mianhua Chen, Changlu Wang*

* Corresponding author (Changlu Wang).

Address:
Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
Tel: +86 22-6027-2219
Fax: +86 22-6027-2219
E-mail address: clw123@tust.edu.cn
Abstract

A novel alkali extractable polysaccharide (designated as PNA-2) was purified from *Pleurotus nebrodensis* and the effects of purified PNA-2 on the proliferation and apoptosis of human hepatic cancer cells (HepG2) were investigated in this study. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that PNA-2 inhibited the proliferation of HepG2 cells by apoptosis induction, which was also characterized by scanning electron micrographs (SEM). Moreover, expressions of apoptosis-associated mRNA, proteins and cell-cycle arrest of G0/G1 phase were determined by RT-qPCR, western blot and flow cytometry, respectively. A notable inhibition of the migration rate of PNA-2-treated HepG2 cells was observed by the cell scratch assay. DNA damage was observed by the comet assay and AO/EB staining in HepG2 cells, which were exposed to PNA-2. Induction of mitochondria-mediated intrinsic apoptotic pathway by PNA-2 was evidenced by the loss of mitochondrial membrane potential (ΔΨm), bcl-2 dysregulation and cytochrome c release. All results suggested that mitochondria-mediated intrinsic apoptotic pathway could be involved in PNA-2-mediated apoptosis of human liver carcinoma cell HepG2. Finally, the results indicated that PNA-2 significantly suppressed tumor growth through the mitochondrial pathway in HepG2 tumor-bearing mice, which, indicating that PNA-2 may be developed as a candidate drug or function food factor to prevent or treat liver cancer.

Keywords: *Pleurotus nebrodensis*; polysaccharide; apoptosis; mitochondrial pathway
1. Introduction

Malignancy, particularly hepatic carcinoma (HCC), has become one of the most life-threatening diseases in recent years. The chemotherapy, as one of cancer therapeutic methods, owns some side effects, despite of significant advances in this treatment (Carr, Vissers, & Cook, 2014). Therefore, treatments targeting of apoptosis in cancer are potential alternatives, which has been paid more and more attention (Kim & Kim, 2013). Polysaccharides, as one of natural compounds, have been used to enhance therapeutic efficacy through apoptosis induction of cancer cells without killing normal cells (Xu, Wu, Xu, Sun, Chen, & Yao, 2009).

Apoptosis is considered as a regulated active process signified by specific biochemical and morphological, during which individual cells undergo systematic self-destruction in response to various stimuli (Teodoro & Branton, 1997). There may be several multiple mechanisms for drug-induced apoptosis, and one of the most pivotal pathways in cells is the mitochondrial pathway (Tatsuta, Sugawara, Takahashi, Ogawa, Hosono, & Nitta, 2014), which is also important for polysaccharides inducing apoptosis in cancer cells (Hirahara, Edamatsu, Fujieda, Fujioka, Wada, & Tajima, 2013). A potential antitumor polysaccharide (LSPc1) has been purified from the fruiting bodies of *Lepista sordida* and proved to induce cancer apoptosis through the mitochondrial pathway (Miao, Mao, Pei, Miao, Xiang, Lv, et al., 2013). Atractylodes macrocephala polysaccharides (AMPs) have also been proved to induce apoptosis in glioma C6 cells via the mitochondrial pathway (Nasrallah & Horvath, 2014).

Polysaccharides could be obtained from various organisms, such as algae, plants, microorganisms and animals (Mehvar, 2003). Several reports have confirmed that polysaccharides, especially those extracted from fungi, exhibited various biological activities (Ali, Ziada, &
It is noted that the activity of proliferation suppression and apoptosis of tumor cells has been extensively studied (Jeong, Koyyalamudi, Jeong, Song, & Pang, 2012; Zhang, Qi, Cheng, Liu, Huang, Wang, et al., 2014).

This work focuses on the apoptotic effects of PNAK2 (see Supplementary data) on HepG2 cells. And PNAK2 was proved to inhibit cell proliferation, induce cell-cycle arrest, activate the mitochondria-dependent apoptotic pathway, and block the migration as well as invasion of HepG2 cells. Furthermore, inhibition of Bcl-2, activation of cytochrome c and decrease of mitochondrial membrane potential induced by PNAK2 contributed to the apoptotic-inducing effect of HepG2 cells. Apoptotic pathway may play an important role in the inhibition of the tumor growth \textit{in vivo}. Taken together, our findings indicate that PNAK2 triggers apoptosis in HepG2 cells through the mitochondria-dependent apoptotic pathway, dramatically inhibited the tumor growth, and may become a potential antitumor compound for liver cancer therapy.

2. Methods

2.1 Materials and reagents

PNAK2 was obtained as described in Supplementary data. Dulbecco’s modified Eagle’s medium (DMEM) with high glucose was purchased from Hyclone (Beijing, China). Fetal bovine serum (FBS) was obtained from Gibco GRL (Grand Island, NY, USA). Penicillin-streptomycin solution, trypsin, phosphate buffered saline (PBS, pH = 7.3), dimethyl sulfoxide side (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterrazolium bromide (MTT), low-melting point agarose, normal-melting point agarose, and cell lysis solution were purchased from Solarbio (Beijing,
China). Propidium iodide (PI), Rhodamine 123, AO/EB were purchased from Sigma-Aldrich (St. Louis, MO, USA). RNeasy Mini Kit was purchased from Qiagen (Hilden, Germany). The PrimeScript 1st Strand cDNA Synthesis Kit was obtained from Takara Bio (Dalian, China). SYBR Green PCR master mix was purchased from Invitrogen (Shanghai, China). Antibodies against Cyt C, Bcl-2, Bax, α-tubulin, VDAC1, β-actin and fluorescent secondary antibodies labeled with FITC were purchased from Abcam (Shanghai, China). Polyvinylidene fluoride (PVDF) was purchased from Millipore (Shanghai, China). All chemicals and other reagents were of analytical grade.

2.2 Cells and Animals

HepG2 cells, human hepatic cancer cell line, were obtained from the Bioresource Collection and Research Center of the Food Industry Research and Development Institute (Hsinchu, Taiwan, ROC).

BALB/cAnN-nu mice at 4 to 6 weeks (female, 18–22 g) were provided by Beijing Vital River Biotechnology Company (SPF Certificate: No. SCXK (jing) 2013-0012, Beijing, China). The animals were kept according to the Guide for the Care and Use of Laboratory Animals (NRC 2011), and all experimental protocols were in accordance with Tianjin University of Science and Technology Medical College Animal Care Review Committee guidelines. The orthotopic inoculation protocol was approved by the Committee on the Use of Live Animals in Teaching and Research.

2.3 Cell culture

HepG2 cells were cultured in DMEM supplemented with 10% (v/v) fetal bovine serum and 1× penicillin/streptomycin (100 U/mL P and 0.1 mg/mL S), in a humidified atmosphere of 5% CO₂/95% air at 37 °C. After the cells were grown to 90% confluence in T25 tissue culture flasks.
(TPP Biochrom AG, Trasadingen, Switzerland), they were plated at a desirable density for further
assay. The plate was incubated at 37 °C overnight to allow cell attachment to the bottom. After the
cell supernatant was removed, an aliquot with equal volume of test sample was added to the well.

2.4 Assessment of cell viability

The cell viability of HepG2 treated with PNA-2 at different concentrations (0, 6.25, 12.5, 62.5, 125, 250 and 500 µg/mL) was measured by MTT assay according to Lee et al (Lee, Yoon, & Park, 2008) with some modifications. HepG2 cells (8×10^4 cells/mL, 100 µL/well) treated with and
without PNA-2 were cultured in 96-well plates for 48h. Then 20 µL of 5 mg/mL MTT dissolved in
PBS was added to each well and incubated for another 4h. After the culture medium was discarded,
150 µL of DMSO was added to each well and the plate was oscillated for 15 min to dissolve the
formazan completely. The absorbance was read at 570 nm with an ELISA reader (ASYS Hitech,
GmbH, Austria), and the viability was calculated as follows:

\[
\text{Inhibition(\%)} = \frac{A - B}{A - C} \times 100\%
\]

where A is the average OD value of wells with untreated cells; B is the one of wells with PNA-2
treated cells; C is the one of without cells.

2.5 Invasiveness assay

The cells were seeded at a density of 1×10^5 cells per well in 24-well plates, and allowed to
attach overnight. Then the supernatant was removed carefully and the wells was given a sharp
smack with a 10 µl pipette tip gently and vertically. And plates were washed three times with PBS
to remove the floating cells. Cells were treated by PNA-2 with concentrations of 0, , 12.5, 62.5 and
125 µg/mL for 24h and then examined under phase-contrast microscope (Olympus, Japan).

2.6 Observation of morphology changes
HepG2 cells (1×10^5 cells/mL) was inoculated on a cover slip, treated with PNAK2 (0, 12.5, 62.5 and 125 µg/mL) for 24 h, and then pre-fixed with 2.5% glutaraldehyde at 4 °C for 30 min. In order to remove water thoroughly, the cells were then rinsed with PBS and ethanol in a gradient concentrations of 30%, 50%, 70%, 80%, 90%, 100%, respectively, with each rinse for 5 min. Finally, the surface morphology of cells treated with and without PNA-2 was characterized by SEM (Hitachi, Tokyo, Japan).

2.7 Acridine orange /ethidium bromide (AO/EB) staining

HepG2 cells treated with PNAK2 (0, 12.5, 62.5 and 125 µg/mL) were cultured in 24-well plates for 48 h at 37 °C in an atmosphere of 5% CO2. After washed three times with PBS and mixed with 4% paraformaldehyde for 10 min at 4 °C, cells were stained with AO/EB solution (100 µg/mL AO and 100 µg/mL EB in PBS) for 30 min at room temperature in the dark. Finally, cells was washed with PBS and observed by an inverted fluorescence microscope (AMG, USA).

2.8 Single cell gel electrophoresis assay

The HepG2 cells treated by PNAK2 and those without treated were plated at a density of 1×10^5 cells per dish and cultured for 48 h. Then operated was carried by comet assay according to Tice et al (Tice, Agurell, Anderson, Burlinson, Hartmann, Kobayashi, et al., 2000). Finally, comets were stained with ethidium bromide(5µg/ml) and analyzed by confocal laser scanning microscopy (Nikon, Tokyo, Japan).

2.9 Flow cytometric analysis

HepG2 cells (1×10^5 cells/mL) were seeded in T25 tissue culture flasks and exposed to various concentrations of PNA-2 (0, 12.5, 62.5 and 125µg/mL). The cells were washed with PBS, collected after trypsinization, and then fixed in 70% glacial ethanol. After washed with PBS for
three times, cells were resuspended in 1 mL of PBS containing 50 U/mL RNase and 50 µg/mL propidium iodide (PI), and then incubated for 40 min in the dark at 4 °C. Cell cycle analysis was performed by flow cytometry (BD, Franklin Lakes, NJ, USA) at an excitation wavelength of 488 nm, and the population of cells in each phase was calculated using the Modifit LT software program. Each experiment was carried out three times.

2.10 Rhodamine-123 staining

Changes in mitochondrial membrane potential (ΔΨm) due to mitochondrial dysfunction were detected using rhodamine-123 staining (J. Lemasters & Nieminen, 1997). The HepG2 cells in 24-well plates treated by PNA-2 with concentrations of 0, 12.5, 62.5 and 125 µg/mL were cultured for 48 h at 37 °C and 5% CO2. After washed three times with PBS and fixed with 4% paraformaldehyde for 10 min at 4 °C, cells were stained with rhodamine-123 (5 µg/mL) for 30 min at room temperature in the dark. Finally, cells were washed with PBS and observed by an inverted fluorescence microscope (AMG, USA).

2.11 Measurement of activities of caspase-9 and caspase-3

The assay was carried out to determine the proteolytic activity of Caspaes-3 and Caspaes-9. The HepG2 cells treated by different concentrations of PNA-2 (12.5, 62.5 and 125 µg/mL) were separately collected. Then the activity of caspase-9 as well as caspase-3 was measured by caspase-3, 9 activity kit systems according to manufacturer’s instructions (Beyotime Institute of Biotechnology, Haimen, China). The absorbance was measured by an ELISA reader at 405 nm.

2.12 Quantitative Real-time PCR

The expression of Caspaes-3, Caspaes-9, Bcl-2, Cytochrome C (Cyt C), CD31 and Ki67 of HepG2 cells treated with PNA-2 was analyzed by qRT-PCR. Cells were washed with PBS and
lysed using the lysis buffer provided by the kit. Total RNA was extracted using the RNeasy Mini-Kit according to the manufacturer’s protocol. First-strand cDNA was synthesized using the PrimeScript 1st Strand cDNA Synthesis Kit, with the Oligo dT-Adaptor Primer. Gene expression was monitored by qRT-PCR, carried out using the SYBR Green PCR master mix (Invitrogen). Primers for Caspaes-3, Caspaes-9, Bcl-2 and Cyt C and actin were designed (Table 1). RT-qPCR was performed using the ABI step one plus system (applied biosystems) followed by melting curve analysis with the following cycling program: initial activation at 95 °C for 2 min, followed by 48 cycles of denaturation at 95 °C for 15s, annealing at 55 °C for 30 s, and extension at 72 °C for 15s.

2.13 Western blot analysis

Whole cell lysates were denatured by boiling in loading buffer (20 mM Tris-HCl, pH 6.8, 10% glycerol, 4% SDS, 100 mM DTT and 0.04% bromophenol blue) for 5 minutes. Each sample (40 µg protein) was loaded onto 12% SDS polyacrylamide gel followed by electroblotting onto PVDF membrane. After blocking of non-specific binding with 5% nonfat milk (prepared in PBS containing 0.1% Tween 20) for 1 h at 37 °C, the membrane was applied with antibodies against Cyt C, Bcl-2 and β-actin, respectively. And this was followed by incubation with FITC labeled anti-rabbit antibody. Then the protein was detected using Infrared Imaging System (Odyssey, USA). Densitometry was performed using the software Quantity One.

2.14 Antitumor Activity In vivo

Mouse model of HepG2 was established by inoculating cells (4 × 10^7 cells/mL, 100 µL) into the right shoulder of each mouse. After 24 h, the mice were divided into four groups with eight in each group at random. The experimental groups received different dosages of PNA-2 with 12.5,
196 62.5 and 125 mg/kg body weight, respectively. While the control group was administered 0.9% saline solution. PNA-2 or saline solution was administered using intragastric perfusion once daily.
197 The tumor volume was measured from day 15. On the 30th day, the mice were weighed and sacrificed by cervical dislocation. Meanwhile, the tumor was excised and weighed.

2.14 Statistical analysis

Each experiment was repeated at least three times. Numerical data are presented as mean ± SEM. The difference between means was analyzed using one-way ANOVA. All statistical analyses were performed using SPSS 17.0 software (Chicago, IL, USA). Differences were considered significant if P < 0.05.

3. Results

3.1 Cell viability and migration ability of HepG2 cells treated by PNA-2

The antitumor activity of PNA-2 was investigated by an *in vitro* anticancer assay. After HepG2 cells treated with PNA-2 (0, 6.25, 12.5, 62.5, 125, 250 and 500 µg/mL) for 48 h, the cell inhibitory rate against cancer cell proliferation was determined. As shown in Fig. 1A, PNA-2 exhibited significant cytotoxicity at concentrations of 12.5, 62.5 and 125 µg/mL, and the inhibition rate decreased with reducing or increasing concentrations of PNA-2 at 6.25, 250 and 500 µg/mL. Therefore, cells were treated by various concentrations of PNA-2 with 12.5, 62.5 and 125 µg/mL for experiments hereafter.

Cell migration is an essential mechanism for various processes in unicellular and multicellular organisms, such as wound healing, immune responses and tissue formation (Glaß, Möller, Zirkel, Wächter, Hüttelmaier, & Posch, 2012), which is analyzed by cell scratch assay *in vitro* (Debeir, Adanja, Kiss, & Decaestecker, 2008; Liang, Park, & Guan, 2007). For the present study, wound
closure was examined at 0, 12 and 24 h in the presence of different concentrations of PNA-2 (0, 12.5, 62.5 and 125 µg/mL). As shown in Fig. 1B, non-treated cells migrated into the scratched area and filled the gap at 24 h, whereas the migration of HepG2 cells treated by PNA-2 was inhibited, especially at concentrations of 62.5 and 125 µg/mL for 24 h. The migration rates of HepG2 cells treated by PNA-2 of 12.5, 62.5, and 125 µg/mL for 12 h were 39.1%, 38.6%, and 41.3%, respectively, while those for 24 h were 60.4%, 58.3%, and 57.8% (Fig. 1C). Additionally, these data exhibit significant difference from the control group (P < 0.01). All results suggested that the migration ability of HepG2 cells was inhibited by PNA-2 in a dose- and time-dependent manner.

3.2 Morphological change of HepG2 cells treated by PNA-2

Morphological changes of HepG2 cells treated with and without PNA-2 were characterized by SEM. Fig. 2 showed that the microvilli on the surface of untreated cells remained intact, whereas typical apoptosis occurred to PNA-2-treated cells for phenomena such as cell shrinkage, membrane blebbing, cytoplasmic vacuolization and so on. Thus PNA-2 indeed induces apoptosis in HepG2 cells.

3.3 Chromosome condensation and DNA damage of HepG2 Cells induced by PNA-2

Apoptotic, necrotic and viable HepG2 cells were scored under fluorescence microscope. A typical image of untreated cells with a green intact nuclear structure was observed in Fig. 3A. At 48-h treatment with PNA-2 at low doses of 12.5 and 62.5 µg/mL, cell apoptosis occurred (Fig. 3B and C) with marked nuclear condensation, membrane blebbing, nuclear shrinkage, as well as color changing from green to reddish-orange due to the binding of AO to denatured DNA, which indicated the programmed cell death of HepG2 cells induced by PNA-2 (illustrated by arrows). In
addition, necrosis was observed with the presence of red color at a high dose of 125 µg/mL (Fig. 3D). The ratios between red and green fluorescence of treated HepG2 cells indicated clearly that PNA-2 had a dose-dependent apoptogenic effect (Fig. 3I).

Furthermore, DNA damage was evaluated by Comet assay (or single-cell gel electrophoresis), a sensitivity method for detecting DNA strand breaks in individual cells. Cells treated by PNA-2 of 12.5 µg/ml showed some DNA damage with few comet tails, and comet tail length was significantly extended in those treated by PNA-2 of 62.5 and 125 µg/ml (P < 0.05 and P < 0.01, respectively) (Fig. 3E-H).

3.4 G0/G1 arrest in HepG2 cells induced by PNA-2

To explore the intrinsic mechanism by which PNA-2 inhibits cell proliferation, flow cytometry was performed on HepG2 cells with or without treatment with PNA-2 for 24 h (Fig. 4A). Compared with untreated cells, the significantly increased percentages of cells in G0/G1 phase (from 46.36% ± 4.03% to 67.66% ± 3.28%, P < 0.01), along with dramatically decreased cell population of S phase (from 34.04% ± 0.29% to 25.94% ± 0.24%, P < 0.01) as well as that of G2/M phase (from 18.91% ± 4.13% to 9.81% ± 0.6%, P < 0.01), were observed in HepG2 cells treated by PNA-2 of 125 µg/mL (Fig. 4B). These data suggested that PNA-2 could inhibit the cell proliferation by inducing the G0/G1 arrest in a dose-dependent manner in HepG2 cells.

3.5 Mitochondria-dependent apoptosis triggered by PNA-2

Here, rhodamine-123, a membrane potential-specific dye, was used as a probe to monitor effects of PNA-2 on the mitochondrial function of HepG2 cell. As shown in Fig. 5A, green fluorescence significantly reduced in cells exposed to PNA-2 compared with that untreated by PNA-2. Treated by PNA-2 with concentrations of 12.5, 62.5, and 125 µg/ml, the mean
fluorescence intensity of cells represented significant loss ($P < 0.05$, $P < 0.01$, $P < 0.01$, respectively) (Fig. 5B), indicating that PNA-2-induced apoptosis was accompanied by mitochondrial membrane depolarization.

Furthermore, the potential mitochondria-dependent signaling molecules involved in PNA-2-mediated HepG2 cell proapoptosis, such as Cyt C and BCL-2, were investigated. Cyt C mRNA expression was significantly increased in a concentration-dependent manner, while that of BCL-2 protein was strongly inhibited by PNA-2 (Fig. 5C). Moreover, a 2.3-fold increase (0.89/0.39 = 2.3, Fig. 5D) and a reduction by 60% (1 - 0.35/0.86 = 60%, Fig. 5D) in Cyt C and BCL-2 transcript levels were observed in cells treated at the highest concentration (125 µg/mL) (Fig. 5E). All results indicated that the mitochondria-dependent apoptotic pathway participated in PNA-2-induced HepG2 cell death.

3.6 Caspase-dependent apoptosis Induced by PNA-2

In order to determine whether a caspase-9-dependent pathway involved in the apoptosis induced by PNA-2, both caspase-3 and caspase-9 were analyzed, for caspase-3, as an apoptosis executioner, is responsible for degradation of cellular proteins and activated by caspase-9. Fig. 6A showed that the activities of caspase-9 and caspase-3 in HepG2 cells with treatment by PNA-2 (concentrations of 62.5 and 125 µg/mL) for 48 h were significantly increased. Additionally, the gene expression profiles were further confirmed by quantitative fluorescence polymerase chain reaction, and Fig. 6B showed that exposure to various concentrations of PNA-2 resulted in changes in expressions of mitochondrial caspase-9 and caspase-3, which means that activation of caspase-9 and caspase-3 indeed participated in PNA-2-induced apoptosis in HepG2 cells.

3.7 Growth inhibition of transplantable tumors by PNA-2
Fed by PNA-2 with various concentrations of 12.5, 62.5 and 125 mg/kg, the tumor volume (Fig. 7A) and tumor weight (Fig. 7 C) gradually decreased in tumor-bearing mice. Fig. 7B indicated that PNA-2 could inhibit the tumor growth in vivo more intuitively. Moreover, mRNA expression of the angiogenetic factor CD31 as well as the proliferation marker Ki67 were significantly reduced in PNA-2 treated-tumors (Fig. 7D).

3.8 Release of Cytochrome c and Apoptosis-associated protein expression increased by PNA-2

One key characteristic in the intrinsic apoptotic pathway is the liberation of mitochondrial intermembrane proteins into the cytosol, such as cytochrome c, which plays a pivotal role in the activation of the caspase cascade. As shown in Fig. 8A and B, the level of cytosolic cytochrome c protein was dose-dependently upregulated over the test dosage rage of PNA-2. While PNA-2 caused a decrease in protein level of cytochrome c in the mitochondrial fraction at 62.5 and 125 mg/kg. Thus the results indicated that PNA-2 led to the release of cytochrome c from the mitochondria to the cytosol.

For the Bcl-2 family members are important regulators of the mitochondrial apoptotic pathway, this study examined the expression of Bax and Bcl-2 proteins, in order to clarify the mechanism of PNA-2-induced apoptosis. Fig. 8 C and D revealed that protein levels of Bax increased dramatically in PNA-2-treated tumor-bearing groups at does of 62.5 and 125 mg/kg, whereas the protein expression level of Bcl-2 was decreased in a dose-dependent manner.

4. Discussion

Cancers are chronic diseases affecting millions of humans. It has been reported that medicinal mushrooms could serve as supplementary cancer treatments or direct remedies against cancer development (Jiang, Thyagarajan-Sahu, Loganathan, Eliaz, Terry, Sandusky, et al., 2012), for more and more medicinally compounds were evaluated (CFR Ferreira, A Vaz, Vasconcelos, &
Martins, 2010; Lull, Wichers, & Savelkoul, 2005). β-Glucans, derived from mushrooms, have been focused on and recognized as a potential anticancer agent (Beaglehole & Horton, 2010; Kodama, Harada, & Nanba, 2002).

PNAK2, a novel fungal polysaccharide purified from *P. nebrodensis* in our previous work, contains β-(1,4)-linked-D-glucose main chains highly substituted with mannose units and β-(1,3)-linked-D-glucose branches. Although some β-glucans, such as lentinan, schizophyllan, maitake D-fraction, and *Ganoderma* polysaccharides, have been tested for potential antitumor effects (Kodama, Murata, Asakawa, Inui, Hayashi, Sakai, et al., 2005; J. Li, Lei, Yu, Zhu, Zhang, & Wu, 2007; Sreenivasulu, Vijayalakshmi, & Sambasivarao, 2010; Zhong, Liu, Tong, Zhong, Wang, & Zhou, 2013), the antitumor activity of β-glucans branched of *P. nebrodensis* has not been evaluated, and the mechanism is unclear, either.

In this study, PNA-2 anti-proliferative activities and inhibition of tumor metastasis on HepG2 cells were investigated. Results demonstrated significant inhibition on HepG2 cells with inhibition rate of 34.2% at 125µg/mL and an rapid decrease of rates of migration from 88.2% to 57.8% at 24h (Fig. 1).

Apoptosis and cell cycle arrest are two main mechanisms for the cell growth inhibition (Sun et al., 2011). Apoptosis is a process of cell suicide characterized by specific morphological changes (Hagedorn & Sherwood, 2011), such as condensation of chromatin, loss of microvilli, blebbing formation, and appearance of apoptotic bodies, which were observed in HepG2 cells treated by PNA-2. Meanwhile, the important hallmarks of apoptosis, including the increase of AO/EB staining apoptotic cells (Fig. 2) and evident DNA fragmentations (Fig. 3) was also displayed. Moreover, cell cycle arrest is one of the key mechanisms by which anticancer drugs effect on the
cancer cells. Analysis of cell cycle was carried out to cells treated by PNA-2, and results indicated that the cell number in G0/G1 phases increased (P < 0.01), and that in S as well as G2/M phase decreased significantly (P < 0.01) (Fig. 4).

As reported, mitochondria plays a central role in initiating the apoptotic process and the loss of mitochondrial membrane potential (∆Ψm) is as an early event in apoptosis (J. J. Lemasters, Holmuhamedov, Czerny, Zhong, & Maldonado, 2012; P. F. Li, Dietz, & von Harsdorf, 1999). Mitochondria of cancer cells have a higher membrane potential, poor permeability and less susceptible to activation of the mitochondrial pathway of apoptosis. Thus, to break the respiratory chain and damage mitochondrial membrane potential could become a fundamental indicator for the elimination of cancer cells (Gogvadze, 2011). Results in our work indicated that PNA-2 significantly depolarized the membrane potential in a dose-dependent manner (Fig. 5A and B). As known, the process of apoptosis is triggered by mitochondrial disruption and the subsequent release of Cyt C, with the expression changes of pro-apoptotic Bcl-2 family proteins and antiapoptotic proteins. And apoptosis is ultimately executed by the caspase family proteins. Here, we have found that levels of the cytosolic Cyt C are significantly increased in cells with PNA-2 treatment, which subsequently activates caspase 9. Activated caspase 9 by Cyt C protein in turn activates caspase 3, and activated caspase 3 ultimately induces apoptosis with a decrease in Bcl-2 levels (Fig. 5A, B and C). These results indicate that PNA-2 induces mitochondria-dependent apoptosis in HepG2 cells.

To further elucidate the role of PNA-2 in vivo, an HepG2 tumor model in BALB/cAnN-nu mice was established. Significant tumor suppressions of PNA-2 at concentrations of 12.5, 62.5, and 125 mg/kg were observed, and the mRNA expression of tumor cell proliferative markers such
as CD31 and Ki67 was also significantly decreased (Fig. 7). The mitochondria-mediated apoptotic pathway was under the control of multiple layers of regulation, and one of the most important players are members of Bcl-2 family. Results indicated that PNA-2 inhibited the expression of antiapoptotic protein Bcl-2, and also triggered the expression of proapoptotic protein Bax in HepG2-bearing mice, which are necessary for the disruption of mitochondria and release of cytochrome c from mitochondria into cytosol (Fig. 8), and the activation of the mitochondria-dependent apoptotic signaling pathway.

Our data confirmed the potential of PNA-2 as an agent of cytostatic activity in HepG2 cells in vitro and in vivo, which may be valuable for application in drug developments. For further confirmation, other molecular mechanisms should be investigated to elucidate several molecular pathways and provide additional information on the potential use of this natural product in clinical settings.

5. Conclusion

In this study, the effect of PNA-2, a polysaccharide isolated from P. nebrodensis by alkaline extraction method in our previous work, on human hepatic cancer cells (HepG2) proliferation and apoptosis-related mechanism were investigated. The results suggested that PNA-2 could inhibit HepG2 cell proliferation, caused DNA damage and induced apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway.

Acknowledgments

We are grateful for the financial support provided by the Ph.D. Training Foundation of Tianjin University of Science and Technology (Grant No. 201402).
References

Figures caption:

Fig.1. *Cell viability and migration ability assay.* A. Inhibitory effects of PNA-2 on the cell viability of HepG2 cells by MTT. (n = 6), *P<0.05, **P<0.01 vs. control. B. Cell starch assay of PNA-2 on HepG2 cells at different dosage and times. C. The standard migration rate of PNA-2 on HepG2 cells.

Fig.2. The changes of cell surface observed by SEM. HepG2 cells were treated with PNA-2 of A. 0 µg/mL, B. 12.5 µg/mL, C. 62.5 µg/mL, D. 125 µg/mL.

Fig.3. *PNA-2 induces apoptosis in HepG2 cells.* A-D. Effect of PNA-2 with different concentrations of 0 µg/mL, 12.5 µg/mL, 62.5 µg/mL and 125 µg/mL on morphological changes in HepG2 cells stained by AO/EB. Apoptosis occurred when the cell nuclei were red or reddish-orange (scale bar: 200 µm). E-H. Comets were analyzed by confocal laser scanning microscopy at 543 nm (scale bar: 200 µm). I. The changes of % Red/Green-fluorescence of HepG2 cells treated by PNA-2. J. The length of comet tails increased in the presence of PNA-2.

Fig.4. *PNA-2 induces cell cycle arrest in HepG2 cells.* A. Representative flow cytometric analysis for DNA content in HepG2 cells treated by PNA-2 with different concentrations of 0 µg/mL, 12.5 µg/mL, 62.5 µg/mL and 125 µg/mL. Results were expressed as percentage of cells in G0/G1, S, and G2/M-phase. B. Graphical analysis of cell cycle phase distribution corresponding to A. (*P<0.01, **P<0.01 vs. control.).

Fig.5. *PNA-2 triggers mitochondria-mediated pathway.* A. Loss of the mitochondrial membrane potential (ΔΨm) (scale bar: 200 µm); B. The mean fluorescence intensity of 20 cells selected at random; C. Bcl-2 and Cyt C mRNA expression in HepG2 cells treated by PNA-2 with different concentrations of 0 µg/mL, 12.5 µg/mL, 62.5 µg/mL and 125 µg/mL; D. PNA-2-induced changes
in protein expressions of Cyt C and Bcl-2 in HepG2 cells determined by Western blot; E. The standard of fold expression of Cyt C and Bcl-2 in HepG2 cells (* P<0.01, **P<0.01 vs. control.)

Fig. 6. PNA-2 induces apoptosis through caspase-dependent manner. A. Effects of PNA-2 at different concentrations of 0 µg/mL, 12.5 µg/mL, 62.5 µg/mL and 125 µg/mL on caspase-9 and caspase-3 activation (mean±SEM, n = 3) (* P<0.01, **P<0.01 vs. control.). B. mRNA expressions of Caspase-3 and Caspase-9 in HepG2 cells treated by PNA-2 at different concentrations of 0 µg/mL, 12.5 µg/mL, 62.5 µg/mL and 125 µg/mL.

Fig. 7. Antitumor effect of PNA-2 in vivo. A. The average tumor volume calculated at indicated time points in HepG2-bearing female nude mice (n = 8, per group). B. Tumors were isolated on day 30, tumors formed in each group were photographed and 3 representative tumors from 4 different mice were displayed. C. Tumor weights determined on day 30. D. CD31 and Ki67 mRNA expression of the tumor in HepG2-bearing mouse treated with PNA-2. Bars represent SEM. Significance was calculated with Student’s t test.* P < 0.05 and **P < 0.01 vs control.

Fig. 8. Western blot analysis of Cyt C release and the expression of Bcl-2 family in tumor. A. The cytosolic and mitochondria proteins were analyzed by western blot with Cyt C. B. The standard of fold expression of Cyt C in HepG2 tumor cells. C. Total protein extracts were prepared and then analyzed by western blot with antibodies to Bcl-2, Bax and β-actin. D. Analysis of ratio of Bcl-2 and Bax. Bars represent SEM. Significance was calculated with Student’s t test. (* P<0.01, **P<0.01 vs. control)
A

Control

12.5 μg/mL

62.5 μg/mL

125 μg/mL

B

Cell Cycle Distribution (%)

0 12.5 62.5 125

Concentration of PNA-2 (μg/mL)

- G0/G1
- S
- G2/M

149x188mm (150 x 150 DPI)
The activity of Caspase
Concentration of PNA-2(μg/mL)

Relative gene expression (folds of control)

CTR
12.5μg/mL
62.5μg/mL
125μg/mL

Caspase-3
Caspase-9

* * * *
Table 1. Sequences of gene-specific qRT-PCR primers

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence of primers (upstream / downstream)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casp-3</td>
<td>TGTGAGGCCTTGATAGAAGTT / CGCTTCCATGTATGATCTTGT</td>
</tr>
<tr>
<td>Casp-9</td>
<td>TGGAGACTCGAGGGAGTCAG / TCGACAACTTTGCTGCTTGC</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>GATAACGGAGGCTGGGATGC / TCACCTTGCGCCAGATAGG</td>
</tr>
<tr>
<td>Cyt C</td>
<td>CGTTGAAAAGGGAGGCAAGC / TCTCCCATAGATGCGTTCCTTGG</td>
</tr>
<tr>
<td>Ki67</td>
<td>AACCTGCAAACCGAAGCGTG / CATTGCCAGCCTCCAGTGTC</td>
</tr>
<tr>
<td>CD31</td>
<td>GACGTGCAGTACAGGAGAGT / TCTGCTTTCCACGGAATCAG</td>
</tr>
<tr>
<td>β-actin</td>
<td>AACTGGACGGTGAAGGCTGA / GTGCAATCAAAGGTCCCTGCGC</td>
</tr>
</tbody>
</table>
PNA-2 mediated mitochondria-dependent apoptosis in HepG2 cells in vitro and vivo.