Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	
2	An effective homogenate-assisted negative pressure cavitation extraction for
3	determination of phenolic compounds in pyrola by LC-MS/MS and the
4	evaluation of its antioxidant activity
5	
6	
7	
8	Dong-Yang Zhang ^a , Xiao-Hui Yao ^a , Ming-Hui Duan ^b , Meng Luo ^b , Chun-Jian zhao
9	^b , Yuang-Gang Zu ^b , Yu-Jie Fu ^b *
10	
11	
12	
13	^a College of Biotechonlogy and Sericultural Research Institute, Jiangsu University of
14	Science and Technology, Zhenjiang, 212018, PR China
15	^b State Engineering Laboratory for Bio-Resource Eco-Utilization, Northeast Forestry
16	University, Harbin 150040, PR China.
17	
18	* Corresponding author. Tel./fax: +86 451 82190535.
19	E-mail address: fuyujie1505@163.com (YJ. Fu)

20 Abstract

A novel extraction method, homogenate-assisted negative pressure cavitation 21 22 extraction (HNPCE), was designed for the extraction and determination of main phenolic compounds from Pyrola incarnata Fisch. by LC-MS/MS. The particle sizes 23 and extraction yields in the process of homogenate were compared with conventional 24 25 pulverization. The results showed that the homogenate under 120 s could produce 26 more suitable particle size powders for analyte extraction. The following NPCE parameters were optimized by a BBD test and under the optimal conditions, the 27 28 maximum extraction yields of arbutin, epicatechin, hyperin, 2'-O-galloylhyperin and chimaphilin increased 68.7%, 72.0%, 43.3%, 62.5% and 34.5% than the normal 29 NPCE. LC-MS/MS method was successfully applied for the quantification of five 30 31 target compounds in pyrola, and the results of the precision test indicated a high accuracy of the present method for the quantification of target compounds in pyrola. 32 33 Furthermore, the antioxidant activities of the pyrola extracts were also determined. 34 The results showed that pyrola had good antioxidant activities and it was a valuable 35 antioxidant natural source.

Keywords: homogenate-assisted negative pressure cavitation extraction, *Pyrola incarnata* Fisch, LC-MS/MS, BBD test, antioxidant activity

Food & Function Accepted Manuscript

39 **1. Introduction**

Pyrola [Pyrola incarnata Fisch.] is a herbaceous plant widespread in China. 40 Because of its function of slowing down aging and boosting immunity, it was used as 41 a kind of tea called *Lu Shou Cha* for daily drinking in China.¹ Pyrola is widespread as 42 an edible plant for food and healthy industry.² The extracts of the plant was reported 43 to inhibit the growth of many kinds of human pathogenic bacilli in vitro and it can be 44 also used in refreshing foods.^{3, 4} Earlier investigations of pyrola plants led to the 45 isolation of chimaphilin, arbutin, epicatechin, catechin, 2'-O-galloylhyperin, hyperin, 46 quercetin, pyrolatin and other naphthoquinones.⁵⁻¹⁰ According to other research, 47 2"-O-galloylhyperin has anti-inflammatory, cough, blood pressure, and lower 48 cholesterol, the cardiovascular and cerebrovascular protective role.^{11, 12} Epicatechin 49 and hyperin have good antioxidant activity.^{13, 14} Chimaphilin has the antifungal 50 activities and antioxidant activity.¹⁵ Thus, it is meaningful to investigate the extraction 51 and determination of the active compounds from pyrola. 52

According to other reports, arbutin can be successfully extracted by ultrasound 53 extraction, maceration and heating reflux extraction followed by HPLC-UV ^{16, 17} and 54 LC-MS/MS.¹⁸ And catechin and hyperin can be successfully extracted by ultrasound 55 extraction, microwave extraction, heating reflux extraction determined by HPLC-UV 56 ¹⁹⁻²¹ and LC-MS/MS.^{22, 23} For 2'-O-galloylhyperin and chimaphilin, there was no 57 report about the determination, only some reports about pharmacological activity can 58 be found. As a modern separation method, LC-MS/MS presents excellent sensitivity 59 and selectivity for the quantification of target compounds in plants. Thus, in the 60

61 present study, LC-MS/MS was used as the detection method.

Particle size is an important factor which can influence the extraction efficiency. 62 The reduction in particle size can essentially shorten the processing time, and enhance 63 the overall extraction yield. However, if the powder of crushed particles is too fine, it 64 may cause difficulties in the filtration and raise the cost of processing during the 65 subsequent industry procedures and moreover, it can also lead to dust pollution. 66 67 Homogenate is an effective pulverization method. This method is wildly used in the pretreatment of animal and plant tissues.²⁴⁻²⁷ Compared with the conventional 68 pulverization method, homogenate can not only pulverize the samples but also mix 69 the samples with extraction solvent effectively, which can avoid dust pollution. 70

Traditional extraction methods such as soxhlet extraction, heating reflux 71 72 extraction or maceration reveal disadvantages, e.g. time-consuming, no environmental friendliness processes and low efficiency.²⁸ Because of the complexity of plant 73 material and the low content levels of some phytochemicals, normal extraction 74 methods are not always suitable.²⁹ Negative pressure cavitation extraction (NPCE) is 75 a cheap and energy efficient extraction method. The cavitation phenomenon of NPCE 76 is generated by negative pressure which is similar to ultrasonic cavitation. It keeps 77 constantly lower temperature and its intensity is comparable to that of ultrasonic 78 cavitation. Nitrogen is continuously added to the NPCE system. Under negative 79 pressure, small nitrogen bubbles appear and ascend among the liquid-solid phase, 80 resulting in the violent movement of solvent and the formation of a highly instable 81 gas-liquid-solid phase.³⁰ When the bubbles collapse, it will cause the effect of 82

Food & Function Accepted Manuscript

Page 5 of 43

Food & Function

cavitation which can destroy the cell wall of plant samples and result in the efficientextraction of active compounds.

85 In the present study, a new homogenate assisted negative pressure cavitation 86 extraction (HNPCE) device was proposed and designed, it combined the both benefits of homogenate and negative pressure cavitation extraction. HNPCE was applied for 87 88 the extraction of target compounds from pyrola followed by the determination of 89 LC-MS/MS. In the device, the samples were firstly pulverized in a homogenizer and 90 then the mixtures (samples and solvent) were extracted by NPCE with the action of 91 negative pressure. After that a LC-MS/MS method was applied for the determination 92 of the target compounds in pyrola, the intra-day test, inter-day test and recovery test 93 were conducted for the precision of the method.

94 2. Materials and methods

95 *2.1. Plant material*

Pyrola [*Pyrola incarnata* Fisch.] was collected in autumn in Heilongjiang
province, China, and identified by Professor Shao-Quan Nie (Key Laboratory of
Forest Plant Ecology, Ministry of Education, Northeast Forestry University, P. R.
China). Voucher specimens were deposited in the herbarium of the same laboratory.
The samples were dried in the shade, pulverized, and sieved. They were protected
from light in a desiccator at room temperature until used.

102 *2.2. Chemicals and reagents*

Arbutin (≥95%), epicatechin (≥98%), hyperin (≥98%), 2'-O-galloylhyperin
(≥96%) and chimaphilin (≥95%) were purchased from Daierta (Wuhu, China).

Food & Function Accepted Manuscript

105	Methanol of HPLC grade was obtained from J & K Chemical Ltd. (Beijing, China),			
106	Deionized water was purified by a Milli-Q water-purification system from Millipore			
107	(Bedford, MA, USA). Ethanol of analytical grade for extraction was bought from			
108	Tianjin Kermel Chemical Reagent Co. (Tianjin, China).			
109	2.3. Pulverization and extraction			
110	2.3.1 Instrumentation			
111	HNPCE was performed on a device designed and manufactured in our laboratory.			
112	The device is shown schematically in Fig. 1. Ultrasound-assisted extraction (USE)			
113	was performed in an ultrasonic bath (Kunshan Ultrasonic Instrument, Kunshan,			
114	China).			
115	2.3.2 Pulverization procedures			
116	Conventional pulverization: 5 g of dry sample was introduced into the			
116 117	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample			
116 117 118	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample powders were sieved (20–90 mesh) by different sifter and then weighed.			
116 117 118 119	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample powders were sieved (20–90 mesh) by different sifter and then weighed. Homogenate: 5 g of dry sample was added to the homogenizer with a specified			
116 117 118 119 120	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample powders were sieved (20–90 mesh) by different sifter and then weighed. Homogenate: 5 g of dry sample was added to the homogenizer with a specified amount of solvent (20:1 mL/g), and then pulverized for different time. The mixture			
116 117 118 119 120 121	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample powders were sieved (20–90 mesh) by different sifter and then weighed. Homogenate: 5 g of dry sample was added to the homogenizer with a specified amount of solvent (20:1 mL/g), and then pulverized for different time. The mixture after homogenate were dried at 40 °C and sieved (20–90 mesh) by different sifter.			
 116 117 118 119 120 121 122 	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample powders were sieved (20–90 mesh) by different sifter and then weighed. Homogenate: 5 g of dry sample was added to the homogenizer with a specified amount of solvent (20:1 mL/g), and then pulverized for different time. The mixture after homogenate were dried at 40 °C and sieved (20–90 mesh) by different sifter.			
 116 117 118 119 120 121 122 123 	Conventional pulverization: 5 g of dry sample was introduced into the homogenizer and then pulverized for different time. After pulverization, the sample powders were sieved (20–90 mesh) by different sifter and then weighed. Homogenate: 5 g of dry sample was added to the homogenizer with a specified amount of solvent (20:1 mL/g), and then pulverized for different time. The mixture after homogenate were dried at 40 °C and sieved (20–90 mesh) by different sifter. <i>2.3.3 Extraction procedures</i> NPCE: 5 g of pulverized sample was introduced into the NPCE device from the			

126 controlled by the valve (8).

pump. Then nitrogen was supplied from the bottom of the device and the pressure was

127

Food & Function

HNPCE: 5 g of dry sample was introduced into the homogenizer with a specified

128	amount of solvent and pulverized for different time. Connected the pump, kept the			
129	valve (1), (2) and (4) open and other valve close, the mixture was pumped into the			
130	extraction pot. Closed the valve (1) and kept the valve (2), (4), (8) and (6) open,			
131	nitrogen was introduced into the extraction pot through valve (8) and the pressure was			
132	also controlled by valve (8). The extraction solvent was filtered through a filtration			
133	net into the collection pot after extraction was conducted			
134	2.4. LC-MS/MS			
135	The LC system consisted of an Agilent 1100 series HPLC system equipped with			
136	G1312A Binary pump and G1379A Degasser (Agilent, San Jose, CA, USA).			
137	Chromatographic separation was performed on a HIQ sil C18W reversed-phase			
138	column (250 mm \times 4.6 mm i.d., 5 $\mu\text{m},$ KYA TECH Corporation, Japan). The mobile			
139	phase was consisted of aqueous solution (A) and methanol (B). The following			
140	gradient elution program was used for separation: 0-3 min 20-45% (B), 3-8 min 45%			
141	(B), 8-9 min 45-67% (B), 9-15 min 67-76% (B), 15-20 min 76-80% (B). The flow rate			
142	was 1 mL/min, the injection volume was 10 μ L. After 20 min of re-equilibration, the			
143	column was ready for a new injection. The column temperature was maintained at 30			
144	°C. Using this LC conditions, the chromatograms showed well-separated resolution,			
145	satisfactory peak shape as well as relatively short analysis time. Five compounds			
146	separation was achieved within 20 min.			
–				

An API3000 triple tandem quadrupole mass spectrometry with a Turbolon-Spray
 interface from Applied Biosystems (USA) was operated in negative electrospray

Food & Function Accepted Manuscript

149 ionisation (ESI⁻) source mode. All mass spectra were acquired in multiple reaction monitoring (MRM) transitions. The ESI-MS of five phenolic compounds was 150 151 recorded using direct infusion of each reference compound. The analytical conditions were as follows: nebulizing gas (NEB), curtain gas (CUR) and collision gas (CAD) 12, 152 153 10 and 6 a.u.; dwell time 1.5 s; ion spray voltage -4500 V; the ion source temperature 300 °C; focusing potential (FP) and entrance potential (EP) -400 and -10 V, 154 155 respectively. The other parameters for LC-MS/MS analysis of seven phenolic compounds including declustering potential (DP), collision energy (CE) and collision 156 157 cell exit potential (CXP) were further studied. Peak areas obtained from the selected reaction monitoring (SRM) were utilized for the quantification of five compounds. 158 159 Analyst Software (version 1.4) installed on a DELL computer was used for data 160 acquisition.

161 *2.5 SEM*

A Hitachi S-520 field emission scanning electron microscope (Hitachi, San Jose, CA, USA) was used to observe the morphological alteration of dried samples with different extraction methods. After removing the solvent, the remaining pyrola samples were fixed on an adhesive tape and then sputtered with gold. All the samples were examined under high vacuum condition and an accelerating voltage of 15.0 kV.

167 *2.6. Validation study*

168 The linear range, limit of detection (LOD), limit of quantification (LOQ), 169 precision and recovery were studied for the developed method. The linearity of 170 calibration curve was tested by analysis of individual reference compound at eight

171	concentrations. LOD and LOQ for each analyte were evaluated at signal-to-noise
172	ratios (S/N) of 3:1 and 10:1, respectively. Intra-day and inter-day variations were
173	chosen to determine the precision of the developed method. For the intra-day
174	variability test, the samples were analyzed in triplicate five times within one day,
175	while for the inter-day variability test, the samples were examined in triplicate on
176	three consecutive days. The RSDs for the retention time and peak area were
177	calculated as measures of precision. Recovery was determined using the spiked
178	samples with the pyrola matrix. A portion of 5.0 g of pyrola matrix was individually
179	spiked with certain amount of reference compound of arbutin, epicatechin, hyperin,
180	2'-O-galloylhyperin and chimaphilin respectively. Three replicated samples were
181	extracted and analyzed with the same procedures as described in Sections 2.3 and 2.4
182	for evaluating the accuracy.
183	2.8 Antioxidant activity
184	2.8.1 DPPH radical scavenging activity assay
185	The free radical-scavenging activities of samples were measured in terms of
186	hydrogen donating or radical-scavenging ability using the stable radical DPPH. ³¹ The
187	different concentrations of the samples in 50% ethanol (100 μ L) were mixed with
188	50% ethanol (1.4 mL) and then added to 0.004% DPPH (1 mL, Sigma-Aldrich) in
189	ethanol. The mixture was shaken vigorously and then immediately incubated in

- darkness. After 70 min, the reaction reached a plateau. The decreasing of the DPPH
- 191 solution absorbance was determined in a UV-Vis spectrophotometer (UNICO,
- 192 Shanghai, China) to monitor absorbance at 517 nm. Ascorbic acid (Sigma-Aldrich), a

stable antioxidant, was used as a positive reference. The DPPH radical-scavenging

activity in percentage of sample was calculated as follows: DPPH scavenging activity

- 195 (%) = $(1-A_{517} \text{ sample}/A_{517} \text{ DPPH solution}) \times 100$.
- 196 *2.8.2 The reducing power*

The reducing power was measured according to the method of Wu et al. $(2010)^{32}$ 197 198 with some modification. An aliquot of each sample (0.5 mL), with different 199 concentrations, was mixed with 0.5 mL of phosphate buffer (0.2 M, pH 6.6) and 0.5 200 mL of 1% potassium ferricyanide $[K_3Fe(CN)_6]$. The reaction mixture was incubated at 50 °C for 20 min. After incubation, 0.5 mL of 10% trichloroacetic acid (TCA) was 201 202 added, followed by centrifugation at 650 xg for 10 min. The supernatant (0.5 mL) was 203 mixed with 0.5 mL of distilled water and 0.1 mL of 0.1% ferric chloride (FeCl₃). The 204 absorbance of all sample solutions was measured at 700 nm. An increased absorbance 205 indicated increased reducing power. BHT was used as the positive control.

3. Results and discussion

207 *3.1 Comparison between conventional pulverization and homogenate*

The particle size was first investigated and the results were shown in Fig. 2. The particle size ranges were selected as > 20 mesh, 20-30 mesh, 40-90 mesh and <90 mesh. Early research reported that the particle sizes ranged from 40 to 90 mesh were the optimum material mesh for extraction.^{33, 34} For both conventional pulverization and homogenate, the amount of the samples with the particle size of 40-90 mesh and <90 mesh increased as the time increase, while the amount with the particle of > 20 mesh and 20-30 mesh decreased. After treated by conventional pulverization for 60 S,

215	the sample amount with the particles sizes 40-90 mesh and <90 mesh were 67.6% and
216	14.2% which were higher than those treated by homogenate. And for conventional
217	pulverization, with the pulverization time increase from 60 S to 150 S, the sample
218	amount with the particles sizes of <90 mesh increased from 6.8% to 23.8% and this
219	amount of the sample treated by homogenate only increased from 5.0% to 8.0%. That
220	is because the samples used in the experiment were dry and crisp, so in the
221	conventional pulverization process it was more conducive to pulverizing the samples
222	to fine. However, in the extraction process, too fine particles sizes were not conducive
223	to extracting target compounds from plant materials. The particles sizes by
224	conventional pulverization for 120 S (>90 mesh, 17.6%) and 150 S (>90 mesh, 23.8%)
225	were much finer than that for 90 S (>90 mesh, 11.4%) but the extraction yields of
226	target compounds by conventional pulverization for 120 S and 150 S were lower than
227	that for 90 S (Fig. 3). These results have been proved by some other researches. ³⁵⁻³⁷
228	The reason is because too fine particles might lead to conglomeration, thus decreasing
229	the contact surface area. ³⁸ Meanwhile, the fine particles may also cause powder dust
230	pollution which was harmful to human body.

In Fig. 2, it indicates that with the homogenate time increases, the amount of the homogenate samples with the particles of 40-90 mesh increase. And meanwhile, the extraction yield of the target compounds also increased. That may prove 40-90 mesh is the suitable particle sizes for extraction. From Fig. 3, it is found that with the pulverization time increases, the extraction yields by the conventional pulverization method increases first and then decreases. And the optimal pulverization time of

237	conventional pulverization method is 90 S. For homogenate, when the homogenate
238	time is more than 120 S, the extraction yields increased slightly. So 120 S is the
239	optimal homogenate time. At the optimal time of conventional pulverization, the
240	extraction yields of arbutin, epicatechin, hyperin, 2'-O-galloylhyperin and chimaphilin
241	were 2.169 ± 0.104 , 0.744 ± 0.026 , 1.188 ± 0.057 , 4.732 ± 0.193 and 0.377 ± 0.020
242	mg/g which were lower than those of homogenate at its optimal time 120 S (2.677 \pm
243	0.087, 0.844 \pm 0.032, 1.371 \pm 0.055, 5.039 \pm 0.204 and 0.388 \pm 0.017 mg/g). The
244	reason may be because the sample amounts with 40-90 mesh by homogenate were
245	more than those by conventional pulverization, and on other hand, the samples and
246	extraction solvent can be mixed fully in homogenate process which was benefits to
247	the following extraction. Thus, homogenate is more suitable than conventional
248	pulverization for extraction.

249 *3.2 BBD test*

The objective of the present study was to optimize the operating conditions to 250 achieve an efficient extraction of arbutin, epicatechin, hyperin, 2'-O-galloylhyperin 251 252 and chimaphilin from pyrola for determination. A Box-Behnken design (BBD) was 253 used to optimize the extraction conditions of target compounds (Table 1). The yields 254 of arbutin (Y_1) , epicatechin (Y_2) , hyperin (Y_3) , 2'-O-galloylhyperin (Y_4) and 255 chimaphilin (Y_5) were function of these variables. Negative pressure (X_1) , 256 liquid/sample ratio (X_2) and ethanol concentration (X_3) are independent variables. By applying multiple regression analysis to the experimental data, the second order 257 258 polynomial equations were found to represent the extraction yield adequately.

259
$$Y_1$$
=-7.619+100.475X₁+0.061X₂+0.258X₃-619.000X₁²-1.267×10⁻³X₂²-2.557×10⁻³X₃²-2
260 0.598X₁X₂-0.218X₁X₃-+6.4×10⁻⁴X₂X₃. (1)
261 Y_2 =-3.860+58.138X₁+0.054X₂+0.010X₃-460.500X₁²-1.271×10⁻³X₂²-8.830×10⁻⁴X₃²+0
262 .050X₁X₂-0.188X₁X₃+7.5×10⁻⁶X₂X₃. (2)
263 Y_3 =-6.308+98.163X₁+0.095X₂+0.157X₃-830.5X₁²-2.246×10⁻⁵X₂²-1.373X₃²+0.230X₁
264 X_2 -0.273X₁X₃-1.275×10⁻⁴X₂X₃. (3)
265 Y_4 =-23.704+373.713X₁+0.318X₂+0.591X₃-3.104×10⁴X₁²-6.664×10⁻³X₂²-4.882×10⁻³
266 X_3^2 +0.888X₁X₂-1.1159X₁X₃-1.275×10⁻³X₂X₃. (4)
267 Y_5 =-1.389+20.463X₁+8.523X₂+0.044X₃-113.000X₁²-1.780×10⁻⁴X₂²-4.005×10⁻⁴X₃²-0.

$$268 090X_1X_2-0.108X_1X_+9.750\times10^{-5}X_2X_3. (5)$$

The significance of each coefficient was determined using the F test and p-value. The coefficients calculated from the five regression model are listed in Table 2. The high significant levels for the five models (p < 0.01) were obtained by statistical analysis, results mean that they are precise and applicable models.

In the NPCE process, nitrogen is continuously added to the extraction system. Under negative pressure, small nitrogen bubbles appear and ascend among the liquid–solid phase, resulting in cavitation and turbulence. Cavitation effects can corrode the surface of solid particles. Turbulence effects can make the solid and liquid fully mixed and enhance the effect of mass transfer³⁹. These effects are all generated by negative pressure. Thus, negative pressure is an important parameter influencing the efficiency of cavitation and the extraction yield.

280

After optimization, the optimal pressure was -0.05 MPa which was calculated

from the equations. And both higher and lower than -0.05 MPa, the extraction yield of the target compounds decreased. This was because of an increase in negative pressure resulting from reduction of the nitrogen flow rate and consequent a decrease in tiny bubble formation. Hence, there were not enough nitrogen bubbles to form turbulent motion for appropriate mass transfer. However, high negative pressure is not always recommendable, especially if overfull gas in the liquid results in insufficient cavitation effects which leads to little damage of cell wall.

After calculated, the extraction conditions were negative pressure -0.05 MPa, liquid/solid ratio 22.74 mL/g, ethanol concentration 50.66%. Thus, in order to facilitate the operation, negative pressure -0.05 MPa, liquid/sample ratio 20:1 mL/g, ethanol concentration 50% were identified as optimal conditions, which were used in the following tests. The optimal extraction yields were arbutin 2.718 \pm 0.114 mg/g, epicatechin 0.859 \pm 0.053 mg/g, hyperin 1.378 \pm 0.043 mg/g, 2'-*O*-galloylhyperin 5.132 \pm 0.198 mg/g and chimaphilin 0.390 \pm 0.014 mg/g, respectively.

295 *3.3 Comparison of different extraction methods*

HNPCE and NPCE were compared for their performances of extracting target compounds at the optimized conditions (Fig. 4). The extraction time was 15, 30, 45, and 60 min, respectively. For HNPCE, The extraction yields of the target compounds increased in the first 30 min. After 30 min, the extraction yields increased slightly. For NPCE, the extraction yields of epicatechin and chimaphilin reached equilibrium at around 45 min. And other compounds did not reach equilibrium until 60 min. Meanwhile, the extraction yields by NPCE at 30 min were lower than these by

303	HNPCE at 30 min, the extraction yields of arbutin, epicatechin, hyperin,
304	2'-O-galloylhyperin and chimaphilin increased 68.7%, 72.0%, 43.3%, 62.5% and
305	34.5%, respectively. Thus, HNPCE is more effective than NPCE on the extraction of
306	target compounds in pyrola. And this result may have two reasons. Firstly, the particle
307	sizes of HNPCE are more suitable than these of NPCE which has been shown in
308	section 3.1. Secondly, homogenate can mix the solvent and pyrola samples
309	sufficiently and promote target compounds release to solvent under the effect of
310	stirring. Moreover, HNPCE was compared with other extraction methods. From the
311	results in Table S1, it indicated that the extraction yields of the five active compounds
312	by HNPCE were higher than those by maceration and refluxing. Meanwhile, the
313	extraction time and liquid/solid of maceration and refluxing were higher than that of
314	HNPCE. Thus, the HNPCE method was more effective than maceration and refluxing
315	on the extraction of active compounds from pyrola. In our other research, we reported
316	a new negative pressure cavitation-microwave assisted extraction (NMAE) method.
317	The extraction yields of hyperin, 2'-O-galloylhyperin and chimaphilin by NMAE were
318	1.339 \pm 0.029, 4.831 ± 0.117 and 0.329 ± 0.011 mg/g, respectively 40 which were
319	similar with those of HNPCE. However, in the HNPCE process, the samples can be
320	first smashed then inhaled into extraction pot by negative pressure and followed
321	extracted by NPCE. The grinding process and extraction process can by be auto
322	completed without middle process. Thus, the HNPCE method was more simple and
323	effective and this method could be a promising extraction technique for the analytical
324	sample preparation from plants.

Food & Function Accepted Manuscript

Pyrola samples were examined by SEM to elucidate the morphological changes 326 327 of samples using different extraction methods, which is helpful in understanding the 328 extraction mechanism. Fig. 5A-D shows the samples micrographs of pulverized, homogenate, NPCE, and HNPCE, respectively. Some differences were observed on 329 the parenchyma of different samples. In Fig. 5A, there was no destruction on the 330 331 parenchyma for the pulverized sample while little destruction of the microstructure of 332 sample occurred on the homogenate samples. That may be caused by the shear force 333 in the homogenate process. In NPCE and HNPCE, the parenchymas of samples were 334 all greatly changed or destroyed (Fig. 5C and D). And especially in the HNPCE 335 samples, there are nearly no complete parenchyma resulting in more serious 336 destruction than that of the pulverized samples. That meant the HNPCE method could 337 destroy the parenchyma of pyrola samples more seriously than NPCE in the extraction 338 process.

339 3.5 *LC-MS analysis*

The composition of the mobile phase was investigated first. A methanol–water system and a acetonitrile–water system were both used in the selection of LC–MS/MS conditions. After optimization, the methanol–water system was found to be more suitable for the separation of the five target compounds. Then the mass spectrometric parameters including precursor ion and product ion, declustering potential, collision energy and collision cell exit potential were optimized and the results were shown in Table 3 and Fig. 6A. Under the optimal LC-MS/MS conditions, the five compounds

347 can be separated adequately.

348	Quantification was performed using an external eight-point calibration curve
349	covering the range from 20-5000 ng/mL. All calibration curves exhibited an excellent
350	coefficient of determination ($r^2 \ge 0.99$) within the range of tested concentrations. The
351	LODs (S/N = 3) and LOQs (S/N = 10) for the analytes were less than 0.92 and 3.74
352	ng/mL, respectively (Table 4). The results of the precision test were summarized in
353	Table 5. The intra-day variations of retention time and peak area were less than 0.51%
354	and 4.11%, and the corresponding inter-day variations were less than 0.62% and
355	5.64%, respectively. The recovery test had also been done. Table 5 showed that the
356	recoveries varied between 95.84% and 104.19% and the RSD values were between
357	2.14% and 3.45% for five phenolic compounds. At last, pyrola samples were extracted
358	under the optimal HNPCE conditions and then analyzed by LC-MS/MS. After
359	determined three times, the contents and RSD of the target compounds were
360	calculated and shown in Table 6. The RSD of the target compounds was from 3.20%
361	to 1.96% which meant the HNPCE-LC-MS/MS can be successfully used on the
362	determination of the compounds in pyrola.

363 *3.6 Antioxidant activity*

After analyzed by LC-MS, it indicated that there are many phenolic compounds in

365 pyrola. Some reports showed that the phenolic compounds exhibit extensive

antioxidant activity through their reactivity as hydrogen or electron-donating agents,

367 and metal ion chelating properties. Thus, the antioxidant activity of the extracts by

368 HNPCE was analyzed by DPPH test and reducing power test. The result of DPPH test

was shown in Fig. 7A. When the concentration of sample was 0.25 mg/mL, its DPPH	
radical scavenging activity was more than 85% which was very close to that of	
ascorbic acid. And when the concentration was 0.5 mg/mL, the DPPH radical	
scavenging activity can reach 93.01%. The result of reducing power was shown in Fig.	ىپ
7B. As shown in Fig 7B, the reducing power of the pyrola extract was higher than the	Lip
positive control (BHT). The IC_{50} s of DPPH test and reducing power test were also	SC
calculated. The IC ₅₀ of HNPCE extract in DPPH test was 0.137 mg/mL higher than	nu
that of maceration method and refluxing method (Table S1) and moreover, this value	Za
was very close to the positive control and the extract of the NMAE method in other	D
research 40 . The IC ₅₀ of the HNPCE extract in reducing power test was 0.075 mg/mL.	pte
This value was higher than the positive control (BHT) and those of maceration	Ce
method and refluxing method (Table S1). From the results of antioxidant activity, the	Ac
HNPCE extracts possess better antioxidant activity. Hence, HNPCE is a more	U O
effective method to extract active compounds from pyrola. Moreover, the present	cti
result provides evidence that the pyrola extracts had a remarkable antioxidant capacity,	u n
and it could be used as a valuable antioxidant natural source in food industry. From	L.
the results of the LC-MS analysis, it showed that the contents of arbutin, hyperin and	8
2'-O-galloylhyperin were higher than other compounds. Thus, the antioxidant activity	Õ
of pyrola extract may be related to these compounds.	Ľ

was very close to the positive control and the extract of the research ⁴⁰. The IC₅₀ of the HNPCE extract in reducing po 378 379 This value was higher than the positive control (BHT) and 380 method and refluxing method (Table S1). From the results 381 HNPCE extracts possess better antioxidant activity. Hence 382 effective method to extract active compounds from pyrola 383 result provides evidence that the pyrola extracts had a rem 384 and it could be used as a valuable antioxidant natural sour the results of the LC-MS analysis, it showed that the conte 385 386 2'-O-galloylhyperin were higher than other compounds. Thus, the antioxidant activity 387 of pyrola extract may be related to these compounds.

4. Conclusion 388

369

370

371

372

373

374

375

376

377

389 A new extraction method HNPCE was developed for extraction of five active 390 compounds from P. incarnata Fisch. followed by liquid chromatography-tandem

391	mass spectrometry. Compared with the conventional pulverization method, the
392	homogenate method can produce more sample powders with suitable particle size for
393	extraction. The HNPCE parameters were optimized and the optimal conditions were
394	homogenate time 120 s, -0.05 MPa, liquid/solid ration 22.74 mL/g, ethanol
395	concentration 50.66% and time 30 min. At these conditions, the extraction yields
396	reached arbutin 2.718 \pm 0.114 mg/g, epicatechin 0.859 \pm 0.053 mg/g, hyperin 1.378 \pm
397	0.043 mg/g, 2'-O-galloylhyperin 5.132 \pm 0.198 mg/g and chimaphilin 0.390 \pm 0.014
398	mg/g. Compared with the NPCE at 60 min, the HNPCE had higher extraction yields
399	at 30 min, and the SEM results also indicated that the HNPCE method could destroy
400	the parenchyma of pyrola samples more seriously than NPCE in the extraction
401	process. LC-MS/MS method was then successfully applied for the quantification of
402	five target compounds in pyrola, the intra-day variations of retention time and peak
403	area were less than 0.51% and 4.11%, and the corresponding inter-day variations were
404	less than 0.62% and 5.64%. Thus, H-NPCE as an environmentally friendly and
405	effective extraction method, it possesses more advantages such as no powder dust
406	pollution, easy operation, shorter time, energy saving and higher recoveries, it would
407	be an alternative extraction for the determination of active compounds from plants. At
408	last, the antioxidant activities of the pyrola extracts were also determined. The results
409	showed that pyrola had good antioxidant activities and it was a valuable antioxidant
410	natural source.

411 Acknowledgements

412

This work was supported by Key Program for Science and Technology

- 413 Development of Harbin (2013AA3BS014), Special Fund of National Natural Science
- 414 Foundation of China (31270618), and Importation of International Advanced Forestry
- 415 Science and Technology, National Forestry Bureau (2012-4-06).

417	Reference		
418	1	C. Sun, Z. Chen, W. Wang, Y. Li, Y. Dong and L. Wang, Research on the	
419		Development and Utilization of Pyrola Resources, North. Hortic., 2011, 1,	
420		220-222	
421	2	National Commission of Chinese Pharmacopoeia, (2005). Pharmacopoeia of the	
422		People's Republic of China, Chemical Industry Press, Beijing, Vol. 1, pp. 226.	
423	3	Q. J. Ai, C. Y. Wang, W. Zhang and J. W. Cheng, Research of Pyrola Calliantha	
424		extracts on strawberry preservation. China Food Addit. 2007, 2, 94-97.	
425	4	Dictionary of Chinese Traditional Medicine. College Jiangsu New Medical. Press	
426		of Science and Technology; Shanghai, 1986. p. 790-1.	
427	5	T. Kosuge, M. Yokota, K. Sugiyama, T. Mure, H. Yamazawa and T. Yamamoto,	
428		Studies on bioactive substances in crude drugs used for arthritic diseases in	
429		traditional Chinese medicine. III. Isolation and identification of anti-inflammatory	
430		and analgesic principles from the whole herb of Pyrola rotundifolia L. Chem.	
431		Pharm. Bull., 1985, 33, 5355–5357.	
432	6	K. Kaqawa, K. Tokura, K. Uchida, H. Kakushi, T. Shike and H. Nakai, Platelet	
433		aggregation inhibitors and inotropic constituents in Pyrolae herba. Chem. Pharm.	
434		Bull., 1992, 40, 2083-2087.	
435	7	K. Yazaki, S. Shida and T. Okuda, Galloylhomoarbutin and related polyphenols	
436		from Pyrola incarnate. Phytochemistry, 1989, 28, 607-609.	
437	8	D. Li, S. Yang, B. A. Song, L. K. Jiang, D. Y. Hu and W. Xue, Research Advances	
438		on Pyrola L. J. Guizhou Univ., 2008, 25, 188-194.	
439	9	X. H. Yao, D. Y. Zhang, Y. G. Zu, Y. J. Fu, M. Luo, C. B. Gu, C. Y. Li, F. S. Mu	
440		and T. Efferth, Free radical scavenging capability, antioxidant activity and	
441		chemical constituents of Pyrola incarnata Fisch. leaves. Ind. Crop. Prod., 2013,	

Food & Function Accepted Manuscript

- 442 49, 247-255.
- D. Y. Zhang, M. Luo, W. Wang, C. J. Zhao, C. B. Gu, Y. G. Zu, Y. J. Fu, X. H. Yao
 and M. H. Duan, Variation of active constituents and antioxidant activity in
 pyrola [*P. incarnata* Fisch.] from different sites in Northeast China. *Food Chem.*,
 2013, 141, 2213-2219
- 447 11 K. Kaqawa, K. Tokura, K. Uchida, H. Kakushi, T. Shike, H. Nakai, Platelet
 448 aggregation inhibitors and inotropic constituents in Pyrolae herba. *Chem. Pharm.*449 *Bull.*, 1992, 40, 2083-2087.
- L. Luo, Q. Sun, Y. Y. Mao, Y. H. Lu, R. X. Tan, Inhibitory effects of flavonoids
 from Hypericum perforatum on nitric oxide synthase, *J. Ethnopharmacol.* 2004,
 93, 221-225.
- G. Rusak, D. Komes, S. Likic, D. Horz'ic', M. Kovac', Phenolic content and
 antioxidative capacity of green and white tea extracts depending on extraction
 conditions and the solvent used. *Food Chem.*, 2008, 110, 852–858.
- 456 14 H. Y. Xing, Y. Liu, J. H. Chen, F. J. Sun, H. Q. Shi, P. Y. Xia, Hyperoside
 457 attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent
 458 Keap1–Nrf2–ARE signaling pathway. *Biochem. Bioph. Res. Co.* 2011, 410,
 459 759-765.
- J. G. Imelda, M. R. Nadereh, J. Matthew, A. Monica, G. Ashkan, D. Tony, P.
 Philippe, T. A. Virginie, B. Teun, S. Richard, C. Isabel, T. A. John, L. S. Myron,
 Antifungal and antioxidant activities of the phytomedicine pipsissewa, *Chimaphila umbellate*, Phytochemistry, 2008, 69, 738–746.
- 16 Regos and D. Treutter, Optimization of a high-performance liquid
 chromatography method for the analysis of complex polyphenol mixtures and
 application for sainfoin extracts (*Onobrychis viciifolia*), *J. Chromatogr. A* 2010,

	cript
	anuso
	ted M
	Accep
	Function /
	ood &

1.

- 467 1217, 6169-6177.
- C. H. Lin, H. L. Wu and Y. L. Huang, Microdialysis sampling coupled to on-line
 high-performance liquid chromatography for determination of arbutin in
 whitening cosmetics, *J. Chromatogr. B* 2005, 829, 149-152
- M. L. Cádiz-Gurrea, S. Fernández-Arroyo, J. Joven and A. Segura-Carreteroa,
 Comprehensive characterization by UHPLC-ESI-Q-TOF-MS from an *Eryngium bourgatii* extract and their antioxidant and anti-inflammatory activities, *Food Res.*

474 *Int.* 2013, 50, 197-204.

- H. Wang, G. J. Provan and K. Helliwell, HPLC determination of catechins in tea
 leaves and tea extracts using relative response factors, *Food Chem.* 2003, 81,
 307-312.
- F. S. Dias, M. P. Lovillo, C. G. Barroso and J. M. David, Optimization and
 validation of a method for the direct determination of catechin and epicatechin in
 red wines by HPLC/fluorescence, *Microchem. J.* 2010, 96, 17-20.
- 21 R. Liu, J. Zhang, M. Liang, W. Zhang, S. Yan and M. Lin, Simultaneous analysis
 of eight bioactive compounds in Danning tablet by HPLC-ESI-MS and HPLC-UV, *J. Pharmaceut. Biomed. Anal.* 2007, 43, 1007-1012.
- Q. H. Zhang, W.B. Wang, J. Li, Y. X. Chang, Y. F. Wang, J. Zhang, B. L. Zhang
 and X. M. Gao, Simultaneous determination of catechin, epicatechin and
 epicatechin gallate in rat plasma by LC–ESI-MS/MS for pharmacokinetic studies
 after oral administration of *Cynomorium songaricum* extract, *J. Chromatogr. B*2012, 880, 168-171.
- C. S. Lau, D. J. Carrier, R. R. Beitle, D. I. Bransby, L. R. Howard, J. O. L. Jr, R.
 Liyanage and E. C. Clausen, Identification and quantification of glycoside
 flavonoids in the energy crop *Albizia julibrissin, Bioresource Technol.* 2007, 98,

492 429-435.

- 493 24 K. M. Sally, S. Almir and C. V. Iolanda, Biosensors based on bean sprout
 494 homogenate immobilized in chitosan microspheres and silica for determination of
 495 chlorogenic acid, *Enzyme Microb. Tech.* 2008, 43, 381-387.
- T. R. Mark, H. Heldur and L. Gerald, Cytosolic and localized inhibition of
 phosphodiesterase by atrazine in swine tissue homogenates, *Food Chem. Toxicol.*2006, 44, 885-890.
- 26 B. Dane, D. Darko, L. Svjetlana, T. Charlotte, G. B. Josephus and D. Ottó,
 Estimating rapidly and precisely the concentration of beta carotene in mango
 homogenates by measuring the amplitude of optothermal signals, chromaticity
 indices and the intensities of Raman peaks, *Food Chem.* 2010, 121, 832-838.
- 503 27 P. Alena, D. Zdeněk, N. Hana, P. Petr and H. Josef, Evaluation of basic
 504 mitochondrial functions using rat tissue homogenates, *Mitochondrion* 2011, 11,
 505 722-728.
- C. Kimbaris, N. G. Siatis, D. J. Daferera, P. A. Tarantilis, C. S. Pappas and M. G.
 Polissiou, Comparison of distillation and ultrasound-assisted extraction methods
 for the isolation of sensitive aroma compounds from garlic (*Allium sativum*), *Ultrason. Sonochem.* 2006, 13, 54-60.
- W. Liu, Y. Fu, Y. Zu, Y. Kong, L. Zhang, B. Zu and T. Efferth, Negative-pressure
 cavitation extraction for the determination of flavonoids in pigeon pea leaves by
 liquid chromatography-tandem mass spectrometry, *J. Chromatogr. A* 2009, 1216,
 3841-3850.
- 30 D. Y. Zhang, Y. G. Zu, Y. J. Fu, M. Luo, C. B. Gu, W. Wang and X. H. Yao,
 Negative pressure cavitation extraction and antioxidant activity of biochanin A
 and genistein from the leaves of *Dalbergia odorifera* T. Chen, *Sep. Purif. Technol.*

517		2011, 83, 91-99.
518	31	N. Wu, K. Fu, Y. J. Fu, Y. G. Zu, F. R. Chang, Y. H. Chen, X. L. Liu, Y. Kong,
519		W. Liu, C. B. Gu, Antioxidant Activities of Extracts and Main Components of
520		Pigeonpea [Cajanus cajan (L.) Millsp.] Leaves. Molecules, 2009, 14, 1032–1043.
521	32	N. Wu, Y. G. Zu, Y. J. Fu, Y. Kong, J. T. Zhao, X. J. Li, J. Li, M. Wink, T. Efferth,
522		Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Extracts and
523		Main Polyphenolic Compounds Obtained from Geranium sibiricum L. J. Agr.
524		Food Chem., 2010, 58, 4737-4743.
525	33	S. Zhao and O. D. Baik, Application of ultrasound as pretreatment for extraction
526		of podophyllotoxin from rhizomes of Podophyllum peltatum, Ultrason.
527		Sonochem. 2012, 19, 22-31.
528	34	Y. Geng, J. Liu, R. Lv, J. Yuan, Y. Lin and X. Wang, An efficient method for
529		extraction, separation and purification of eugenol from Eugenia caryophyllata by
530		supercritical fluid extraction and high-speed counter-current chromatography, Sep.
531		Purif. Technol. 2007, 57, 237-241.
532	35	R. H. Jin, L. Fan and X. N. An, Microwave assisted ionic liquid pretreatment of
533		medicinal plants for fast solvent extraction of active ingredients, Sep. Purif.
534		Technol. 2011, 83, 45-49.

- 36 J. Xie, L. X. Shi, X. Y. Zhu, P. Wang, Y. Zhao and W. K. Su,
 Mechanochemical-assisted efficient extraction of rutin from *Hibiscus mutabilis* L., *Innov. Food Sci. Emerg.* 2011, 12, 146-152.
- 538 37 V. Filgueiras, J. L. Capelo, I. Lavilla and C. Bendicho, Comparison of
 ultrasound-assisted extraction and microwave-assisted digestion for determination
 of magnesium, manganese and zinc in plant samples by flame atomic absorption

- 541 spectrometry, *Talanta*, 2000, 53, 433–441
- 542 38 V. Dushkin, Z. U. Rykova, T. P. Shaktshneider and V. V. Boldyrev, Aggregation
 543 processes in the reactivity of mechanically activated organic solids. *Inter. J.*544 *Mechanochem. Mech. Alloy.*, 1994, 1(1), 48–55.
- S. M. Li, Y. J. Fu, Y. G. Zu, B. S. Zu, Y. Wang and T. Efferth, Determination of
 paclitaxel and its analogues in the needles of *Taxus* species by using negative
 pressure cavitation extraction followed by HPLC-MS-MS, *J. Sep. Sci.* 2009, 32,
 3958-3966.
- 40 M. H. Duan, W. J. Xu, X. H. Yao, D. Y. Zhang, Y. H. Zhang, Y. J. Fu, Y. G. Zu.
 Homogenate-assisted negative pressure cavitation extraction of active compounds
 from *Pyrola incarnata* Fisch. and the extraction kinetics study. *Innov. Food Sci. Emerg.* 2015, 27, 86–93.

554	Figure Captions:
555	
556	Fig. 1 The HNPCE device used in the present study (A) and schematic representation
557	of the HNPCE device (B).
558	
559	Fig. 2 Percentages of different particle size by homogenate and conventional
560	pulverization at different pulverization time.
561	
562	Fig. 3 The extraction yields of the five target compounds by homogenate and
563	conventional pulverization at different pulverization time. (operating parameters of
564	the extraction process: negative pressure -0.05 MPa, liquid/sample ratio 20:1 mL/g,
565	ethanol concentration 50%, extraction time 45 min.)
566	
567	Fig. 4 The comparison of HNPCE and NPCE on the extraction yields of arbutin,
568	epicatechin, hyperin, 2'-O-galloylhyperin and chimaphilin
569	
570	Fig. 5 SEM of the pyrola samples: pulverized samples (A); homogenate samples (B);
571	NPCE samples (C); and HNPCE samples (D);
572	
573	Fig. 6 Product ion mass spectra of [M-H] ⁻ ions of arbutin, epicatechin, hyperin,
574	2'-O-galloylhyperin and chimaphilin (A) and representative LC-MS/MS
575	chromatogramof pyrola samples. 1: arbutin, 2: epicatechin, 3: hyperin, 4:

- 576 2'-*O*-galloylhyperin, 5: chimaphilin (B).
- 577
- 578 Fig. 7 The free radical-scavenging activity (A) and reducing power (B) of HNPCE
- 579 extracts.

No	Negative pressure	Liquid/solid ratio	Ethanol	Y_1^{a}	$Y_2^{\ b}$	Y_3^{c}	$Y_4^{\ d}$	Y ₅ ^e
180.	(X_1, MPa)	$(X_2, mL/g)$	concentration(X ₃ , M)	(mg/g)	(mg/g)	(mg/g)	(mg/g)	(mg/g)
1	-1(-0.04)	-1(10)	0(0.05)	2.085	0.579	0.870	3.484	0.312
2	1(-0.06)	-1(10)	0(0.05)	2.512	0.675	0.995	4.057	0.376
3	-1(-0.04)	1(30)	0(0.05)	2.368	0.652	1.043	3.919	0.355
4	1(-0.06)	1(30)	0(0.05)	2.556	0.788	1.26	4.843	0.383
5	-1(-0.04)	0(20)	-1(0.25)	2.036	0.639	1.023	3.845	0.305
6	1(-0.06)	0(20)	-1(0.25)	2.402	0.719	1.150	4.323	0.360
7	-1(-0.04)	0(20)	1(0.75)	2.144	0.733	1.173	4.408	0.330
8	1(-0.06)	0(20)	1(0.75)	2.423	0.738	1.181	4.440	0.347
9	0 (-0.05)	-1(10)	-1(0.25)	2.036	0.532	0.851	3.197	0.306
10	0(-0.05)	1(30)	-1(0.25)	2.235	0.680	1.088	4.089	0.335
11	0(-0.05)	-1(10)	1(0.75)	2.010	0.571	0.913	3.962	0.301
12	0(-0.05)	1(30)	-1(0.25)	2.465	0.722	1.099	4.344	0.369
13	0(-0.05)	0(20)	0(0.50)	2.594	0.850	1.359	5.109	0.388
14	0(-0.05)	0(20)	0(0.50)	2.583	0.839	1.342	5.045	0.387
15	0(-0.05)	0(20)	0(0.50)	2.601	0.830	1.328	4.992	0.389
16	0(-0.05)	0(20)	0(0.50)	2.636	0.823	1.317	4.949	0.395
17	0(-0.05)	0(20)	0(0.50)	2.530	0.876	1.402	5.268	0.379

 Table 1 Box-Behnken design along with experimental values of arbutin, epicatechin, hyperin, 2'-O-galloylhyperin and chimaphilin.

Variablas	Eq (1)		Eq	Eq (2)		Eq (3)		Eq (4)		Eq (5)	
variables	F-value	<i>p</i> -value	F-value	<i>p</i> -value	F-value	<i>p</i> -value	F-value	<i>p</i> -value	F-value	<i>p</i> -value	
Model	31.41	< 0.0001	21.23	0.0003	36.05	< 0.0001	18.18	0.0005	16.09	0.0007	
X_1	74.54	< 0.0001	12.8	0.009	19.76	0.003	15.24	0.0059	27.72	0.0012	
X_2	45.18	0.0003	31.38	0.0008	61.77	0.0001	23.55	0.0019	23.7	0.0018	
X ₃	5.21	0.0565	5.46	0.0521	4.96	0.0612	10.93	0.013	1.42	0.2721	
X_1X_2	5.36	0.0537	0.12	0.7433	1.41	0.2737	0.93	0.3665	2.84	0.1357	
X_1X_3	0.71	0.4271	1.63	0.242	1.98	0.2022	1.5	0.2596	4.06	0.0839	
X_2X_3	6.15	0.0422	2.61E-03	0.9607	0.43	0.5313	1.97	0.2035	3.34	0.1105	
X_1X_1	6.06	0.0434	10.37	0.0147	19.36	0.0032	12.28	0.0099	4.72	0.0664	
X_2X_2	25.37	0.0015	78.92	< 0.0001	141.52	< 0.0001	56.58	0.0001	11.7	0.0111	
X_3X_3	103.36	< 0.0001	38.12	0.0005	52.91	0.0002	30.36	0.0009	59.25	0.0001	
Lack of fit	4.24	0.0982	3.47	0.1303	1.83	0.2812	1.92	0.2677	1.44	0.3553	
R^2	0.9	9753	0.9	648	0.	9789	0.	959	0.9	9539	
Adjusted R ²	0.9	9435	0.9	196	0.	9517	0.9	9062	0.8	3946	

 Table 2 Significance of regression coefficient for arbutin, epicatechin, hyperin, 2'-O-galloylhyperin and chimaphilin.

Analyte	DP(V)	CE (V)	CXP (V)	MRM (amu)
Arbutin	-56	-23	-3	271.2→161.1
Epicatechin	-70	-25	-3	289.0→245.0
Hyperin	-67	-31	-9	463.1→300.0
2'-O-galloylhyperin	-55	-36	-8	615.2→301.3
Chimaphilin	-39	-33	-10	185.8→158.9

 Table 3 Mass spectrometric parameters for seven phenolic compounds.

^a Declustering potential

^b Collision energy

^c Collision cell exit potential

Compound	Linearity range (ng/mL)	Calibration equation ^a	LOD (ng/mL)	LOQ (ng/mL)	R ²
Arbutin	200-2000	y = 380.4x + 42.3	1.86	6.74	0.9947
Epicatechin	50-500	y = 457.2x - 56.5	1.21	4.45	0.9929
Hyperin	500-5000	y = 651.8x + 132.4	0.92	3.74	0.9941
2'-O-galloylhyperin	500-5000	y = 738.9x + 50.3	1.02	4.31	0.9963
Chimaphilin	20-200	y = 422.5x - 36.8	1.35	5.48	0.9952

Table 4 Calibration equation, LODs and LOQs for five target compounds.

^a y: peak area of analyte; x: concentration of analyte (ng/mL).

Analyta	Intra-day variations		Inter-day variations		Original (mg)	Suiled (mg)	Found (mg)	\mathbf{P}_{aaa}	DSD (0/)
Anaryte	RSD for RT (%)	RSD for PA (%)	RSD for RT (%)	RSD for PA (%)	- Original (mg)	Spiked (ing)	Found (mg)	Recovery (70)	KSD (70)
Arbutin	0.35	3.22	0.47	4.57	2.575	1.013	3.506	97.72%	2.14%
						2.274	4.875	100.53%	3.21%
Epicatechin	0.42	4.11	0.53	3.92	0.842	0.684	1.563	102.45%	2.25%
						1.421	2.358	104.19%	3.45%
Hyperin	0.51	3.59	0.62	5.64	1.345	0.531	1.85	98.63%	3.03%
						1.047	2.373	99.21%	2.27%
2'-O-galloylhyperin	0.47	3.74	0.44	5.21	5.177	1.227	6.138	95.84%	2.75%
						3.453	8.828	102.29%	2.36%
Chimaphilin	0.31	2.75	0.38	4.04	0.386	0.305	0.666	96.35%	3.11%
						0.678	1.034	97.22%	2.98%

Table 5 Precision and recovery of five target compounds

Analyte	Content (mg/g)	RSD (%)
Arbutin	2.695	2.25
Epicatechin	0.834	3.14
Hyperin	1.383	2.45
2'-O-galloylhyperin	5.088	3.20
Chimaphilin	0.395	1.96

Table 6 Contents of five target compounds in pyrola with the HNPCE-LC-MS/MS method (*n*=3).

Fig. 2

Fig. 3

Conventional pulverize Homogenate

Fig. 5

Page 43 of 43

Food & Function

