Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Food & Function

Antioxidant and Antiproliferative Activities of Polysaccharide Fractions from
Litchi Pulp
Fei Huang ^{a,b} , Ruifen Zhang ^{a,b} , Lihong Dong ^{a,b} , Jinxin Guo ^a , Yuanyuan Deng ^a , Yang
Yi ^c and Mingwei Zhang ^{*a}
^a Sericultural & Agri-food Research Institute Guangdong Academy of Agricultural
Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong
Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R.
China
^b Department of Food Science and Technology, Huazhong Agricultural University,
Wuhan 430070, P. R. China
^c College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan
430023, P. R. China
*Corresponding author: Mingwei Zhang
Address: Sericultural and Agri-Food Research Institute, Guangdong Academy of
Agricultural Sciences, Guangzhou 510610, P. R. China
Telephone: +86-20-8723 7865, Fax: +86-20-8723 6354
E-mail: <u>mwzhh@vip.tom.com</u>
Abstract:

fractional precipitation using 40%, 60% and 80% ethanol, respectively. The 21

Three litchi polysaccharide fractions (LPFs), LP-4, LP-6 and LP-8, were obtained by

22	physicochemical properties, chemical antioxidant, cellular antioxidant and
23	antiproliferative activities of the three polysaccharide fractions were compared. LP-6
24	contained the highest contents of uronic acid and binding protein among the three
25	fractions, whereas LP-8 contained the least. Amino acid composition analysis of the
26	binding protein revealed that LP-6 contained the most acidic and aromatic amino
27	acids. However, LP-8 contained more galactose and mannose than LP-4 and LP-6.
28	LP-6 exhibited the highest chemical antioxidant activities, with an oxygen radical
29	absorbance capacity of 28.14 μmol TE/g DW. LP-8 exhibited higher cellular
30	antioxidant activity and a greater inhibitory effect on the proliferation of A549,
31	HepG2 and MGC-803 cells at a concentration of 100–800 μ g/mL than LP-4 and LP-6.
32	In summary, the different LPFs exhibited different antioxidant and antiproliferative
33	activities with differential physicochemical properties.
34	
35	Keywords: Litchi pulp; Polysaccharides; Antioxidant activity; Antiproliferative

36 activity

37

38 **1. Introduction**

Oxidative stress can cause oxidative damage to large biomolecules such as proteins,
DNA, and lipids, resulting in an increased risk of cancer and cardiovascular disease.¹
The adequate consumption of antioxidants can prevent or reduce oxidative stress
induced by free radicals. Fruits and vegetables contain a variety of antioxidant

phytochemicals, such as phenolics, flavonoids and carotenoids, that may help protect
cellular systems from oxidative damage and lower the risk of chronic diseases.²
Important antioxidant compounds found in fruits and vegetables also include
polysaccharides, such as the antioxidant polysaccharides found in apple,³ *Zizyphus jujube*⁴ and longan.⁵

48 The fruit litchi (Litchi chinensis Sonn.) originated in China and is currently 49 distributed in subtropical areas worldwide. Litchi is a traditional Chinese medicine that contains many bioactive polysaccharides.⁶⁻⁸ Although some studies have reported on 50 the structure and antioxidant activity of litchi polysaccharides fractions,^{7, 9} the 51 52 methods used to assess antioxidant activity remain limited to DPPH radical 53 scavenging and ABTS assays and other chemical methods. The DPPH and ABTS 54 assays are both used to assess the antioxidant activity in vitro by using free radicals 55 (DPPH• and ABTS•+). However, these free radicals are not necessarily pro-oxidants 56 and they are of not biologically relevant; hence, their relevance for the assessment of in vivo antioxidant efficacy is unknown.¹⁰ In contrast, oxygen radical absorbance 57 58 capacity (ORAC) and cellular antioxidant activity (CAA) are widely recognised 59 methods for the evaluation of antioxidant activity in vitro. ORAC reportedly mimics 60 the antioxidant activity of antioxidants in biological systems better than other 61 chemical methods because it uses biologically relevant free radicals and integrates both the time and the degree of antioxidant activity.¹¹ The CAA assay is used to 62 63 screen antioxidants and evaluate the cellular uptake, distribution, and efficiency of

protection against peroxyl radicals under physiological conditions. As a cell-based model, CAA represents a more biologically relevant method for determination of the antioxidant activity than more commonly used "test tube" chemistry methods.¹² Thus,

the ORAC and CAA methods may provide more biologically relevant information toelucidate the bioactivities of litchi pulp polysaccharides.

64

65

66

69 Oxidative stress can mediate carcinogenesis via a multistep process involving both 70 mutation and increased cell proliferation. The overproduction of cellular oxidants 71 (reactive oxygen and nitrogen species) has been linked to mutation (as induced by oxidant-induced DNA damage), and the modification of gene expression.¹³ Many 72 73 cellular oxidants alter gene expression through a variety of signalling pathways, 74 including cAMP-mediated cascades, calcium-calmodulin pathways, and intracellular 75 signal transducers such as nitric oxide, resulting in either cell proliferation or selective cell death (apoptosis or necrosis).¹⁴ We have previously demonstrated that crude litchi 76 pulp polysaccharides inhibit the proliferation of tumour cells *in vitro*;⁶ however, the 77 78 relationship between the antioxidant and antitumour cell proliferation abilities of litchi 79 polysaccharides has not been established. Furthermore, the complex composition of 80 the crude polysaccharides has hindered their quantification and functional 81 characterisation. In the present study, we obtained litchi polysaccharides fractions 82 (LPFs) by precipitation using different concentrations of ethanol and evaluated their 83 antioxidant and antiproliferative activities against A549, HepG2 and MGC-803 cells 84 in vitro.

104

Food & Function

85	The objectives of the present study were the following: (1) to investigate the
86	differences in the physicochemical properties of litchi pulp polysaccharides
87	precipitated using different concentrations of ethanol; (2) to analyse the antioxidant
88	activity of the LPFs by determining the ORAC, CAA and inhibition of tumour cell
89	proliferation; and (3) to elucidate the relationship between polysaccharide structure
90	and bioactivity.
91	2. Material and Methods
92	2.1. Materials and Chemicals
93	2.1.1. Chemicals and Reagents
94	Standard dextrans, rhamnose, arabinose, glucose, xylose, galactose, mannose,
95	penicillin-streptomycin solution, fluorescein disodium salt,
96	6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox),
97	2,2'-azobis-(2-amidinopropane)-hydrochloride (AAPH), RPMI-1640 medium, new
98	bovine calf serum and Hank's balanced salt solution (HBSS) were purchased from
99	Gibco Life Technologies (Grand Island, NY, USA). All other reagents were analytical
100	grade.
100 101	grade. 2.1.2. Cells
100 101 102	grade.2.1.2. CellsThe human hepatocellular carcinoma cell line HepG2, human gastric carcinoma

purchased from the Experimental Animal Laboratory of Sun Yat-Sen University

105 (Guangzhou, China). The cells were cultured in RPMI-1640 medium containing 10%

- foetal calf serum, 100 U/mL penicillin and 100 μg/ml streptomycin at 37 °C and 5%
 CO₂.
- 108 2.2. Preparation of the LPFs

The LPFs extraction procedure has been previously described.⁶ Fresh litchi pulp was 109 110 cut into small pieces and soaked in 80% ethanol (the final concentration in the system) 111 at 4 °C for 24 h to remove pigments, monosaccharides and oligosaccharides. After 112 filtering through Whatman No. 1 paper, the residues were homogenised and extracted 113 twice with distilled water (1: 20, g/mL) at 85 °C for 4 h. The aqueous extract was 114 filtered and concentrated to one-fifth of the initial volume in a vacuum evaporator 115 (Eyela, Tokyo, Japan) at 55 °C. Proteins in the extract were removed using Sevag reagent.¹⁵ The deproteinised extract was then successively sub-fractionated by graded 116 117 precipitation at final ethanol concentrations of 40%, 60% and 80%. The precipitates 118 were subsequently lyophilised to obtain LP-4, LP-6 and LP-8, respectively. The litchi 119 pulp polysaccharides were stored in a desiccator at room temperature until analysis.

- 120 2.3. Preliminary Characterisation of the LPFs
- 121 2.3.1. Analysis of Chemical Characteristics

The neutral polysaccharide content was determined using the phenol-sulphuric acid method¹⁶ and expressed as glucose equivalents. The protein content was measured according to the Bradford method using a bovine serum albumin standard curve.¹⁷ A modified m-hydroxydiphenyl method was used to analyse uronic acid content with galacturonic acid as a standard.¹⁸

127	The homogeneity and molecular weights (Mws) of the LPFs were determined by
128	gel permeation chromatography, which was performed using a Sephacryl S-300HR
129	column (1.6 \times 70 cm) with a detection limit of 24 $\mu g.$ Standard dextrans including T-4
130	(molecular mass, 4×10^3 Da), T-10 (1×10^4 Da), T-40 (4×10^4 Da), T-70 (7×10^4 Da),
131	T-500 (5×10 ⁵ Da), and T-2000 (2×10 ⁶ Da) were used as molecular mass markers. The
132	homogeneity of LPFs were further determined by size-exclusion chromatography on a
133	Sephadex G-100 column (1.6×50 cm), and eluted at the flow rate of 0.2 mL/min with
134	distilled water and detected by the phenol- H_2SO_4 colorimetric method. ¹⁹
135	A GC-MS method was employed to identify and quantify the monosaccharides in the
136	LPFs. ⁶ Briefly, 40 mg of polysaccharides was hydrolysed in a sealed glass tube with 2
137	mol/L H_2SO_4 (10 mL) at 100 °C for 6 h. After neutralising the residual acid with
138	BaCO ₃ , the hydrolysate was passed through 0.2 μ m syringe filters (Whatman, Sanford,
139	ME, UK), dried under a N_2 stream and mixed with hydroxylamine hydrochloride (70
140	mg) and pyridine (5 mL) at 90 °C for 60 min. Subsequently, 5 mL of acetic anhydride
141	was added, and acetylation proceeded at 90 °C for 30 min. The acetylated hydrolysates
142	were extracted with trichloromethane and evaporated under a N_2 stream. The final
143	product was analysed by GC-MS (Agilent Technologies Co., Ltd., Colorado Springs,
144	CO, USA) using a DB-1 column and an Agilent 5973 MS detector. The initial column
145	temperature was 100 °C, which was then increased to 280 °C at a rate of 10 °C/min
146	and maintained at 280 °C for 15 min; the injection temperature was 280 °C. The
147	temperature of the mass spectrometer ion source was 230 °C.

The amino acid composition of the LPFs was analysed as previously described.²⁰ Amino acids were released from the complexes by hydrolysis using 6 M HCl at 110 °C for 22 h in a vacuum-sealed tube, and liberated amino acids were determined using

151 an 835-50G automatic amino acid analyser (Hitachi L-8900, Tokyo, Japan).

152 2.3.2. Analysis of Fourier transform-infrared (FT-IR) Spectroscopy

FT-IR spectra were recorded on a Nexus 5DXC FT-IR (Thermo Nicolet, Austin, TX, USA) in the frequency range of 4000–400 cm⁻¹. The samples were mixed with potassium bromide (KBr) powder and pressed into a 1 mm thick pellet for FT-IR measurement.

157 2.3.3. Analysis of the Helix Coil Transition

148

149

150

158 The helical structure of the polysaccharides was identified by characterising the Congo red-polysaccharide complex.²¹ Briefly, a polysaccharide solution (2 mL, 0.5 159 160 mg/mL) was mixed with Congo red solution (2 mL, 50 µmol/L) in a tube, and NaOH 161 solution (1 mL, final concentrations of 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 162 0.45 or 0.50 mol/L) was then added. Distilled water (2 mL), Congo red solution (2 163 mL) and NaOH solution (1 mL) were mixed as a control. After 10 min at room 164 temperature, the maximum absorption wavelength (λ max) of the mixture was scanned 165 at 400-600 nm.

166 2.4. Oxygen Radical Absorbance Capacity Assay

167 The ORAC assay was conducted as previously described by Ou *et al.*¹¹ with some 168 modifications. The LPFs were diluted in 75 mM phosphate buffer (pH = 7.4). The assay 169 was performed in black-walled 96-well plates (Corning Scientific, Corning, NY, USA).

170	Each well contained 20 μ L of each sample or 20 μ L of the Trolox standard or a blank
171	and 200 μL of fluorescein (at a final concentration of 0.96 μM). The plates were
172	incubated at 37 °C for 20 min on an Infinite M200 Pro plate reader (Tecan Austria
173	GmbH, Salzburg, Austria). Following incubation, 20 μ L of 119 mM AAPH, which was
174	freshly prepared for each run, was added to each well with the exception of the F well,
175	which was treated with 20 μL of 75 mM phosphate buffer. The fluorescence conditions
176	were as follows: excitation at 485 nm and emission at 520 nm for 35 cycles at intervals
177	of 4.5 min. The ORAC results are reported as micromoles of Trolox equivalents (TE)
178	per g of dry weight (DW). The ORAC values are presented as the means \pm SD for
179	triplicate sets of data obtained from three replicates.
180	2.5. Cellular Antioxidant Activity Assay
181	The CAA assay was conducted as previously described by Wolfe et al. ¹² In brief,
182	HepG2 cells were seeded at a density of 6×10^4 /well in a black 96-well microplate in
183	100 μ L of growth medium (DMEM medium containing 10% foetal bovine serum). The
184	growth medium was removed after 24 h, and triplicate wells were then treated for 1 h
185	with 100 μ L portions of different concentrations of quercetin or litchi polysaccharides
186	plus 25 μM DCFH-DA in DMEM. The cells were then treated with 100 μL of 600 μM
187	AAPH in phosphate-buffered saline (PBS), and the fluorescence was measured in a
188	microplate reader (Tecan Infinite Pro 200, Männedorf, Switzerland) at an excitation
189	wavelength of 485 nm and an emission wavelength of 520 nm for 12 cycles at 5 min
190	intervals. The CAA results are reported as micromoles of quercetin equivalents (QE)

- 191 per g of DW. The CAA values are presented as the means \pm SD for triplicate sets of
- 192 data obtained from three replicates.
- 193 2.6. Assay of In Vitro Inhibition of Tumour Cell Proliferation by LPFs
- 194 2.6.1. Tumour Cell Cytotoxicity Assay

195 The cytotoxicities of the litchi polysaccharides were determined using a methylene blue assay.²² In brief, when each cancer cell line was adjusted to an appropriate 196 concentration, 100 μ L of the cell suspension (4 × 10⁴ cells/mL) was plated in 96-well 197 198 plates. Cells were allowed to attach for 6 h, and the medium was then replaced with 199 litchi polysaccharides dissolved in RPMI-1640 medium, followed by incubation at 37 200 °C in 5% CO₂ for an additional 24 h. The medium was then aspirated, and each well 201 was gently rinsed twice with PBS. The cells were stained and fixed by the addition of 202 50 μ L of methylene blue solution (HBSS + 1.25% glutaraldehyde + 0.6% methylene 203 blue) to each well. After 1 h of incubation, the plates were rinsed by gently submerging 204 them in distilled water six times. The plates were drained and air-dried prior to the 205 addition of 100 μ L of elution solution (50% ethanol + 49% PBS + 1% acetic acid) to 206 each well, followed by homogenisation for 15 min to completely dissolve the stained 207 materials. The plates were read in a microplate reader at 570 nm.

208 2.6.2. Inhibition of Tumour Cell Proliferation Assay

The inhibitory effects of the polysaccharides on the growth of tumour cells were evaluated by a methylene blue method as previously described. HepG2, MGC-803 and A549 cells were plated at a density of 2×10^4 cells/mL in 96-well plates and allowed to attach for 6 h. The medium was then replaced with medium containing

213	litchi polysaccharides at final concentrations of 100, 200, 400 and 800 $\mu\text{g/mL}.$ After
214	72 h of incubation, the cells were stained with methylene blue solution for 1 h. The
215	cells were then rinsed with water and dried. The methylene blue stain was eluted with
216	elution solution by agitating the plates at room temperature for 1 h. The absorbance
217	was measured at 570 nm in a microplate reader. The inhibition rate (%) was
218	calculated as follows: $(1 - ODs/ODc) \times 100$, where ODs and ODc represent the OD
219	values of the samples and control group, respectively.
220	2.7. Statistical Analysis
221	Data were expressed as the means \pm SD. Significant differences were evaluated by
222	one-way ANOVA followed by the Student-Newman-Keuls test using SPSS 19.0
223	software. A <i>p</i> -value of 0.05 was used as the threshold for significance.
224	3. Results and Discussion
225	3.1. Preliminary Characterisation of the LPFs
226	3.1.1. Chemical Composition of the LPFs
227	The yields of LP-4, LP-6 and LP-8 were 49.6%, 23.42% and 19.43%, respectively,
228	of the total mass yield of all LPFs. The homogeneity of LPFs has been evaluated by gel
229	filtration chromatography and high-performance gel-permeation chromatography
230	(HPGPC) (Fig. 1). The figures showed LPFs had single symmetrically and
231	concentrated sharp peaks, indicating that they were homogeneous polysaccharides. ^{19, 23}
232	The neutral sugar, uronic acid and protein contents and the Mws of each fraction are
233	summarised in Table 1. LP-6 contained a greater content of uronic acid and protein

than LP-4 and LP-8 (p < 0.05). Moreover, as the ethanol concentration increased from

Food & Function Accepted Manuscript

235	40% to 80%, the Mws of the extracted polysaccharides decreased, consistent with
236	previous results obtained for polysaccharides extracted from Asparagus officinalis ²⁴
237	and longan seed. ²⁵
238	Monosaccharide analysis revealed that the LPFs (Table 2) were all
239	heteropolysaccharides. The major monosaccharide in LP-4 and LP-6 was glucose,
240	whereas galactose was more abundant in LP-8. The percentage contributions of
241	galactose, rhamnose, arabinose and mannose increased with increasing ethanol
242	concentration. However, the glucose content gradually decreased with increasing
243	ethanol concentration.
244	Amino acid composition analysis of the LPFs (Table 3) revealed that all fractions
245	contained 17 amino acids within the binding proteins. Acidic amino acids (aspartate
246	and glutamate) were more abundant in LP-6 than in LP-4 and LP-8. In addition, LP-6
247	had the highest content of aromatic amino acids (tyrosine and phenylalanine) among
248	the three fractions.
249	3.1.2. Spectroscopic Characteristics of the LPFs
250	FT-IR spectroscopy analysis revealed that the LPFs exhibited similar IR absorption
251	profiles (Fig. 2), with characteristic polysaccharide bands such as hydroxyl group
252	bands at 3357.8 and 1048.3 cm ⁻¹ alked aroun bands at approximately 2020.1 cm ⁻¹ and

bands at 3357.8 and 1048.3 cm⁻¹, alkyl group bands at approximately 2929.1 cm⁻¹, and
carboxyl group bands at 1654.6 and 1424.3 cm⁻¹ (which are characteristic of uronic
acid). The absorption bands between 1100 cm⁻¹ and 1000 cm⁻¹ are characteristic of
C-O-C glycosidic bond and ring vibrations overlapping with stretching vibrations in the

side groups of the C-O-H bonds. The absorption peaks at approximately 3357.8 and

- 257 1654.6 cm⁻¹ are typical of protein IR peaks.²⁶
- 258 3.1.3. Helical Structures of the LPFs

259 The dye Congo red can combine with helical polysaccharides, particularly single-helical polysaccharides, to cause λ max redshift.^{21, 27} The λ max values of 260 261 the litchi polysaccharide-Congo red complexes within a NaOH concentration 262 range of 0–0.5 mol/L are shown in Fig. 3. The λ max values of the complexes and 263 Congo red alone gradually decreased with increasing NaOH concentration. The 264 λ max of the LP-8-Congo red complex was nearly constant between 0 and 0.05 265 mol/L NaOH, corresponding to depolymerisation from a triple helix to single 266 helix, whereas the subsequent decreases in λ max corresponded to the change from a single helix to a random coil.²⁸ In contrast, the λ max values of the other 267 268 polysaccharides and the Congo red complexes decreased continuously with 269 increasing NaOH concentration and were clearly lower than that of the 270 LP-8-Congo red complex at the same NaOH concentration, indicating that LP-4 271 and LP-6 had less organised conformations without a triple helix structure.²⁹ 272 The less-organised LP-4 and LP-6 fractions precipitated earlier than the 273 triple-helix LP-8 fraction, which is consistent with the tendency of 274 exopolysaccharides from the fungus Cordyceps sinensis fungus with an 275 expanded chain to precipitate earlier than triple-helix and spherical exopolysaccharides.³⁰ 276

278	The antioxidant activities of the litchi polysaccharides were first evaluated using
279	ORAC assays (Fig. 4). The ORAC values of the LPFs ranged from 22.08 to 28.14 μmol
280	TE/g DW, which are comparable to the ORAC values of polysaccharides from Lapins
281	cherries, cranberries ³¹ and <i>Rabdosia serra</i> (MAXIM.), ³² but are lower than those of
282	polysaccharides from Tricholoma matsutake, ³³ North American ginseng ³⁴ and
283	Ganoderma lucidum. ³⁵ This discrepancy is attributable to differences in the structural
284	characteristics of these polysaccharides derived from different raw materials. The
285	ORAC values of LP-6 were higher than those of LP-4 and LP-8 ($p < 0.05$). The
286	differences in the ORAC values among the LPFs are attributable to differences in
287	their chemical features. Antioxidant activity is positively influenced by the uronic
288	acid and binding protein contents of natural polysaccharides. ^{36, 37} The antioxidant
289	activities of polysaccharides have also been related to their monosaccharide
290	compositions. Glucose, mannose and galactose play an important role in the
291	antioxidant activity of polysaccharides from North American ginseng. ³⁴ The
292	differential antioxidant capacities of the LPFs can also be attributed to the amino acid
293	compositions of the binding protein, which exhibits antioxidant activity by donating
294	protons to electron-deficient radicals. ³⁸ Aromatic amino acids, such as tyrosine and
295	phenylalanine, exhibit radical-scavenging properties by donating electrons to convert
296	radicals to stable molecules. ³⁹ Carboxyl and amino groups in the side chains of acidic
297	amino acids exert antioxidant activities by functioning as metal-ion chelators and

298	hydrogen donors. ⁴⁰ In addition, molecular weight is also an important factor
299	influencing the antioxidant activity of polysaccharides. For example, the
300	polysaccharide fraction AOP-4 with higher molecular weights showed better hydroxyl
301	radical-scavenging activity than other fractions from Asparagus officinalis. ²⁴ However,
302	Zhang et al. found that lower molecular weights polysaccharide from Inonotus
303	obliquus had a stronger inhibitory effect on lipid peroxidation in liver. ⁴¹ Moderate
304	molecular weight polysaccharides fraction (8-10 kDa) prepared from Ganoderma
305	lucidum showed relatively higher antioxidant activity than the other fractions with
306	lower or higher molecular weights (>10 kDa or 2.5–8 kDa). ³⁵ It can be concluded that
307	the effects of molecular weights of polysaccharides on their antioxidant activity are not
308	consistent. In other words, we cannot rank their antioxidant activity according only to
309	their molecular weights. In this study, LP-6 (87697 Da) showed better chemical
310	antioxidant activity than LP-4 (93214 Da) and LP-8 (87062 Da). The molecular
311	weights of these 3 fractions are approximate. Especially for LP-6 and LP-8, their gap
312	between their molecular weights is less than 1 kD. Such a tiny gap is not enough to
313	account for their difference in antioxidant activity. Therefore, we do not think
314	molecular weight play an important role in resulting different antioxidant activities of 3
315	litchi polysaccharides fractions. Of the three LPFs, LP-6 contained the highest uronic
316	acid and protein contents and was rich in glucose, mannose and galactose as well as
317	acidic and aromatic amino acids. The specific composition of LP-6 may be
318	responsible for its superior antioxidant activity.

320	The CAA assay is considered to be more physiologically relevant than chemical
321	antioxidant activity assays for the determination of antioxidant activity. ¹² Therefore,
322	we used the CAA assay to further evaluate the antioxidant activity of the LPFs (Fig. 5).
323	The CAA value of LP-8 (10.79 μmol QE/g DW) was higher those of LP-4 (9.66 μmol
324	QE/g DW) and LP-6 (4.72 μmol QE/g DW), which is in contrast to the results of the
325	ORAC assays. This discrepancy is attributable to the different reaction characteristics
326	and mechanisms of the two assays. In chemical assays, the antioxidant activity of
327	polysaccharides depends on their ability to donate a hydrogen atom to a radical. The
328	hydrogen atoms provided by the polysaccharides can terminate radical chain reactions
329	and convert free radicals to non-harmful products. The presence of additional
330	electron-withdrawing groups, such as carboxyl or carbonyl groups, in a
331	polysaccharide decreases the dissociation energy of the O-H bond, resulting in the
332	increased release of hydrogen atoms and enhanced antioxidant activity. ⁴² For the
333	CAA assay, antioxidants must be bound to the cell membrane and/or pass through the
334	membrane to enter the cell and exert their antioxidant effects. ¹² As biological
335	macromolecules, polysaccharides mediate free radical activity by interacting with
336	different receptors and/or modulating various postreceptor intracellular signalling
337	pathways. ⁴³ The monosaccharide composition of polysaccharides has been correlated
338	with the recognition of cell surface receptors, such as the mannose receptor which
339	binded mannosyl/fucosyl ligands.44 The ability of the hydrogen atom-donating

340	carboxyl group in uronic acid to function as electron donors increased the antioxidant
341	activity of LP-6 in the chemical assays. LPF-6 contained more acidic amino acids such
342	as aspartate and glutamate in the binding protein than LPF-4 and LPF-8. The carboxyl
343	and amino groups in the side chains of acidic amino acids as a hydrogen donor and a
344	chelator of metal ions increased the antioxidant activity of LP-6. ³⁸ The higher aromatic
345	amino acids (tyrosine and phenylalanine) content in LPF-6 promoted its chemical
346	antioxidant activity by converting radicals to stable molecules for donating electron. ³⁹
347	In contrast, LP-8 contained a higher content of galactose and mannose, which may be
348	beneficial for polysaccharides binding to cell galactose and/or mannose receptors to
349	exert antioxidant activity.44, 45 Therefore, LPF-6 with more uronic acid, acidic and
350	aromatic amino acids exhibited better antioxidant activity in the chemical assays, while
351	LPF-8 containing more galactose and mannose showed better antioxidant activity in the
352	cellular assays.

353 3.4. Antiproliferative Activities of the LPFs

The inhibitory activities of the LPFs on the proliferation of the tumour cell lines A549, HepG2, and MGC-803 are shown in Fig. 6. No cytotoxicity against the three cell lines was observed at concentrations $\leq 1000 \ \mu g/mL$ LPFs (data not shown). The inhibitory effects of the LPFs on the proliferation of the three tumour cell lines generally increased with increasing dose at 100–800 $\mu g/mL$. The rates of inhibition of the LPFs against A549 cells ranged from 10.69% to 38.1%, which are comparable to the rates of inhibition observed for polysaccharides from *Angelica sinensis* (Oliv.)

Diels⁴⁶ and longan.²¹ The rates of inhibition of the LPFs against HepG2 cells ranged

361

362	from 9.34% to 40.96%, which are comparable to the rates of inhibition observed for
363	polysaccharides from Tricholoma matsutake ³³ but are inferior to those observed for
364	polysaccharides from Bullacta exarata Philippi. ⁴⁷ The rates of inhibition of the LPFs
365	against MGC-803 cells ranged from 4.8% to 58.86%, which are superior to the rates
366	of inhibition observed for polysaccharides from <i>Hedysarum polybotrys</i> Hand-Mazz ⁴⁸
367	but are inferior to the rates of inhibition observed for polysaccharides from the brown
368	seaweed Sargassum pallidum. ⁴⁹
369	The antiproliferative effects of LP-8 were significantly greater than those of LP-4
370	and LP-6 against all three cell lines at all evaluated concentrations ($p < 0.05$). The
371	greater activity of LP-8 is likely attributable to its Mw, monosaccharide composition
372	and helical structure. The ASP-3 polysaccharide from Amomum villosum, which
373	contains more galactose and mannose than ASP-1 and ASP-2, exhibits greater
374	antitumour cell line activity than ASP-1 and ASP-2.50 The LBP-a4 polysaccharide
375	from Lycium barbarum, which has a lower Mw than LBP-a8, exhibited stronger
376	antitumor activity. ⁵¹ The antitumour activity of polysaccharides from schizophyllan ⁵²
377	and lentinan ⁵³ is dependent on their triple-helical conformation and decreases with
378	progressive denaturation of the tertiary structure. LP-8, which possesses a triple-helix
379	structure, the lowest Mw, and more galactose and mannose, exhibited the strongest
380	antitumour activity among the three LPFs, which is consistent with these previous
381	observations.

382	The level of antioxidant correlates well with the generation and malignant
383	transformation of cancer cells. Compounds that enhance the level of antioxidant
384	activity and eliminate reactive oxygen species in cancer cells may inhibit cell
385	growth.54 LP-8 exhibited the highest cellular antioxidant activity; and also
386	demonstrated the greatest antitumour activity, which was consistent with the activity
387	of polysaccharides from Tricholoma matsutake ³³ and Cyclina sinensis. ⁵⁵ The
388	correlation between cellular antioxidant activity and antitumour activity against each of
389	the three tumour cell lines may indicate a similar mechanism of interaction between the
390	polysaccharides and cells for each cell line. The results of the CAA assay suggested that
391	the different polysaccharide fractions exerted their antioxidant effects through
392	interaction with different receptors and/or the modulation of different postreceptor
393	intracellular signalling pathways. ⁴³ Similarly, polysaccharides from Inonotus
394	obliquus ⁵⁶ and Ganoderma atrum ⁵⁷ act by recognising the receptor on the cell surface
395	to trigger the MAPK cascade and mitochondrial apoptotic pathways to induce tumour
396	cell apoptosis. Ouchi et al. reported that galactomannan is specifically recognised by a
397	galactose receptor on the HepG2 cellular surface, and thus polysaccharides that are rich
398	in galactose exhibit high antitumour cell line activities.45 Therefore, litchi
399	polysaccharides may trigger intracellular signalling pathways via interactions with
400	galactose receptors on the HepG2 cellular surface to exert their antioxidant and
401	apoptotic effects. Litchi polysaccharides may recognise other receptors on A549 and

402 MGC-803 cells to induce apoptosis. The mechanism by which LPFs exert their 403 antioxidant and antitumour activities requires further research. 404 4. Conclusions 405 Gradient ethanol precipitation is a simple, feasible method for the isolation and 406 fractionation of litchi polysaccharides with different physicochemical properties and 407 biological activities. Compared to LP-4 and LP-8, LP-6 had the highest contents of 408 uronic acid, protein, and acidic and aromatic amino acids and exhibited the highest 409 antioxidant activities when chemically assayed. LP-8 had higher contents of galactose 410 and mannose than LP-4 and LP-6 and exhibited greater cellular antioxidant and

411 antiproliferative activities. The optimum concentration of ethanol to isolate and 412 precipitate litchi polysaccharides with possessing biological antioxidant and 413 antiproliferative activities is 80%.

414 Acknowledgements

This work was supported by a Joint Fund of the NSFC and Guangdong Provincial Government (U1301211), a Special Prophase Project of The National Basic Research Program of China (2012CB722904), the International Science & Technology Cooperation Program of China (2012DFA31400) and the National "948" project (2012-S18).

420 **References**

421	1.	M. Dizdaroglu, P. Jaruga, M. Birincioglu and H. Rodriguez, Free Radical Bio
422		<i>Med</i> ,2002, 32 , 1102-1115.
423	2.	R. H. Liu, Am J Clin Nutr, 2003, 78, 517S-520S.
424	3.	S.J. Zhu, J. Pan, B. Zhao, J. Liang, W. Z.Yu and J.J. Yang, J. Ethnopharmacol,
425		2013, 149 , 713-719.
426	4.	X.Q. Zha, H.W. Zhao, V. Bansal, L.H. Pan, Z.M. Wang and J.P. Luo, Int J Biol
427		Macromol, 2014, 64, 377-382.
428	5.	K. Zhong, Q. Wang, Y. He and X. He, Int J Biol Macromol, 2010, 47, 356-360.
429	6.	F. Huang, R. Zhang, Y. Yi, X. Tang, M. Zhang, D. Su, Y. Deng and Z. Wei,
430		Molecules, 2014, 19, 3909-3925.
431	7.	X. Q. Hu, Y. Y. Huang, Q. F. Dong, L. Y. Song, F. Yuan and R. M. Yu, J Agric
432		Food Chem, 2011, 59 , 11548-11552.
433	8.	Y. Jing, L. Huang, W. Lv, H. Tong, L. Song, X. Hu and R. Yu, J Agric Food
434		<i>Chem</i> , 2014, 62 , 902-911.
435	9.	F.L. Kong, M.W. Zhang, R.B. Kuang, S.J. Yu, J.W. Chi and Z.C. Wei, Carbohyd
436		<i>Polym</i> , 2010, 81 , 612-616.
437	10.	J. M. Awika, L. W. Rooney, X. Wu, R. L. Prior and L. Cisneros-Zevallos, J Agric
438		Food Chem, 2003, 51 , 6657-6662.
439	11.	B. Ou, D. Huang, M. Hampsch-Woodill, J. A. Flanagan and E. K. Deemer, J
440		Agric Food Chem, 2002, 50 , 3122-3128.
441	12.	K. L. Wolfe and R. H. Liu, J Agric Food Chem, 2007, 55, 8896-8907.
442	13.	J. E. Klaunig and L. M. Kamendulis, Annu. Rev. Pharmacol. Toxicol., 2004, 44,
443		239-267.
444	14.	C. R. Timblin, Y. M. Janssen and B. T. Mossman, Wallace, Taylor & Francis,
445		1997, 16 , 325.
446	15.	M. Sevag, D. B. Lackman and J. Smolens, J Biol Chem, 1938, 124, 425-436.
447	16.	M. Dubois, K. A. Gilles, J. K. Hamilton, P. Rebers and F. Smith, Anal Chem,
448		1956, 28 , 350-356.

Food & Function Accepted Manuscript

- 449 17. M. M. Bradford, Anal Biochem, 1976, 72, 248-254.
- 450 18. N. Blumenkrantz and G. Asboe-Hansen, Anal Biochem, 1973, 54, 484-489.
- 451 19. L. Zhao, Y. Chen, S. Ren, Y. Han and H. Cheng, *Carbohydrate research*, 2010,
 452 345, 637-643.
- 453 20. F. Huang, Y. Guo, R. Zhang, Y. Yi, Y. Deng, D. Su and M. Zhang, *Molecules*,
 454 2014, 19, 12760-12776.
- 455 21. Y. Yi, F. Huang, M.W. Zhang, R.F. Zhang, Y.Y. Deng, Z.C. Wei and J.R. He,
 456 *Molecules*, 2013, 18, 11601-11613.
- 457 22. D. L. Felice, J. Sun and R. H. Liu, *J Funct Foods*, 2009, 1, 109-118.
- 458 23. Q. Zhao, B. Xie, J. Yan, F. Zhao, J. Xiao, L. Yao, B. Zhao and Y. Huang,
 459 *Carbohyd Polym*, 2012, **87**, 392-396.
- 460 24. T. Zhao, G. Mao, R. Mao, Y. Zou, D. Zheng, W. Feng, Y. Ren, W. Wang, W.
- 461 Zheng, J. Song, Y. Chen, L. Yang and X. Wu, *Food Chem Toxicol*, 2013, 55,
 462 609-616.
- 463 25. G. Jiang, L. Wen, F. Chen, F. Wu, S. Lin, B. Yang and Y. Jiang, *Carbohydr*464 *Polym*, 2013, **92**, 758-764.
- 465 26. W. Zhang, *Biochemical technology of carbohydrate complexes*, Zhejiang
 466 University Press, Hangzhou, 1994.
- 467 27. J. S. Lee, J. S. Kwon, J. S. Yun, J. W. Pahk, W. C. Shin, S. Y. Lee and E. K. Hong,
 468 *Carbohyd Polym*, 2010, **80**, 1011-1017.
- 469 28. Y. Yi, M.W. Zhang, S.T. Liao, R.F. Zhang, Y.Y. Deng, Z.C. Wei and B. Yang,
 470 *Carbohyd Polym*, 2012, **87**, 1311-1317.
- 471 29. C. Qin, K. Huang and H. Xu, Carbohyd Polym, 2002, 49, 367-371.
- 472 30. Q.L. Huang, K.C. Siu, W.Q. Wang, Y.C. Cheung and J.Y. Wu, *Process Biochem*,
 473 2013, 48, 380-386.
- 474 31. H. Fan, G. Mazza and X. Liao, Croat J Food Sci Technol, 2010, 2, 9-17.
- 475 32. L. Lin, M. Zhuang, L. Zou, F. Lei, B. Yang and M. Zhao, *Food Chem*, 2012, 135,
 476 730-737.

- 477 33. L. You, Q. Gao, M. Feng, B. Yang, J. Ren, L. Gu, C. Cui and M. Zhao, *Food*478 *Chem*, 2013, **138**, 2242-2249.
- 479 34. X. Yu, X. Yang, B. Cui, L. Wang and G. Ren, *Int J Biol Macromol*, 2014, 65, 357-361.
- 481 35. C.W. Ma, M. Feng, X. Zhai, M. Hu, L. You, W. Luo and M. Zhao, *J Taiwan Inst*482 *ChemE*, 2013, 6, 886-894.
- 483 36. Z.B. Wang, J.J. Pei, H. L. Ma, P.F. Cai and J.K. Yan, *Carbohyd Polym*, 2014,
 484 109, 49-55.
- 485 37. S. Guo, W. Mao, Y. Li, Q. Gu, Y. Chen, C. Zhao, N. Li, C. Wang, T. Guo and X.
 486 Liu, *Process Biochem*, 2013, 48, 539-544.
- 487 38. B. H. Sarmadi and A. Ismail, *Peptides*, 2010, **31**, 1949-1956.
- 488 39. N. Rajapakse, E. Mendis, W.K. Jung, J.Y. Je and S.K. Kim, *Food Res Int*, 2005,
 489 38, 175-182.
- 490 40. K. Suetsuna, H. Ukeda and H. Ochi, J Nutr Biochem, 2000, 11, 128-131.
- 491 41. N. Zhang, H. Chen, L. Ma and Y. Zhang, *Int J Biol Macromol*, 2013, 54, 209-215.
- 492 42. H. Chen, Y. Ju, J. Li and M. Yu, Int J Biol Macromol, 2012, 50, 214-218.
- 493 43. E. Tsiapali, S. Whaley, J. Kalbfleisch, H. E. Ensley, I. W. Browder and D. L.
 494 Williams, *Free Radical Bio Med*, 2001, **30**, 393-402.
- 495 44. M. Leung, C. Liu, J. Koon and K. Fung, Immunol Lett, 2006, 105, 101-114.
- 496 45. T. Ouchi, M. Matsumoto, K. Ihara and Y. Ohya, *J Macromol Sci A*, 1997, 34,
 497 975-989.
- 498 46. W. Cao, X.Q. Li, L. Liu, T.H. Yang, C. Li, H.T. Fan, M. Jia, Z.G. Lu and Q.B.
 499 Mei, *Carbohyd Polym*, 2006, 66, 149-159.
- 500 47. D. Zhang, C. Wang, H. Wu, J. Xie, L. Du, Z. Xia, J. Cai, Z. Huang and D. Wei,
 501 *Food Chem*, 2013, **138**, 306-314.
- 502 48. S. Li, D. Wang, W. Tian, X.. Wang, J. Zhao, Z. Liu and R. Chen, *Carbohyd*503 *Polym*, 2008, **73**, 344-350.
- 504 49. H. Ye, K. Wang, C. Zhou, J. Liu and X. Zeng, Food Chem, 2008, 111, 428-432.

- 505 50. D. Zhang, S. Li, Q. Xiong, C. Jiang and X. Lai, *Carbohyd Polym*, 2013, 95,
 506 114-122.
- 507 51. M. Zhang, X. Tang, F. Wang, Q. Zhang and Z. Zhang, *Int J Biol Macromol*, 2013,
 508 61, 270-275.
- 509 52. T. Yanaki, W. Ito, K. Tabata, T. Kojima, T. Norisuye, N. Takano and H. Fujita,
 510 *Biophys Chem*, 1983, 17, 337-342.
- 511 53. Y. Y. Maeda, S. T. Watanabe, C. Chihara and M. Rokutanda, *Cancer Res*, 1988,
 512 48, 671-675.
- 513 54. B. Leng, X.D. Liu and Q.X. Chen, *FEBS lett*, 2005, **579**, 1187-1190.
- 514 55. C. Jiang, M. Wang, J. Liu, D. Gan and X. Zeng, *Carbohyd Polym*, 2011, 84,
 515 851-857.
- 516 56. F.Q. Song, Y. Liu, X.S. Kong, W. Chang and G. Song, *Asian PacJ Cancer P*,
 517 2013, 14, 1571-1578.
- 518 57. W. J. Li, Y. Chen, S. P. Nie, M. Y. Xie, M. He, S. S. Zhang and K. X. Zhu, *J Cell*519 *Biochem*, 2011, **112**, 860-871.

520

	LP-4	LP-6	LP-8
Neutral sugar (%)	82.53±5.09 ^b	65.73±4.56 ^a	64.31±0.86 ^a
Protein (%)	3.34±0.15 ^b	4.95±0.09 °	2.10±0.16 ^a
Uronic acid (%)	6.19±0.24 ^b	$7.88{\pm}0.72$ ^c	1.68±0.06 ^a
Molecular weight (Da)	93214	87697	87062

Table 1. The chemical compositions of the LPFs

Each value is expressed as the mean \pm standard deviation (n = 3). Means with different letters within a row are significantly different (p < 0.05).

Monosaccharide composition (%)	LP-4	LP-6	LP-8	
Ribose	0.83	1.37	0.86	
Rhamnose	0.29	0.68	1.02	
Arabinose	1.18	7.16	8.48	
Xylose	0.75	2.93	2.89	
Mannose	17.25	20.89	23.66	
Glucose	75.44	43.23	29.94	
Galactose	4.26	23.74	33.15	

 Table 2. The monosaccharide composition of the LPFs

Amino acid composition (g/100 g)	LP-4	LP-6	LP-8
Aspartate [#]	0.33	0.69	0.22
Glutamate [#]	0.59	1.18	0.31
Tyrosine [*]	0.02	0.04	0.03
Phenylalanine*	0.07	0.15	0.1
Histidine	0.19	0.18	0.1
Threonine	0.26	0.31	0.12
Serine	0.24	0.31	0.11
Glycine	0.16	0.28	0.11
Alanine	0.27	0.38	0.18
Valine	0.22	0.21	0.14
Cysteine	0.07	0.09	0.02
Methionine	0.22	0.21	0.14
Isoleucine	0.02	0.1	0.02
Leucine	0.09	0.05	0.08
Lysine	0.13	0.08	0.14
Arginine	0.27	0.24	0.19
Proline	0.11	0.19	0.08

Table 3. The amino acid compositions of the LPFs

represents acidic amino acids; * represents aromatic amino acids

Figure captions

- Fig. 1. Sephadex G-100 column chromatogram of LPFs from distilled water stepwise elution (A) and GPC elution profiles of the LPFs with refractive index detector (B).
- Fig.2. FT-IR spectra of the LPFs. The FT-IR spectra of the LPFs were acquired over a frequency range of 4000-400 cm⁻¹.
- Fig.3. The maximum absorption wavelengths of litchi polysaccharide-Congo red complexes at NaOH concentrations between 0 and 0.5 mol/L.
- Fig.4. The oxygen radical absorbance capacities of the LPFs. Bars labelled with different letters are significantly different at p < 0.05.
- Fig. 5. The cellular antioxidant activities of the LPFs. Bars labelled with different letters are significantly different at p < 0.05.
- Fig. 6. The inhibition of proliferation of cancer cells by the LPFs: (a)A549, (b)HepG2, and (c)MGC-803. Bars labelled with different letters are significantly different at p < 0.05.

Figure.1

Figure.2

Figure.3

Figure.5

