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The olive oil polyphenol HT-EDA metabolite, HT-EDAH2,  protects human erythrocytes from induced 
oxidative damage.  
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Red blood cells (RBCs), as anucleated cells, have poor repair and biosynthetic mechanisms, 

suffering and accumulating oxidative lesions whenever oxidative stress develops. RBCs are 

particularly exposed to endogenous oxidative damage because of their specific role as oxygen 

carriers. However, as the most abundant blood cells, RBCs also play an important role in the 

oxidative status of the whole blood constituents. In previous studies of our group, the most 

important polyphenolic compounds found in virgin olive oil, 3,4-dihydroxyphenylethanol-

elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-

DHPEA-EDA), were shown to significantly protect RBCs from oxidative damage initiated by 

AAPH and H2O2, with the most active compound being 3,4-DHPEA-EDA. However, the in 

vivo protective effects of these phenols are dependent on their bioavailability. It has been 

demonstrated that 3,4-DHPEA-EDA is absorbed by intestinal cells and is then metabolized, 

yielding a reduced metabolite, 3,4-DHPEA-EDAH2. In order to assess the importance of VOO 

phenolic compounds metabolites for the overall in vivo protective activity, the capacity of this 

phase I metabolite to protect RBCs in the presence of the radical initiators AAPH or H2O2 was 

evaluated in the presence and absence of the naturally occurring antioxidant ascorbic acid. The 

metabolite was shown to protect RBCs from haemolysis induced by both initiators, in a dose 

dependent way, after 2 h and 4 h of incubation. The protective effect was however lower than 

that of the parental compound. The analysis of the membrane proteins of erythrocytes showed 

that the metabolite can interact with these biological structures. 

 

 

1. Introduction 

Several studies have shown a lower incidence of cardiovascular 

mortality and morbidity among populations following the 

Mediterranean diet, in which the main source of fat is virgin olive oil 

(VOO). Many of these beneficial effects seem to be mediated in part 

by phenols, namely hydroxytyrosol, oleuropein and its derivatives.1 

The discovery of antioxidant activities (in vitro, ex vivo and in vivo 

animal models) for the most important olive oil phenolic derivatives 

has stimulated intense research on their presence in olive oils and on 

their bioavailability, metabolism and disposition in humans. In 

previous studies of our group,2,3 the most important polyphenolic 

compounds found in virgin olive oil, the 3,4-

dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA, HT) and 

3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-

EDA, HT-EDA) (Fig. 1), were shown to significantly protect RBCs 

from oxidative damage initiated by AAPH and H2O2, with the most 

active compound being 3,4-DHPEA-EDA. This compound is usually 

the most important phenolic compound found in olive oil and in 

some olive oils, 3,4-DHPEA-EDA may even represent 50% of the 

phenolic fraction.1, 4-7  However, the in vivo protective effect of this 

phenol is also dependent on their bioavailability. It has been 

demonstrated4 that 3,4-DHPEA-EDA is absorbed by intestinal cells 

and then metabolized, yielding a glucuronide of a reduced form, the 

3,4-DHPEA-EDAH2 (HT-EDAH2), as the major small-intestinal 

metabolite entering the portal blood (Fig. 1). Aldo-keto reductase 

enzymes are widely distributed in mammals and include human 

aldose reductase and human small intestine aldose reductase.8 These 

enzymes are capable of catalysing the reduction of a variety of 

carbonyl-containing compounds, and are responsible for the 

reduction of the conjugated carbonyl group of retinal to retinol in the 

human small intestine,9 as well as the reduction of various other 

molecules, including carbohydrates, aliphatic and aromatic 

aldehydes, and steroids. Previous studies suggest that during transfer 

across enterocytes, aldose reductase reduces the conjugated carbonyl 

group of 3,4-DHPEA-EDA, yielding a reduced metabolite consistent 

with the MS fragmentation pattern of 3,4-DHPEA-EAH2, which is 
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further glucuronated. A major issue is therefore to what extent the 

beneficial effects reportedly associated with this secoiridoid are 

attributed to metabolites rather than to the parent molecule.8  

Another aspect attracting attention is the role of phase II 

conjugates as temporary “deposits” of more active molecules.10-14 

Some studies propose that glucuronides may act not only as 

detoxified metabolites but also as bioactive agents, being precursors 

of more hydrophobic aglycones. Accordingly, aglycones may be 

assumed to emerge in the target site by the action of glucuronidases 

under oxidative stress. The cardiovascular system and central 

nervous system seem to be the major targets of phenol glucuronides 

circulating in the human blood.12-14 In fact, recent results are 

suggesting that during inflammation glucuronidase is released from 

stimulated neutrophils or from certain injured cells and then 

deglucuronidation of phenols occurs.13-14 Therefore, in order to 

assess the importance of VOO phenolic compounds metabolites for 

the overall in vivo protective activity, the capacity of the phase I 

metabolite 3,4-DHPEA-EDAH2 to protect red blood cells (RBCs) 

against the radical initiators AAPH or H2O2 was evaluated, in the 

presence and absence of the naturally occurring antioxidant ascorbic 

acid. RBCs are a good model for studying antioxidant related effects 

since these cells are particularly susceptible to endogenous and 

exogenous oxidative damage because of their specific role as oxygen 

carriers and their poor biosynthetic capacity and limited repair 

mechanisms.15-17 Moreover, these cells, the most abundant cells in 

blood, are closely related to vascular tonus regulation18,19 and have 

an important function as mobile free radical scavengers20 and, 

therefore, any functional abnormality in these cells will have major 

health consequences. 

2. Materials and methods  

2.1. Phenolic compounds. 

 

The olive oil component 3,4-DHPEA-EDA was obtained from 

olive leaves, according to the procedure of Paiva-Martins and 

Gordon.21 The 3,4-DHPEA-EDAH2 metabolite was synthesized 

from 3,4-DHPEA-EDA by selective reduction of the 

conjugated carbonyl with NaBH4 in the presence of ErCl3 (Fig. 

1).22 In a 50 ml round flask 0.444 g (1.4 mmol) of 3,4-DHPEA-

EDA were dissolved in 7 mL of a 0.2 M methanol CeCl3.6 H2O 

solution. The flask was put in an ice bath under a stream of 

Argon. After addition of 0.090 g (2.4 mmol/1.7 eq) of NaBH4 

the flask was left in the dark under stirring and argon for 2 h. 

Then 10 ml of HCl 1 M was added and the mixture extracted 

with ethyl ether and ethyl acetate. The combined organic phases 

were transferred into the Erlenmayer flask and dried with 

anhydrous sodium sulfate. After solvent evaporation, the 

product was purified by column chromatography (Silica Gel 50 

g) eluted with Et2O/MeOH (35:1) (η = 25%). A mixture of 2 

geometric isomeres (A and B, 0,6:0,4) were obtained. Structural 

assignment of 3,4-DHPEA-EDAH2 (Fig. 1) isomers was 

performed by 1H and 13C, DEPT,  bidimensional HSQC and 

COSY NMR spectra and ESI-MS.  
1H NMR (CD3COCD3, 400 MHz): δ 7.78 (s, br, 2H, H-19 + H-

18); 6.80 (d, 1H, J = 8.0 Hz, H-14); 6.75 (d, 1H, J = 2.0 Hz, H-

17); 6.6 (dd, 1H, 3J = 8.0 Hz, 4J = 2 Hz, H-13); 5.38 (q, 1H, J = 

7.0 Hz, H-5A); 5.34 (q, 1H, J = 7.0 Hz, H-5B); 4.66 (dd, 1H, 

J1,2a = 4.0 Hz, J1,2b = 8.0 Hz, H-1B); 4.64 (dd, 1H, J1,2a = 4.0 

Hz, J1,2b = 2.0 Hz, H-1A); 4.33 (d, 1H, J7a,7b = 12 Hz, H-7a); 

4.25-4.00 (m, 2H, H-9); 3.60 (d, 1H, H-7b); 3.20-3.25 (m, 1H, 

H-3); 3.05 (s, br, 1H, H-20); 2.75 (t, 2H, H-10); 2.74 (dd, 1H, 

H-8aA); 2.64 (dd, 1H, H-8aA); 2.53 (dd, 1H, J8a,3 = 8.0 Hz, 

J8a,8b = 16.0 Hz, H-8aB); 2.45 (dd, 1H, J8b,3 = 8.0 Hz, H-8aB); 

1.78 (m, 1H, H-2a); 1.58 (m, 1H, H-2b); 1.57 (d, 1H, J = 2.0 

Hz, H-6A); 1.54 (d, 1H, J = 2.0 Hz, H-6B). 13C NMR 

(CD3COCD3, 100 MHz): δ 172.84 (A); 172.28 (B); 145.79; 

144.43 (A); 144.41 (B); 137.00 (B); 136.55 (A); 130.59 (A); 

130.51 (B); 121.13 (A); 121.01; 120.56 (B); 116.77; 116.00; 

99.76 (B); 99.38 (A); 67.11 (B); 66.09 (A); 62.43; 39.40 (A); 

35.15 (B); 35.12 (A); 35.08 (B); 35.04 (A); 30.79 (B); 30.09 

(A); 12.73 (B); 12.39 (A). ESI-MS (negative mode): 321, 185, 

110. 

 

2.2. Preparation of RBC suspensions and induction of 

oxidative stress. 

 

Blood was obtained from healthy volunteers by venipuncture 

and collected into tubes containing ethylenediaminetetraacetic 

acid (EDTA) as anticoagulant. Samples were then centrifuged 

at 400 X g for 10 minutes; the supernatant (plasma) and buffy 

coat were carefully removed by aspiration and discarded. RBCs 

were washed three times with phosphate buffered saline (PBS; 

125 mM NaCl and 10 mM sodium phosphate buffer, pH 7.4) 

and finally resuspended in PBS to obtain the desired 10% and 

2% hematocrits.  

 To perform the in vitro RBC studies under oxidative stress 

conditions, H2O2 and AAPH solutions were prepared. The 

assays were performed with H2O2 at a final concentration of 7.5 

mM (2% hematocrit) and with AAPH at final concentration of 

60 mM (2% hematocrit). These studies were carried out at 37°C 

for four hours under gentle shaking of the RBC suspensions.  

 

2.3. Assay system for evaluation of RBC hemolysis. 

 

To assay the capacity of 4-DHPEA-EDA and its metabolite 3,4-

DHPEA-EDAH2 to protect RBCs from oxidative-induced 

injury, the cells were pre-treated at 37°C for 15 minutes in the 

presence of the chosen concentration of the polyphenols with or 

without ascorbic acid (Sigma-Aldrich Quimica-S.A. Madrid, 

Spain) at physiological concentration (proportional to the 

hematocrit used, 3 µM), and then H2O2 or AAPH was added. 

Four independent assays (n = 4) were performed for each tested 

antioxidant. 

 The rate amount of haemolysis was determined 

spectrophotometrically according to Ko et al.23 In all sets of 

experiments, a negative control (RBCs in saline) was used, and 

all sample tests were run in duplicate. After four hours of 

incubation, an aliquot of the RBC suspensions was taken out, 

diluted with 20 volumes of saline and centrifuged, (400 g for 10 

min). The absorption (A) of the supernatant was read at 540 

nm. To yield the absorption (B) of a complete hemolysis, the 

Page 3 of 8 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 3  

RBC suspension was treated with 20 volumes of ice cold 

distilled water and, after centrifugation, the absorption was 

measured at the same wave length. The percentage of 

hemolysis was then calculated: (A/B) ×100. 

 

2.4. Evaluation of RBC morphology.  

 

At the end of the haemolysis assays, before the centrifugation, 

aliquots of RBC suspensions were taken out, placed in glass 

films and evaluated by optical microscopy observation. To get 

an approximated idea (visual observation) of the amount of 

RBC lysis (decrease in RBC count and detection of RBC 

ghosts), an exact volume of the RBC suspension (20 µl) was 

taken to the slide for observation. 

 

2.5. Protective effect of phenolic compounds against AAPH 

and H2O2-induced erythrocyte membrane changes. 

 

RBC suspensions at 10% hematocrit were used. RBC 

suspensions were incubated at 37 °C for three hours, under 

gentle shaking. Afterwards, RBCs were washed in a saline 

solution and immediately lysed by hypotonic lysis according to 

Dodge et al.24 The obtained membranes were washed in Dodge 

buffer, adding in the first two washes phenylmethylsulphonyl 

fluoride as a protease inhibitor with a final concentration of 0.1 

mM. The protein concentration of the RBC membrane 

suspensions was determined by the Bradford method.25  

 MBH was measured spectrophotometrically after protein 

dissociation of membrane components with Triton X-100 (5% 

in Dodge buffer) at 415 nm; the absorbance at this wavelength 

was corrected by subtracting the absorbance of the background 

at 700 nm; this value and membrane protein concentration was 

then used to calculate the % MBH. 

 Membranes of RBCs were treated with a solubilisation 

buffer, heat denatured and submitted to electrophoresis (8 µg of 

protein/lane). The electrophoresis were carried out on a 

discontinuous system of polyacrylamide in the presence of 

sodium dodecylsulfate (SDS-PAGE), using a 5-15% linear 

acrylamide gradient gel according to Laemmli method.26 The 

proteins were stained with Coomassie brilliant blue, and finally 

the gel was scanned (Darkroom CN UV/wl, BioCaptMW 

version 99, Vilber Lourmat, France).  

In all sets of experiments (n = 4), controls (RBCs in PBS 

and RBCs in PBS with H2O2 or AAPH) were used. Controls 

and tests, using 10-80 µM (final concentration) for phenolic 

compounds, were run in duplicate. The assay conditions were 

those described above for the assays (7.5 mM H2O2 or 60 mM 

AAPH, 4 hours of incubation at 37 oC under gentle shaking).  

 

2.6. Statistical analysis. 

 

The results obtained for the four independent haemolysis 

experiments, performed in duplicate, are expressed as means ± 

SEM. Statistical differences between groups of experiments 

with different antioxidant compounds were analysed by two-

way analysis of variance with post-hoc testing using Tukey’s 

test. A p value lower than 0.05 was accepted as statistically 

significant. 

 

3. Results and discussion 
 

 Increasing evidence has supported the hypothesis that 

antioxidants might have a beneficial role regarding the course 

of chronic diseases. In particular, it has been claimed that olive 

oil polyphenols may play a major role on the protective effects 

of olive oil consumption against oxidative damage. However, 

no research has been addressed to the study of the antioxidant 

profile of the metabolites of the most significant olive oil 

phenolic compound, 3,4-DHPEA-EDA, in biological systems.  

In this work we addressed that issue by studying the protective 

properties of one of the most important metabolites of this 

compound, the 3,4-DHPEA-EDAH2, upon human RBC under 

AAPH and H2O2 induced oxidative stress. This biological 

model has been extensively studied as a target for oxidative 

damage.  

 The 3,4-DHPEA-EDAH2 metabolite was therefore 

synthesized from 3,4-DHPEA-EDA by selective reduction of 

the conjugated carbonyl with NaBH4 in the presence of ErCl3 

(Figure 1).  

Fig. 1 – Synthesis of 3,4-DHPEA-EDAH2 and chemical 

structure of 3,4-DHPEA-EA. 

 

 NMR spectra analysis of the obtained compound, however, 

did not show the expected signals. In fact, the 1H NMR signal 

for the remaining carbonyl group also disappeared, but spectra 

was not consistent with the reduction of the two carbonyls. In 

fact, NMR data showed the presence of a similar ring to the one 

observed for oleuropein aglycone. Therefore, after reduction of 

one carbonyl a hemiacetalic ring is formed (Fig. 1). The 

obtained ISI-MS spectra were also consistent with this structure 

and similar to the one obtained previously for the reduced 

metabolite.8  
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Fig. 2 - Percentage of inhibition of RBC lysis incubated for 4 h 

with AAPH (A) or H2O2 (B) in the presence of 3,4-DHPEA-

EDA or 3,4-DHPEA-EDAH2. Mean (error bars represent 

standard error) of 4 determinations for each duplicate. 

 

Both compounds, 3,4-DHPEA-EDA and its metabolite 3,4-

DHPEA-EDAH2, were shown to significantly protect RBCs 

from oxidative hemolysis at concentrations of 10-80 µM, being 

the order of activity: 3,4-DHPEA-EDA > 3,4-DHPEA-EDAH2 

(Fig. 2). Nevertheless, the metabolite was more effective 

against the water-soluble radical initiator AAPH (Fig. 2A) than 

against the physiological radical initiator H2O2 (Fig. 2B), being 

much better in protecting RBC from oxidative injury when the 

free radicals were generated outside the cell than when free 

radicals were generated on both sides or within the membrane. 

Moreover, in the presence of H2O2, the metabolite showed only 

a limited protection that was independent of the concentration 

used, probably because of its more rigid structure that may 

compromise the transport across membranes. This result is in 

accordance with the results also observed for the 3,4-DHPEA-

EA that also bear a ring in its structure (Fig. 1). In fact, this 

compound has a higher radical scavenging activity than 3,4-

DHPEA-EDA27 but showed a lower efficiency in protecting 

RBCs from AAPH and H2O2 induced oxidative injury.2.3  

 

Fig. 3- Percentage of inhibition of RBC lysis incubated for 4 

hours with AAPH (A) or H2O2 (B) in the presence of 3,4-

DHPEA-EDA and 3,4-DHPEA-EDAH2 and ascorbic acid 

(AA). Mean (error bars represent standard error) of 4 

Table 1 - Percentage of RBC MBH after incubation of RBCs with phenolic compounds, in the presence and absence ofAAPH or H
2
O

2
. 

 
%MBH

a 
(10

-3
) 

  
3,4-DHPEA-EDA 

 
3,4-DHPEA-EDAH

2
 

Concentration / mM 0 10 40 80 
 

10 40 80 

AAPH 31.4 26.9 46.4 48.0 
 

23.7 28.4 30.5 

H
2
O

2
 31.4 14.9 33.8 46.2 

 
22.7 23.3 33.8 

a
 Mean of four experimental runs performed in quadruplicate (SE<3). Different letters within a row indicate samples that were 

significantly different (p < 0.05). 
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determinations for each duplicate. 

 

In the presence of the naturally occurring antioxidant 

ascorbic acid, both compounds produced further protection 

when compared with the protection given by the ascorbic acid 

alone, even at the lowest concentration against both radical 

initiators (Fig. 3). 

The protein membrane analysis performed in the absence of 

AAPH or H2O2 showed interactions between 3,4-DHPEA-EDA  

and 3,4-DHPEA-EDAH2 and the RBC membrane proteins as 

suggested by the appearance of a new protein band (data not 

shown) identified by MS previously as being α-spectrin plus 

band 3 protein.2 In the presence of radical initiators, protein 

analysis showed interactions of 3,4-DHPEA-EDA and 3,4-

DHPEA-EDAH2 with RBC membrane proteins, with this 

interaction being more important for the former (Fig. 4, in the 

dotted line boxes). According to the haemolysis results, this 

interaction of both compounds with spectrin, band 3 protein 

and also with Hb seems to improve the stability of RBCs to 

haemolysis in accordance with our previous results.2,3  

Haemoglobin when denatured links to the RBC membrane via 

the cytoplasmic domain of band 3 protein, inducing its 

clustering and the linkage of anti-band 3 antibodies that mark 

the cell for death. In our study, we observed an increase in 

MBH in the assays performed with H2O2 and with AAPH 

(Table 1), but the amount of MBH was lower in the presence of 

antioxidants at 10 µM as compared with the control (Table 1). 

At the higher compound concentrations, however, higher values 

were obtained in contrast with what was expected if these 

compounds had been protective.  The higher value of MBH in 

the presence of 3,4-DHPEA-EDA (even in the absence of the 

oxidant) was already observed in previous works from our 

group,2,3 which led us to investigate the nature of haemoglobin 

that is linked to the RBC membrane.2 By performing spectral 

scans (450-650 nm) of lysed RBC suspensions in the presence 

of 3,4-DHPEA-EDA (lysis performed after 3 h of incubation, 

without oxidant), we demonstrated that most of the 

haemoglobin linked to the RBC membrane induced by this 

compound was not in the oxidized form.2 In this work we also 

observed the same behaviour for the metabolite 3,4-DHPEA-

EDAH2. In fact, when performing spectral scans (450-650 nm) 

of lysed RBC suspensions in the presence of metabolite (lyses 

after 4 h of incubation without AAPH), we did not observe any 

change in the oxy-haemoglobin peaks (540 and 578 nm) nor in 

its concentration (data not shown), as compared with the 

control. Furthermore, the oxy-haemoglobin disappeared in the 

presence of AAPH, but this was partially reversed by the 

addition of the metabolite (Fig. 5).  
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Fig. 4 - SDS polyacrylamide-gel electrophoresis (linear gradient gel) of human RBC membrane proteins incubated with AAPH (A) and 

H
2
O

2
 (B)

 
for 4 hours. Cells incubated with the 3,4-DHPEA-EDAH

2
 and with 3,4-DHPEA-EDA. The gel was stained with Coomassie blue. 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

450 478 508 538 568 598 628

A
b

s

λλλλ/nm

Controlo 
Controlo AAPH 

AAPH + 3,4-DHPEA-EDAH
2 

80 mM 
AAPH + 3,4-DHPEA-EDAH

2 
40 mM 

Fig. 5 – Oxi-haemoglobin spectral scans (450-650 nm) of lysed 

RBC suspensions, obtained after 3 h of incubation in the 

presence of 3,4-DHPEA-EDAH
2
 and AAPH. 
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In the optical microscopic evaluation of the erythrocyte 

morphology (Fig. 6), by using the same volume of the RBC 

suspensions, it was also possible to observe that the cellular 

density in the 3,4-DHPEA-EDAH2 samples was lower than that 

in the 3,4-DHPEA-EDA samples at the same concentration but 

still much higher than observed in the samples containing only 

AAPH, showing that RBCs with the addition of 3,4-DHPEA-

EDAH2 were still protected against morphologic injury caused 

by AAPH. This observation was in accordance with the 

hemolysis study.  

4. Conclusions 

 In conclusion, 3,4-DHPEA-EDA and its phase I metabolite 

seem to confer antioxidant protection even at low 

concentrations, either alone or in the presence of ascorbic acid. 

Since 3,4-DHPEA-EDA is normally the major compound found 

in virgin olive oil and it can be found in a concentration of up to 

780 mg/kg5-7 in the oil, this compound and its metabolites are 

of great importance regarding the protective effect of virgin 

olive oil. 

 An intake of up to 20 mg per day of 3,4-DHPEA-EDA may 

be achieved by the consumption of extra virgin olive oils, 

which would still lead to a relatively low plasma concentration 

of it and its metabolites (up to 5 µM),8,28 however, if consumed 

regularly it might achieve health effects. Once more, an 

important interaction is observed between both compounds 

with the RBC membrane, which may keep these molecules in 

the blood, reaching a higher net concentration than expected 

with a daily consumption of extra virgin olive oil. This 

phenomenon may explain why clinical trials show that short-

term consumption of olive oil in humans (50 mL/day) can 

change several oxidative stress markers,29,30 although the 

concentrations of phenols are lower than those required to show 

biological activity in vitro. Therefore, it is possible that the 

regular low lifetime intake of extra virgin olive oil results in an 

overall protective effect. Moreover, food components should 

not be regarded as drugs that are habitually employed for 

limited timeframes. In contrast, food with its macro- and 

microcomponents are ingested throughout a lifetime, during 

which even modest effects may become noteworthy. 
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