Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/foodfunction

1	Chemical components from the Haulm of Artemisia Selengensis and the
2	Inhibitory Effect on Glycation of β-lactoglobulin
3	
4	Xiaoming Li, Yonglin Lu, Ronghua Deng, Tiesong Zheng, Lishuang Lv*
5	
6	[‡] Department of Food Science and Technology, Ginling College, Nanjing Normal
7	University, 122# Ninghai Road, Nanjing, 210097, P. R. China
8	
9	
10	
11	
12	
13	Corresponding author: Lishuang Lv
14	Tel.: +86 25 83598286; fax: +86 25 83707623.
15	E-mail address: lishuanglv@126.com; lulishuang@njnu.edu.cn
16	

17 ABSTRACT

18	Artemisia selengensis (AS) has been traditionally used as both food and
19	medicine for thousands of years in China. In our studies, L-tryptophan was firstly
20	isolated from the haulm of AS together with luteolin, rutin, and
21	kaempferol-3-O-glucuronide. Their structures were elucidated by spectroscopic
22	methods including HRMS, 1D and 2D NMR. Three flavonoid compounds showed
23	satisfactory suppression effects on formation of advanced glycation end products
24	(AGEs) in β -lactoglobulin-Lactose/MGO/GO model systems, and their anti-glycation
25	activities exhibited a dose-dependent manner. Among those compounds,
26	kaempferol-3-O-glucuronide was demonstrated the strongest inhibitor against
27	formation of AGEs.
28	KEYWORDS: Artemisia Selengensis haulm; β -lactoglobulin; advanced glycation
29	end products (AGEs).
30	Kaempferol-3-O-glucuronide CID: 44258914; Rutin CID: 5280805;

- 31 Luteolin CID: 5280445;
- 32

Food & Function Accepted Manuscript

33 **1. Introduction**

34 Artemisia selengensis (AS) is an herbaceous perennial plant of the Compositae family, localized at the water's edge on banks or in swamps, with wild species widely 35 distributed over the Northeast, North, and central China since the Ming dynasty. 36 They're also found in Mongolia, Russia, and Korea. In Compendium of Materia 37 38 *Medica*, it is recorded that AS has diverse biological activities, e.g. hemostasia, 39 anti-inflammation, relieving cough, reducing sputum, and treatment of acute infectious hepatitis, due to AS's various active compounds. Being a valuable natural 40 41 product, AS is beneficial to human's health. Some clinical therapies are also reported in the literature $^{1-3}$. 42

In Nanjing, early the 1990's, people started planting AS. Nowadays, AS has 43 44 become very popular as a healthy food, being delicious and nutritious, for its tender 45 stem is a vegetable with unique flavor, being fragrant, fresh, and crisp. However, the older haulm of AS is usually discarded because of it's inedible. To date, some of its 46 major biologically active components have been isolated, such as flavonoids ⁴⁻⁶, 47 polysaccharides ⁷, phenolic acids ⁸ guaianolides ⁹ and fatty acids ¹⁰. Flavonoids in the 48 haulm of AS comprise more than 1% by weight, but have hitherto been largely 49 50 ignored in the field of food sciences. Our previous study showed that the flavonoid 51 content of AS increased with the growth of AS stems. With this study, we investigate the chemical composition and biological activities of the AS haulm to promote the 52 53 utilization of AS in food processing.

54 Methylglyoxal (MGO) and glyoxal (GO), two major α -dicarbonyl compounds

Food & Function Accepted Manuscript

formed from both glycoxidation and lipoxidation ¹¹, are the pivotal intermediates in the formation of advanced glycation end products (AGEs) *in vivo* ¹². In food processing, the α -dicarbonyl compounds are generated through roasting, baking, broiling, and frying due to caramelization, the Maillard reaction, and lipid oxidation ¹³. During such reactions, MGO and GO glycate proteins faster than sugars, causing inter- and intramolecular cross-links of proteins, thus the amount of AGEs sharply increases ¹⁴.

β-lactoglobulin (β-lg) is a high quality protein found in a variety of foodstuffs,
including infant formulas, baked products, and beverages. The effects of the Maillard
reaction and glycation on this protein during heating are well known and replicable, as
milk contains high amounts of lactose and lower quantities of other reducing sugars.
This replicability makes it a good model with real world-applications to test the
anti-AGEs properties of our compounds.

Flavonoids are common dietary components of plant-derived foods. Several flavonoids: (-)-epigallocatechin 3-gallate (EGCG) from tea ¹⁵, phloretin from apple ¹⁶, genistein from soybean ¹⁷, proanthocyanidins and anthocyanin from berries ¹⁸, are known to be scavengers of AGEs by trapping reactive dicarbonyl compounds.

72 In the present study, we investigate chemical components from AS haulm and 73 inhibitory activities against the formation AGEs using their of the β -lg-lactose/MGO/GO model systems, to find food-derived inhibitors of AGEs. We 74 75 expect flavonoids to prevent protein glycation during food thermal processing.

76 2. Materials and Methods

Food & Function Accepted Manuscript

77 2.1. Material

78	The air-dried haulm of Artemisia Selengensis was obtained from the "Baguazhou"
79	district in Nanjing. β -lactoglobulin (\geq 92%) was purified in our lab (Nanjing,
80	Jiangsu, China). The chemical standard kaempferol-3-O-glucuronide, rutin, and
81	luteolin; methylglyoxal (MGO, 40% in water), glyoxal (GO, 40% in water); D ₂ O,
82	CD ₃ OD and DMSO-d ₆ were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA).
83	HPLC-grade solvents and other reagents were obtained from Shanghai Sinopharm
84	Chemical Reagent Co., Ltd (Shanghai, China). HPLC-grade water was prepared using
85	a Millipore Milli-Q purification system (Bedford, MA, USA).
86	2.2. Extraction and purification procedure
87	The extraction and purification procedure are shown in Supplemental Figure 1.
88	The dried powder of AS haulm (1 kg) was extracted with 75% ethanol (7.5 L) at
89	90°C for 60 min. The solvent was removed by filtration, and then fresh solvent was

added to the residue. The extraction process was twice repeated. The combined
filtrates were concentrated under reduced pressure at 40 °C by a rotary evaporator
(Tokyo Rikakikai Co., Tokyo, Japan).

To remove the pigment, the thick solution was put into a separating funnel for further extraction. Petroleum ether was used as extractant at a 1:3 ratio. These water-soluble fractions were later evaporated and lyophilized.

Dried AS crude extract was re-suspended in 200mL distilled water and loaded onto a glass column (5.8×55 cm) packed with AB-8 macroporous adsorption resin. After the sample was loaded, elution was halted for 10 min to facilitate adsorption of

99	chemicals on resin beads. Five fractions (AS-01~AS-05) were collected by eluting the
100	column with 1.5 L of 0, 10%, 30%, 50%, and 70% ethanol sequentially. The AS-02
101	fraction (10% ethanol eluted portion) was subjected to an ODS column, eluted with a
102	gradient system: 10%, 20%, 30%, 40%, and 100% MeOH (500 mL for each gradient
103	system). The two fractions yielded, AS-02-1 (10% MeOH eluted) and AS-02-2 (20%
104	MeOH eluted), were further separated on a Sephadex LH-20 column respectively, and
105	eluted with ethanol. Two compounds ASF-1 (from AS-02-1) and ASF-2 (from
106	AS-02-2) were obtained. The AS-03 fraction (30% ethanol eluted portion from AB-8
107	column) was separated by an ODS column using the same procedure as the AS-02
108	fraction to obtain ASF-3. The AS-04 fraction (50% ethanol eluted portion from AB-8
109	column) was chromatographed on silica gel column and eluted with $CH_3Cl_3/MeOH$
110	by a gradient of 98:2, 20:1, 10:1, 8:1, 6:1, 2:1, and 0:1 to afford ASF-4. The amount
111	of AS-05 fraction (70% ethanol eluted portion from AB-8 column) was too small to
112	abandon.

113 2.3. Analysis HPLC-MS procedure

The separation of all fractions except ASF-1 and offline data collection for HPLC based activity profiling were carried out with a series Agilent 1200 HPLC system, which consisted of a degasser, a bin pump, a column oven, a diode array detector, and a QQQ mass detector (Agilent, Santa Clara, CA, USA) incorporated with electrospray ionization (ESI) interfaces. A HPLC ZORBAX Eclipse XDB-C₁₈ (250×4.6 mm i.d., 5 μ m) was used for separation at a flow rate of 0.6 mL/min. The mobile phase fulfilled the following requirements: (1) **Compound ASF-2:** Water with 0.5% formic acid (A)

121	and Acetonitrile with 0.1% formic acid (B) were used as solvents for a 40 min
122	program: The column was eluted with 12% solvent B for 10 min, followed by linear
123	increases in B to 20% within 10 to 30 min, then to 30% from 30 to 40 min. The UV
124	detector was set at 350 nm. Compound 2 had an intense peek at $RT = 37.22$ min; (2)
125	Compound ASF-3: Water with 0.01% acetic acid (A) and Acetonitrile (B) were used
126	as solvents for a 25 min program: The column was eluted with 90% solvent A for 10
127	min, followed by linear increases in B to 60% from 10 to 20 min, and then with 60%
128	B from 21 to 25 min. The UV detector was set at 350 nm. Compound 3 had an intense
129	peek at RT = 15.17 min. (3) Compound ASF-4: Water with 0.5% formic acid (A)
130	and Acetonitrile with 0.1% formic acid (B) were used as solvents for a 55 min
131	program: The column was eluted with 88% solvent A for 10 min, followed by linear
132	increases in B to 20% from 10 to 30 min, to 30% from 30 to 40 min, to 60% from 40
133	to 48 min, and then re-equilibrated with 90% B for 6 min from 49 to 55 min. The UV
134	detector was set at 254 nm. Compound 4 had an intense peek at $RT = 47.33$ min. For
135	MS: The negative ion polarity mode was set for ESI ion source. The typical operating
136	parameters were as follows: spray needle voltage, 5 kV; nitrogen sheath gas, 45
137	(arbitrary units); auxiliary gas, 5 (arbitrary units).

In contrast, fraction ASF-1was carried out with a series Agilent 1290 Infinity 6224 TOF system (Agilent, Santa Clara, CA, USA). A HPLC ZORBAX Eclipse XDB-C₁₈ ($250 \times 4.6 \text{ mm i.d.}, 5 \mu \text{m}$) was used for separation at a flow rate of 0.8 mL/min. The column was eluted with 40% solvent B (Acetonitrile) and 60% solvent A (water with 0.01% acetic acid) for a 15 min. The UV detector was set at 280 nm. Compound 1 had

Food & Function Accepted Manuscript

143	an intense peek at $RT = 3.77$ min. For MS: The negative ion polarity mode was set for
144	ESI ion source. The typical operating parameters were as follows: spray needle
145	voltage, 5 kV; nitrogen sheath gas, 45 (arbitrary units); auxiliary gas, 5 (arbitrary
146	units).
147	The structural information of compounds 1-4 was obtained by tandem mass
148	spectrometry (MS/MS) through collision-induced dissociation (CID) with a relative
149	collision energy setting as 35%. Data acquisition was performed with Qualitative
150	Analysis of Mass hunter (Agilent, Santa Clara, CA, USA).
151	2.4. NMR Analysis
152	$NMR^{1}H$ (400 MHz), ^{13}C (100 MHz), and 2D NMR spectra were obtained on an
153	AVANCE 400 (Bruker Daltonics Co., Bremen, Germany) spectrometer with TMS as
154	internal reference.
155	2.5. Inhibition of Compounds (ASF-2~ASF-4) against formation of AGEs in
156	β-lactoglobulin glycation systems
156 157	β -lactoglobulin glycation systems β -lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or
156 157 158	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of
156 157 158 159	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of Compounds 1-4 (0.05, 0.1, 0.5 mmol/L) in phosphate buffer (pH 6.5) at 85 °C. Then,
156 157 158 159 160	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of Compounds 1-4 (0.05, 0.1, 0.5 mmol/L) in phosphate buffer (pH 6.5) at 85 °C. Then, the sample was collected at selected time points (0, 15, 30, 45, 60, 90, 120 min) and
156 157 158 159 160 161	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of Compounds 1-4 (0.05, 0.1, 0.5 mmol/L) in phosphate buffer (pH 6.5) at 85 °C. Then, the sample was collected at selected time points (0, 15, 30, 45, 60, 90, 120 min) and stored at -80°C. A multimode microplate reader (BioTek, Winooski, VT) was used for
 156 157 158 159 160 161 162 	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of Compounds 1-4 (0.05, 0.1, 0.5 mmol/L) in phosphate buffer (pH 6.5) at 85 °C. Then, the sample was collected at selected time points (0, 15, 30, 45, 60, 90, 120 min) and stored at -80°C. A multimode microplate reader (BioTek, Winooski, VT) was used for the quantification of AGEs. The % inhibition of AGEs formation=[1-(fluorescence of
 156 157 158 159 160 161 162 163 	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of Compounds 1-4 (0.05, 0.1, 0.5 mmol/L) in phosphate buffer (pH 6.5) at 85 °C. Then, the sample was collected at selected time points (0, 15, 30, 45, 60, 90, 120 min) and stored at -80°C. A multimode microplate reader (BioTek, Winooski, VT) was used for the quantification of AGEs. The % inhibition of AGEs formation= [1-(fluorescence of the test group / fluorescence of the control group)] ×100% ¹⁹ . Each sample was
 156 157 158 159 160 161 162 163 	β-lactoglobulin glycation systems β-lactoglobulin (0.083 mmol/L) was incubated with lactose (0.083mol/L) or MGO/GO (1.5 mmol/L) at chosen ratios (1:1000, 1:18) in the presence or absence of Compounds 1-4 (0.05, 0.1, 0.5 mmol/L) in phosphate buffer (pH 6.5) at 85 °C. Then, the sample was collected at selected time points (0, 15, 30, 45, 60, 90, 120 min) and stored at -80°C. A multimode microplate reader (BioTek, Winooski, VT) was used for the quantification of AGEs. The % inhibition of AGEs formation= [1-(fluorescence of the test group / fluorescence of the control group)] ×100% ¹⁹ . Each sample was

164	performed in triplicate and the experiment was done three times with comparable
165	results.
166	3. Results
167	3.1 Structure elucidation
168	Analysis of the ethanol extract obtained from the haulm of AS by repeated column
169	chromatography (AB-8, ODS, and Sephadex LH-20 or silica gel) led to the isolation
170	and identification one compound (ASF-1), along with three flavonoid compounds
171	(ASF-2~ASF-4).
172	The three flavonoids, kaempferol-3-O-glucuronide (ASF-2) ²⁰ ,
173	rutin (ASF-3) ²¹ and luteolin (ASF-4) ²² , were identified by comparison of their
174	spectroscopic data with those reported in the literature.
175	Compound ASF-1 had a molecular formula of $C_{11}H_{12}N_2O_2$ as determined by
176	ESI-HRMS, NMR ¹ H, ¹³ C, HMBC, HMQC data (Supplemental Figure 2-3). The
177	negative ESI-MS of compound ASF-1 showed a molecular ion peak at m/z 203.1000
178	[M-H] ⁻ , indicating a molecular weight of 204. The ¹ H NMR of data (Table 1) revealed
179	four aromatic H-atoms, whose signal from one proton in downfield was observed at d
180	7.62 (d, $J = 8.0 \text{ Hz}$), was identified as H-4, while one proton at d 7.42 (d, $J = 8.1 \text{ Hz}$)
181	was evidenced to be H-7; and there were two other signals, one proton at d 7.17 (d,
182	8.1), the other at d 7.09 (t, $J = 7.7 \text{ Hz}$), which were assigned to H-5 and H-6,
183	respectively. One proton resonance multiplet indicative of a methine group was
184	observed at δ_{H} 3.93(m), and two one-proton double doublets as methylene groups
185	attached to carbonyl moieties [δ_H 3.18 (dd, J = 7.2, 8.0Hz); δ_H 3.37 (dd, J = 10.6, 4.7

Food & Function Accepted Manuscript

186	Hz)]. The ¹³ C NMR spectrum of ASF-1 (Table 1) indicated the presence of a carbonyl
187	group (δ_C 174.4), an un-substituted aromatic ring (δ_C 111.9, 119.4, 122.1, 118.4), a
188	tetra-substituted aromatic ring (δ_C 136.3, 126.6), a methylene group (δ_C 26.3), a
189	methine group (δ_C 55.8), as well as two olefin carbons (δ_C 125.0, 107.5). This
190	spectroscopic information was used to establish its core structure as an aromatic ring
191	fused to a heterocyclic ring, which was confirmed by the HMBC correlation data
192	(Figure 2): H-11 [δ_H 3.93 (m)] and H-10 [δ_H 3.18 (dd, J =7.2, 8.0 Hz); δ_H 3.37 (dd, J =
193	4.7, 10.6 Hz)] were correlated with C-12 (δ_C 174.5) and the quaternary carbon at δ_C
194	107.5 (C-3), which confirmed the connection of $CH-CH_2$ and $C=O$ moieties.
195	Additionally, H-7 [δ_H 7.42 (d, 8.1)] was correlated with C-9 (δ_C 126.6) and C-6 (δ_C
196	119.4); H-4 [δ_H 7.62 (d, J = 8.0 Hz)] was correlated with C-5 (δ_C 122.1) and C-9 (δ_C
197	126.3). This suggested that C-7 and C-4 at the aromatic ring connected with a
198	heterocyclic ring. Thus, ASF-1 was determined as L-tryptophan (Figure 1).
199	3.2. Inhibitory Effects of Compounds (ASF-2~ASF-4) on the Formation of AGEs
200	The flavonoid compounds (ASF-2~ASF-4) showed satisfactory suppression against
201	the formation of AGEs in the β -lg-lactose/MGO/GO model systems (Figure 2).
202	Increasing the concentration (0.05-0.5mmol/mL) of each compound gradually
203	augmented the inhibitory activities against the formation of AGEs. Among these
204	compounds, kaempferol-3-O-glucuronide exhibited the strongest anti-glycation
205	capacity at the same concentration in three different β -lactoglobulin systems. The
206	abilities of the four compounds to inhibit AGEs were: kaempferol-3-O-glucuronide >
207	luteolin > rutin.

208

223

In

the

β-lg-lactose

Food & Function

the

respective

inhibition

ratios

of

system,

209	kaempferol-3-O-glucuronide, rutin, or luteolin (0.05 mmol/L) against AGEs were
210	33.56%, 23.75%, and 22.38% at 120 min (Figure 2), as AGEs were slowly generated
211	throughout the reaction. With an increase to 0.5 mmol/L, the inhibition ratios
212	increased to 60.35%, 54.32% and 33.56% respectively. This suggests that the
213	anti-glycation activities of these compounds have a positive correlation with
214	concentration.
215	In the β -lg-MGO/GO systems (Figures 3 and 4), these three compounds also
216	showed significant inhibition at 0.05mmol/L, although highly active MGO or GO led
217	to more AGEs than lactose. Of these compounds, kaempferol-3-O-glucuronide is the
218	most efficient AGEs inhibitor in different β -lactoglobulin systems. For 60% inhibition,
219	0.5mmol/L kaempferol-3-O-glucuronide was needed in the β -lg-lactose system at
220	85 °C for 120 min; while only 0.1mmol/L kaempferol-3-O-glucuronide needed in the
221	β -lg-GO system and only 0.05mmol/L was needed the in β -lg-MGO system (Figures
222	2B, 3B, and 4B).

4. Discussion

In this study, a compound L-tryptophan was firstly isolated from AS haulm
together with three flavonoid compounds. The structure of L-tryptophan was
determined by HRMS spectra, 1D and 2D NMR data. The flavonoids showed
powerful inhibitory effects against the formation of AGEs in β-lactoglobulin
glycation.

Recent studies have shown that the flavonoids, e.g., flavanol (EGCG), chalcone

(phloretin and phloredzin), and isoflavone (genistein), rapidly traps MGO at C-6, C-8

230

231	unsubstituted carbons at the A ring and form mono- and di-MGO adducts, thus
232	inhibiting the formation of AGEs ¹⁵⁻¹⁷ .
233	The structures of these compounds can account for the difference in their activities.
234	Kaempferol-3-O-glucuronide is the glycoside of the flavonol kaemoferol. Rutin is the
235	glycoside between flavonol quercetin and disaccharide rutinose. As flavonols, they
236	both have the same aromatic A ring, B ring, and a heterocyclic C ring. We found that
237	kaempferol-3-O-glucuronide exhibits higher activity in the anti-glycation of
238	β -lactoglobulin, although rutin has one more -OH than kaempferol-3-O-glucuronide
239	at C-5' on the B ring. However, if flavonoids possess the same A and C rings, a
240	difference in the number of hydroxyl groups on the B ring does not play a significant
241	role on trapping efficacy ²³ . The greater efficiency of kaempferil-3-O-glucuronide is
242	likely due to less steric hindrance from its single glycoside versus rutin's disaccharide,
243	rutinose. The difference between rutin and luteolin is that luteolin is an aglycone of
244	flavone, and there are no hydroxyl groups or glucosides at C-3 on luteolin's C ring.
245	And our results indicate that luteolin has higher inhibitory effects than rutin. This is
246	consistent with current literature that luteolin and rutin exhibit significant inhibitory
247	effects of 82.2% and 77.7% in the BSA glycation system at pH 7.4 and 37 °C. We
248	predict that the reason for this phenomenon is that luteolin lacks steric hindrance in
249	the trapping reaction.
250	Our data highlight the effects of these compounds on glycation of β -lactoglobulin

251 via α -dicarbonyl compounds. α -dicarbonyl compounds arise from free sugar, the

252	initial Schiff bases, Amadori and other intermediates $^{24-26}$. Since α -dicarbonyl
253	compounds and glucose can potentially damage different subsets of proteins,
254	experimental outcomes may be different. While in the β -lg-lactose system, these
255	flavonoid compounds also exhibited significant inhibition against glycation of
256	β -lactoglobulin. The mechanism of inhibition of glucose-mediated glycation needs
257	further discussion.
258	In addition, the high percentage of L-tryptophan in AS haulm could also contribute
259	to the inhibitory effect on the glycation of β -lactoglobulin in β -lg-MGO/GO/lactose
260	systems via the free amino group or imino group reacting with the reactive carbonyl.
261	Recently, flavonoids have shown more and more potential as strong inhibitors
262	against the formation of AGEs in vivo, but there only a few studies that involved
263	flavonoids in the anti-glycation of food proteins at high temperatures. We suggest that
264	the flavonoids from various foods and natural plants can be used as effective AGEs
265	inhibitors in food thermal processing. Our results in this study pave the way for
266	further investigation of these compounds from AS haulm in real food matrices to
267	confirm the inhibitory activities against the formation of AGEs.

268 Appendix

269 Supplemental Figure 1. Procedure of extraction and purification of flavones from

- 270 Artemisia Selengensis haulm
- 271 Supplemental Figure 2. The HPLC-MS spectra of compound ASF-1. (A)
- 272 HPLC-DAD chromatograms spectrum, (B) HRMS spectrum

273	Supplemental Figure 3. The 'H NMR spectra of compound ASF-1. (A). 'H NMR
274	spectrum; (B). ¹³ C NMR spectrum; (C). HMQC spectrum; (D). HMBC spectrum
275	Acknowledgements
276	This work was supported by NSF of Jiangsu province of China (Project
277	BK2012850) and Natural Science Foundation of Zhejiang province of China (Project
278	LY12C15001). Our thanks to Aaron Yerke from North Carolina Agricultural and
279	Technical University for his suggestions on revisions and editing.
280	Conflict of interest
281	There is no conflict of interest for all authors.

283	References					
284	1.	C. Deng, X. Xu, N. Yao, N. Li and X. Zhang, Analytica Chimica Acta, 2006, 556, 289-294.				
285	2.	L. Peng, Y. Wang, H. Zhu and Q. Chen, Food Chemistry, 2011, 125, 1064-1071.				
286	3.	Y. Zhu and M. Qin, Chinese Archives Of Traditional Chinese Medicine, 2006, 24, 1749-1786.				
287	4.	L. Peng, X. Jia, Y. Wang, H. Zhu and Q. Chen, Food Analytical Methods, 2009, 3, 261-268.				
288	5.	J. Zhang and L. Kong, Chinese Traditional and Herbal Drugs, 2008, 39, 23-26.				
289	6.	J. Zhang, Y. Lin and L. Kong, Chinese Traditional and Herbal Drugs, 2004, 35, 979-980.				
290	7.	K. A. Koo, Kwak, J.H., Lee, K.R., Zee, O.P., Woo, E.R., Park, H.K., Youn,				
291		H.J., Archives of Pharmacal Research 1994, 17, 371-374.				
292	8.	Z. Tu, L. Zhang, H. Wang, Y. Ye and W. Liu, Science and Technology of Food Industry, 2012,				
293		33, 239-242.				
294	9.	X. F. Jinfeng Hu, Chinese Chemical Letters, 1998, 9, 829-832.				
295	10.	L. Zhang, Zc. Tu, T. Yuan, H. Wang, Zf. Fu, Qh. Wen and Xq. Wang, Industrial Crops				
296		and Products, 2014, 56, 223-230.				
297	11.	E. B. Frye, T. P. Degenhardt, S. R. Thorpe and J. W. Baynes, Journal of Biological Chemistry,				
298		1998, 273, 18714-18719.				
299	12.	P. Beisswenger, S. Howell, R. Nelson, M. Mauer and B. Szwergold, Biochemical Society				
300		Transactions, 2003, 31, 1358-1363.				
301	13.	J. Degen, M. Hellwig and T. Henle, Journal of Agricultural and Food Chemistry, 2012, 60,				
302		7071-7079.				
303	14.	N. Rabbani and P. J. Thornalley, Biochemical Society Transactions, 2008, 36, 1045-1050.				
304	15.	S. Sang, X. Shao, N. Bai, CY. Lo, C. S. Yang and CT. Ho, Chemical research in toxicology,				
305		2007, 20, 1862-1870.				
306	16.	X. Shao, N. Bai, K. He, CT. Ho, C. S. Yang and S. Sang, Chemical research in toxicology,				
307		2008, 21, 2042-2050.				
308	17.	L. Lv, X. Shao, H. Chen, C. T. Ho and S. Sang, Chemical research in toxicology, 2011, 24,				
309		579-586.				
310	18.	W. Wang, Y. Yagiz, T. J. Buran, C. d. N. Nunes and L. Gu, Food Research International, 2011,				
311		44, 2666-2673.				
312	19.	A. J. Furth, Analytical biochemistry, 1988, 175, 347-360.				
313	20.	N. Castillo-Muñoz, S. Gómez-Alonso, E. García-Romero, M. V. Gómez, A. H. Velders and I.				
314		Hermosín-Gutiérrez, Journal of Agricultural and Food Chemistry, 2008, 57, 209-219.				
315	21.	F. Fathiazad, A. Delazar, R. Amiri and S. D. Sarker, Iranian Journal of Pharmaceutical				
316		Research, 2006, 3, 222-227.				
317	22.	S. J. Kellam, K. A. Mitchell, J. W. Blunt, M. H. Munro and J. R. Walker, Phytochemistry,				
318		1993, 33, 867-869.				
319	23.	X. Shao, H. Chen, Y. Zhu, R. Sedighi, CT. Ho and S. Sang, Journal of Agricultural and Food				
320		Chemistry, 2014, 62, 3202-3210.				
321	24.	E. Fujimori, Biochim Biophys Acta, 1989, 998, 105-110.				
322	25.	S. P. Wolff and R. T. Dean, Biochemical Journal, 1987, 245, 243-250.				
323	26.	J. V. Hunt, R. T. Dean and S. P. Wolff, Biochemical Journal, 1988, 256, 205-212.				
324						
325						

Food & Function Accepted Manuscript

Figure Caption

- 327 Figure 1. Structures of compounds ASF-1~ASF-4. A. L-tryptophan (compound
- 328 ASF-1); B. kaempferol-3-O-glucuronide (compound ASF-2); C. rutin (compound
- 329 ASF-3); D. luteolin (compound ASF-4).
- **Figure 2**. Key HMBC correlations of compound ASF-1.
- 331 Figure 3. Inhibitory effects of Compounds ASF-2~ASF-4 on AGEs' formation in
- 332 β -lg-MGO model under the ratio 1:18 at 85 °C for 120 min. Data are presented as the
- 333 means \pm SD of three replications. A. kaempferol-3-O-glucuronide (compound ASF-2);
- B. rutin (compound ASF-3); C. luteolin (compound ASF-4). Data are presented as the
- $335 \quad \text{means} \pm \text{SD of three replications.}$
- Figure 4. Inhibitory effects of Compounds ASF-2~ASF-4 on AGEs' formation in β -lg-GO model under the ration 1:18 at 85 °C for 120 min. A. kaempferol-3-O-glucuronide (compound ASF-2); B. rutin (compound ASF-3); C. luteolin (compound ASF-4). Data are presented as the means \pm SD of three replications.
- Figure 5. Inhibitory effects of Compounds ASF-2~ASF-4 (A-D) on AGEs' formation in β -lg-Lactose model under the ratio 1:1000 at 85 °C for 120 min. A. kaempferol-3-O-glucuronide (compound ASF-2); B. rutin (compound ASF-3); C. luteolin (compound ASF-4). Data are presented as the means \pm SD of three replications.
- 346

347 **Table 1**

¹H and ¹³C NMR chemical shift data^a of ASF-1, ¹³C-¹H long-range correlation signals

	$\delta_{\rm H}$ (f , m, J Hz)	δ_{C}	HMBC ($^{1}H \rightarrow ^{13}C$)
2	7.20 (s)	125.0	C-3, C-9, C-10, C-11
3		107.4	
4	7.62 (d, 8.0)	118.4	C-5, C-9, C-3,C-8
5	7.17 (d, 8.1)	122.1	C-4, C-9, C-3
6	7.09 (t, 7.7)	119.4	C-7
7	7.42 (d, 8.1)	111.9	C-9, C-6
8		136.3	
9		126.6	
10	3.18 (dd, 7.2, 8.0); 3.37 (dd, 4.7,10.6)	26.3	C-3, C-11, C-12, C-2, C-9
11	3.93 (m)	55.0	C-10, C-3, C-12
12		174.4	

349 in the HMBC spectra (δ in ppm, J in Hz).

350 ^a Data was recorded in D₂O.

352 Supplemental Figure Caption

- 353 Supplemental Figure 1 Procedure of purification
- 354 Supplemental Figure 2 HPLC-HRMS Spectrum of ASF-1
- 355 Supplemental Figure 3-A ¹H-NMR Spectrum of ASF-1
- 356 Supplemental Figure 3-B ¹³C-NMR Spectrum of ASF-1
- 357 Supplemental Figure 3-C HMBC Spectrum of ASF-1
- 358 Supplemental Figure 3-D HMQC Spectrum of ASF-1

254x190mm (96 x 96 DPI)

73x41mm (300 x 300 DPI)

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)