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Abstract 
 
Measuring markers of stress such as pH and redox potential are important when 
studying toxicology in in vitro models because they are markers of oxidative stress, 
apoptosis and viability. While Surface Enhanced Raman Spectroscopy is ideally 
suited to the measurement of redox potential and pH in live cells, the time-intensive 
nature and perceived difficulty in signal analysis and interpretation can be a barrier to 
its broad uptake by the biological community. 
In this paper we detail the development of signal processing and analysis algorithms 
that allow SERS spectra to be automatically processed so that the output of the 
processing is a pH or redox potential value. 
By automating signal processing we were able to carry out a comparative evaluation 
of the toxicology of silver and zinc oxide nanoparticles and correlate our findings 
with qPCR analysis. The combination of these two analytical techniques sheds light 
on the differences in toxicology between these two materials from the perspective of 
oxidative stress. 
 
Introduction 
 
Redox potential is a function of the propensity of a chemical species to donate or 
accept electrons and the concentrations of the oxidised and reduced species. The 
Nernst equation allows the quantification of redox potentials under non-standard 
conditions:1 

𝐸 = 𝐸°+
𝑅𝑇
𝑛𝐹 ln

[Ox]
[Red]

 

 
where E is the redox potential (V), E° is the standard redox potential (V), R is the 
universal gas constant (J K-1 mol-1), T is the temperature (K), n is the number of 
electrons transferred, F is the Faraday constant (C mol-1), [Ox] is the concentration of 
oxidised species, and [Red] is the concentration of reduced species. 
 
Electron transfer drives energy transduction in biological cells. Electrons are 
transferred from reduced nicotinamide adenine dinucleotide (NADH) to molecular O2 
via a set of proteins that make up the electron transfer chain. As many functions of the 
cell are redox regulated (e.g. signalling; protein, DNA and RNA synthesis; and cell 
growth and death), the redox potential as defined by the Nernst equation clearly has 
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biological significance as it both controls and reflects the biological activity of cells.2-

4 
 
The overall redox potential of a cell can be viewed as the balance between the 
generation of reactive oxygen/nitrogen (ROS/RNS) species and the antioxidants that 
degrade them. Most ROS/RNS generation is endogenous, as by-products of 
respiration, protein folding and NADPH oxidase activity.5-7 Whilst some of these 
ROS/RNS species can cause harmful oxidation of biomolecules, some signalling 
pathways use these oxidised biomolecules to sense the redox status of the cell.8-10 
Antioxidant enzymes or small molecules transfer electrons from thiol/disulphide 
redox couples to reduce/eliminate ROS/RNS and oxidised biomolecules; these 
couples are oxidised in the process and then re-reduced by accepting electrons from 
other species.11-13 
 
There are several thiol/disulphide redox couples in the cell. The main redox couple is 
glutathione/glutathione disulphide (GSH/GSSG) as it is mostly in the reduced form 
(GSH) and is the most abundant, with a concentration range of 1-11 mM.2 The levels 
of GSH are therefore commonly used as a proxy for overall redox potential, however, 
it is important to note that there are many other redox couples in the cell that 
contribute to the overall intracellular redox potential. All of these redox couples are 
not necessarily in equilibrium with other each other, can vary independently of each 
other and are at different concentrations in different organelles.4  
 
Dysregulation of redox potential occurs when antioxidant levels are overwhelmed by 
ROS/RNS levels, causing oxidative stress, which has been implicated in diseases such 
as chronic inflammation, cancer and neurodegeneration.13-15 Oxidative stress can 
modify protein function through irreversible oxidative modification of protein 
residues, affecting cell function through inhibition of signalling pathways and 
resulting in apoptosis. 

 
The gold standard for ratiometric redox potential measurement is the use of roGFPs, a 
green fluorescent protein modified with redox-active surface cysteine residues.16 Each 
oxidation state of roGFP has a distinct excitation maximum, and a fluorescence 
measurement thus provides a ratio of oxidised to reduced species from which the 
redox potential can be calculated using the Nernst equation. However, roGFPs change 
oxidation state through interaction with glutaredoxins and this biases the 
measurement towards a measurement of GSH.17 As stated above, overall redox 
potential is not a single analyte but is the result of many redox couples.  
 
Our approach bypasses the problems involved in calculating overall redox potential 
from these individual redox couples, by using surface-enhanced Raman spectroscopy 
(SERS). We have designed redox-active reporter molecules based on quinones, which 
are active over a wider range of redox potentials than roGFPs.18 These reporters 
change bond order depending on whether they are oxidised or reduced and these 
changes can be detected by Raman spectroscopy, thus allowing spectral 
discrimination between oxidised and reduced forms of the reporter molecule. 
Covalent attachment of our reporter molecules to gold nanoshells amplifies the 
Raman signal by up to 108.[19] The use of lower energy infrared wavelengths as 
compared to visible wavelengths minimises phototoxicity. Furthermore cell 
components autofluorescence at visible wavelengths but not at infrared wavelengths. 
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We have shown that nanoshells coated with our reporter molecules are taken up into 
the cytoplasm and are non-toxic in various cell lines. We have used our nanosensors 
to show the correlation between redox potential and caspase activity during 
apoptosis.18  
 
In this paper we detail the development of spectral processing and analysis algorithms 
that allow SERS spectra to be automatically processed to give an output of redox 
potential. In general we think that such automated analysis will allow greater 
translation of SERS to biological problems and in this particular case, the automated 
analysis has allowed us to carry out a comparative evaluation of the oxidative stress 
cause by silver and zinc oxide nanoparticles and correlate our finding with qPCR 
analysis. 
 
Experimental 
 
Functionalisation of nanoshells (NS) 

The nanoshells have a peak absorbance at ~780 nm, with an absorbance of 1 
corresponding to 2.2 × 109 NS/ml. Absorbances were measured with a Cary 50 UV-
Vis spectrophotometer and spectra recorded from 200–900 nm. 

NQ-NS: 1–2 mg of 1,8-diaza-4,5-dithia-1,8-di(2-chloro-[1,4]-naphthoquinone-3-
yl)octane (NQ) was dissolved in 100% ethanol, then heated and filtered before 10-
fold dilution with sterile filtered water (Sigma Aldrich). The solution was then added 
to 2.2 × 109 gold nanoshells (Nanospectra Biosciences Ltd) and incubated overnight 
at room temperature. The nanoshells (NQ-NS) were then washed 3 times with sterile 
filtered water and the absorbance measured.  

MBA-NS: 1-2 mg of para-mercapto benzoic acid (MBA) was dissolved in 100% 
ethanol, filtered and diluted 10-fold with sterile filtered water (Sigma Aldrich). The 
solution was then added to 2.2 × 109 gold nanoshells (Nanospectra Biosciences Ltd) 
and incubated overnight at room temperature. The nanoshells (MBA-NS) were then 
washed 3 times with sterile filtered water and the absorbance measured.  

Cell culture 

A549 cells were grown as monolayers in Dulbecco’s modified Eagle’s medium 
(DMEM), supplemented with 10% heat-inactivated foetal bovine serum (FBS), 
10,000 units/ml penicillin/streptomycin and 200 mM L-glutamine (all Life 
Technologies) (complete medium). NQ-NS incubation was carried out in serum-free 
medium, i.e. complete medium lacking FBS. Cells were grown in an incubator at 37 
°C with a humidified 5% CO2 atmosphere. 

Surface-enhanced Raman spectroscopy 

Calibration data: MBA: Calibration data consisted of 3 independent datasets, each 
having 5 spectra per pH, making a total of 303 spectra, covering a range of 3.7 to 13.1 
pH units. NQ: Calibration data consisted of 5 spectra per redox potential, making a 
total of 40 spectra, covering a range of -460 to -250 mV. 
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Preparation of cells: A549 cells were plated at a density of 2 × 105 cells/dish on 35 
mm diameter glass-bottomed imaging dishes (Greiner Bio-One). The following day 
the medium was replaced with serum-free medium for 1.5 hours followed by 
overnight incubation with 200 fM NQ-NS. Cells were washed twice with PBS and 3 
ml complete medium added. Cells were then either treated with 0.5 mg/ml silver 
nanoparticles (AgNP), 0.5 mg/ml zinc oxide nanoparticles (ZnONP) or 30 mM 2,2’-
azobis(2-amidinopropane) dihydrochloride (AAPH; positive control) or were left 
untreated. Cells were incubated at 37 °C and 5% CO2 until Raman spectroscopy was 
performed at 0, 1, 2, 3 and 4 hours after treatment. Spectra were acquired from each 
sample for 1 hour.  

Spectra acquisition: Raman spectroscopy was performed with a Renishaw InVia 
Reflex microRaman spectrometer with a 785 nm diode laser. Spectra were acquired 
between a Stokes Raman shift range of 1350-1800 cm-1. Single spectra were acquired 
with a 50× Olympus super long working distance objective (NA = 0.45) to give a 
focal diameter of 2.1 mm using a point focus lens, and a power density at the sample 
of 66 mW mm-2. The integration time was 30 s unless specified otherwise. SERS 
maps from cells were obtained with a 50× Olympus super long working distance 
objective (NA = 0.45) to give a line with dimensions 24.95 × 2.1 mm using a line 
focus lens. Raster scans were performed with a computer controlled x,y-stage, a step 
size of 5 mm, an integration time of 3 s and a power density at the sample of 330 mW 
mm-2. The co-ordinates of signals from nanosensors were recorded and further Raster 
scans were performed centred on these co-ordinates with a step size of 1 mm, an 
integration time of 30 s and a power density at the sample of 66 mW mm-2.  

Data analysis 

Individual spectra were processed as univariate signals with unknown parameters, the 
parameters of which were estimated using customised algorithms implemented in 
MATLAB® to determine redox potential. Differences in redox potential between 
treatment groups and the negative control were tested using ANOVA followed by the 
Holm-Šidák multiple comparison test. The MATLAB® code used is available upon 
request. 

qPCR analysis 

Total cellular RNA was isolated from A549 cells using the NucleoSpin RNA II kit 
(Machery-Nagel) according to the manufacturer’s instructions. RNA concentrations 
were measured using the NanoDrop 2000c Spectrophotometer (Thermo Scientific). 
RNA was converted to cDNA using High Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems). qRT-PCR was performed using SYBR i-Taq SYBR Green 
Supermix with ROX (Bio-rad), 0.5 µg cDNA and primers for either 18S (F: 5’-
CATGGATTCAACGCAGAAG, R: 5’-GTAAAGTTGTGCGTCTCTGC) or HO-1 
(F: 5’-CCAGCAACAAAGTGCAAG, R: 5’-CACATGGCATAAAGCCCT). Cycling 
parameters were 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds 
and 60°C for 60 seconds. The specificity of PCR product was confirmed through 
melting point analysis and the relative abundance of mRNA was calculated by a 
standard curve method, with 18S rRNA as the reference gene. 
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Results 
 
SERS maps containing hundreds of spectra from single cells can be acquired in a 
short space of time (one map can be obtained in less than 5 minutes). The individual 
spectra require processing in order to determine redox potential, which is a time-
consuming process if done manually. First, the user must select those spectra with a 
sufficiently intense SERS spectrum to warrant further attention. A smoothing 
algorithm is then applied to each chosen spectrum, an individual manually specified 
baseline is then subtracted and the peak heights obtained from the maximum value in 
the range of each peak. This manual processing takes approximately 3 minutes per 
spectrum and even though not every individual spectrum will require processing, a 
significant amount of time is required to be invested for a single map. In the 
development of sensors it is usual to perform manual processing of data, due to the 
small data sets generated. However, application of the sensors to biological data, 
where large data sets are common requires automation of data processing.  

There are a number of drawbacks to manual processing in addition to the length of 
time required:  

• Intra-individual bias and variance - because the baseline is manually 
specified, differences in its placement can occur due to human error, 
fatigue, mood etc. It is also possible that the baseline is subconsciously 
placed in order to achieve the expected results.  

• Inter-individual bias and variance - different people will specify the 
baseline slightly differently which could lead to small but systematic 
differences in peak height ratios. Furthermore, each person may have 
differing criteria for deciding which spectra should be processed, leading 
to possible differences in the average redox potential determined through 
the exclusion or inclusion of spectra with a lower signal to noise ratio 
(SNR). 

• The smoothing algorithm maintains peak height, thus also maintaining the 
noise, so the measurement of peak height is affected by noise. The 
presence of spikes of noise on one peak and not the other leads to over- or 
under-estimation of peak height ratios. 

All of the above mean that while SERS is an attractive technique for making pH and 
redox measurements in live cells, the challenges of data analysis provide a barrier to 
entry for life-scientists unfamiliar with vibrational spectroscopic data. Automating the 
process of data analysis addresses these drawbacks in addition to being faster. A 
univariate peak fitting approach was used to ascertain peak height, which has the 
advantage of being less affected by noise than the manual method, as well as 
removing the bias and variance inherent in manual processing as the same criteria are 
applied to all spectra. Peak fitting also allows the investigation of other parameters 
such as peak width and area, which may also change with redox potential or pH, 
offering more options for ratiometric analysis. Therefore peak fitting can provide a 
more accurate method of estimating redox potential or pH from SERS spectra. 

Peak fitting is a common method of analysis in spectroscopy and chromatography as 
the peaks have characteristic shapes that can be modelled by specific functions.20,21 
This allows a physical model to be tested, and data extracted from the model. The 
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function parameters can provide information on the physical properties of the analyte 
under investigation. For example, in Raman, fluorescence and UV-visible 
spectroscopy the intensity of a peak is proportional to concentration.22 

There are several examples of automated processing of Raman spectra in the 
literature, with most focusing on baseline subtraction to remove the large background 
signals from various sources, including autofluorescence from biological samples.23-26 
For many applications, SERS spectral analysis is performed in order to detect/classify 
components of a sample,27 and accurate peak finding can be problematic when 
dealing with an unknown number of peaks, especially overlapping ones.20 However, 
the peaks in our SERS spectra are due solely to our reporter molecule and, 
furthermore, we are not interested in fitting all of the peaks in a spectrum but only 
those needed for a ratiometric measurement. Therefore the parameters of the peak 
fitting were constrained to produce a more accurate physical model. 

Our preliminary algorithm development was carried out using the pH-sensitive MBA 
reporter molecule as it has well-separated peaks with relatively flat background 
between them. 

 

Figure 1: Structure of the MBA reporter molecule conjugated to a gold nanoshell (black 
circle) via a gold-thiol bond. The protonated form (left) predominates at low pH, 
whereas the deprotonated form (right) predominates at high pH. 

The pH-sensitive para-mercaptobenzoic acid (MBA; Figure 1) molecule has been 
shown to be a good SERS-based reporter molecule for intracellular use.28 Figure 2 
shows how peaks in the spectrum change with pH: the peak at ~1590 cm-1 is due to 
ring breathing;29,30 it is the most intense peak in the spectrum in the region 1300-1800 
cm-1 and is therefore a good candidate for a reference peak, being present at both high 
and low pH. The centre of this peak can be seen to shift to lower wavenumbers as pH 
increases. The peak at ~1400 cm-1 is barely distinguishable at low pH and increases as 
pH increases; it is due to COO– stretching.28-30 At pH >8.5 this peak moves to higher 
wavenumbers (~1420 cm-1) and becomes more intense. The peak at ~1700 cm-1 
shows the opposite trend: it is highest at low pH and decreases with increasing pH; it 
is due to C=O stretching.28,29 The opportunity therefore exists to use all three of these 
peak heights and areas in order to estimate pH, as well as the shift in centre of the 
1590 cm-1 peak. 
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Figure 2: Change in the position and intensity of three peaks in the MBA-NS Raman 
spectrum as a function of pH. Spectra have been background subtracted and 
normalised to the intensity of the peak at ~1590 cm-1. 

Peak fitting can either operate on univariate data as in this paper, or on an ensemble of 
spectra which can be analysed using multivariate methods such as independent 
component analysis. The univariate case is simpler to deal with, and is an exercise in 
classical curve fitting using an error criterion, for example such as least squares. In 
the univariate model, the peak shape can be modelled using a variety of functions, 
including Gaussian, Voigt, pseudo-Voigt, and asymmetric variants.21 However, the 
Lorentzian function is found to be the most parsimonious, requiring relatively few 
parameters, is simple to implement, and gives the least residual error. 

Each of the three peaks in each spectrum is separately fitted around its peak centre 
using a Lorentzian peak model with an independent linear baseline: 

𝑦! 𝑥! =
𝑎!

1+ 𝑥! − 𝑏!
𝑐!

!  +𝑚!𝑥! + 𝑑!  

where 𝑛 ∈ 1,… ,𝑃  is the index of the n-th underlying spectral peaks, 𝑃 = 3 is the 
number of spectral peaks, 𝑥! is the Raman shift associated to the n-th peak, 𝑦! 𝑥!  is 
the normalised intensity of the n-th peak, 𝑎! is the (positive) amplitude of the n-th 
peak, 𝑏! is the peak centre, 𝑐! is the peak width, m is the linear baseline gradient and 
d is the baseline offset.  
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The peak centres 𝑏! are known a priori, whereas the unknown parameters 𝑎!, 𝑐!, m 
and d can be determined by the standard nonlinear least squares algorithm, using for 
example the Levenberg-Marguardt algorithm.31 This is implemented using the 
function “lsqcurvefit” in MATLAB. The Raman shift range over which each peak is 
fitted is determined experimentally as that which results in the least variation in the 
residuals over all the calibration spectra (excluding pH<6 for the peak at ~1400 cm-1 
and pH>8.5 for the peak at around ~1700 cm-1). The same three ranges were then 
applied to all spectra. Figure 3 shows an example of a spectrum with each peak fitted 
separately. The peak width parameter, cn, was constrained to be a minimum of 5 cm-1 
and a maximum of 50 cm-1 (for the peak at ~1590 cm-1) or 100 cm-1 (for the peaks at 
~1400 and 1700 cm-1) in case of very low SNR. 

 

 

Figure 3: Example of a calibration spectrum (black) with peak fits applied to three 
separate regions (red). The Raman shift range of each fit was determined 
experimentally as that which resulted in the least variation in the residuals over all 
calibration data (excluding pH<6 for the peak at ~1400 cm-1 and pH>8.5 for the peak at 
around ~1700 cm-1). 
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The calibration data were grouped by pH in order to investigate relationships between 
various fit parameters and pH. Weighted means of the various parameters at each pH 
were calculated using inverse weighting to reduce the effect of values with a large 
error. 

As expected, it was found that the centre of the peak at ~1590 cm-1 did vary with pH, 
the centre of the peak at ~1400 cm-1 shifted to higher wavenumbers at high pH, and 
the centre of the peak at ~1700 cm-1 did not change with pH. The following ratios of 
peak heights and areas were dependent on pH: 1590/1400, 1590/1700 and 1400/1700, 
indicating that a combination of seven parameters (~1590 cm-1 peak centre, three peak 
height ratios and three peak area ratios) could be used to estimate pH. 

The three datasets were combined, a Boltzmann curve fitted and the 95% confidence 
bands calculated for each of the seven parameters. Figure 4 shows the result of this fit 
for the change in the centre of the peak ~1590 cm-1 (the other six parameters are 
shown in the Supplementary Material). 

 

Figure 4: Variation of the centre of the peak at ~1590 cm-1 with pH. A Boltzmann curve 
(red line) has been fitted to points which are the weighted means from three 
independent datasets; error bars are the standard deviation of the weighted mean; 
green lines are the 95% non-simultaneous confidence bands. 

Figure 4 shows that the calibration is most accurate over a pH range of approximately 
6-8; outside this range the estimated pH is subject to a large error. The aim of using 
this probe was to measure intracellular pH, which should be within this range, so 
acceptable ranges were therefore calculated for each parameter as the values of the 
Boltzmann fit at pH 6 and 8. The pH was then estimated from each of the seven 
calibration graphs, with an overall error in pH determined from both the error in the 
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Boltzmann fit and the error in the peak centre, height ratio or area ratio. The estimated 
pH from each parameter was combined into a weighted mean to give a more accurate 
estimate of pH. Spectra were marked as ’pH <6’ or ’pH >8’ as appropriate if they met 
either of the following conditions: 

• if 2 or more area ratios were outside their acceptable ranges  
• if 3 or more of the peak centre or height ratios were outside their acceptable 

ranges   

These conditions ensure that at least four of the seven parameters are used to provide 
an estimate of pH. Using fewer than four parameters can result in a less accurate 
estimated value; therefore spectra with fewer than four parameters are marked as 
being outwith the range of the sensor. 

When used to analyse the calibration data, this method resulted in an average standard 
deviation of ±0.16 pH units. Individual 95% confidence intervals were calculated 
from the individual standard deviations of each spectrum, where the estimated pH was 
in the range 6-8; overall, 92.4% (very close to the expected value of 95%) of the 
calibration spectra were either correctly identified as being outwith the range of the 
sensor or the error range associated with the estimated pH contained the actual pH.  

The automated algorithm was then compared to the manual processing method. The 
variability of spectra can be determined by acquiring consecutive spectra from the 
same aggregate of MBA-functionalised nanoshells dried onto a quartz coverslip. 
What is being tested is the variability between the manual and automatic processing 
methods, so it is important to obtain consecutive spectra that are very similar. To this 
end, 10 consecutive spectra were obtained from MBA-NS and processed by both 
methods. The manual process uses only one parameter to estimate pH: the ratio of the 
peak heights of the peaks at ~1400 and ~1590 cm-1, whereas the automated process 
uses seven parameters. A comparison of the two methods is given in Figure 5 and 
Table 1. Manual processing of the 10 spectra resulted in a mean pH of 6.56 with a 
standard deviation of 0.29, whereas the automated processing resulted in a mean pH 
of 7.14 with a standard deviation of 0.09. The manual process does not provide an 
error associated with the estimated pH, whereas the automated process results in an 
associated mean error of 0.28 pH units. Furthermore, automated processing is nearly 
200 times faster than manual processing and results in pH values spread evenly about 
the mean. The lower pH estimated by the manual method could be due to only using 
one parameter as the mean estimated pH of the same parameter by the automated 
method is 6.76 with a standard deviation of 0.21, lower than the mean derived from 
all seven parameters. These results show that not only is processing faster by two 
orders of magnitude, there is less variability in the automated processing method and 
the combination of seven parameters enables a more robust estimation of pH. 
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Figure 5: Boxplots showing the median, 1st and 3rd quarter percentiles, range and mean 
(filled circle) for the estimation of pH from 10 consecutive spectra obtained from MBA-
NS using both manual and automated processing methods. The manual method uses 
only one parameter to estimate pH: the height ratio of the peaks at ~1400 and ~1590 cm-
1; the pH estimated by the automated method using only this parameter is shown for 
comparison (Automated 1 parameter). The automated method uses a total of seven 
parameters to estimate pH and results in a much smaller range than the manual 
method.  

 
 

 Manual processing Automated 
processing 

Mean estimated pH 6.56 7.14 
Standard deviation 0.29 0.09 
Mean error - 0.28 
Time per spectrum 3 minutes 1 second 

 
Table 1: Comparison of manual and automated processing methods in the estimation of 
pH from 10 consecutive spectra obtained from MBA-NS. The manual method does not 
provide an error associated with the estimated pH. The automated method results in 
much less variation in estimated pH from each of the 10 spectra, and the processing time 
per spectrum is reduced by nearly 200-fold. 
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Figure 6: Reduced (left) and oxidised (right) structures of the NQ reporter molecule 
conjugated to a gold nanoshells (black circle) via a gold-thiol bond. 

We used MBA-NS as a test-case for automated processing because the peaks used to 
measure pH are well resolved and easily identified. We then attempted to apply the 
same approach to automating redox potential measurement using the NQ-NS 
nanosensor developed in our lab (Figure 6).18 Figure 7 shows how peaks in the 
spectrum change with redox potential: the peak at ~1580 cm-1 is actually composed of 
two peaks at 1577 cm-1 and 1602 cm-1 (symmetric ring breathing and aryl ring 
stretching with N-H wagging, respectively). This peak is the most intense peak in the 
region 1300-1800 cm-1, so it is a good candidate for the reference peak, whereas the 
peak at ~1640 cm-1 is due to C=O stretching and can be used as a marker of 
increasing oxidation. For NQ, then, there is the possibility of using peak height and 
area ratios of a combination of the three peaks at 1577 cm-1, 1602 cm-1 and 1640 cm-1. 
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Figure 7: Redox-dependent change in the intensity of the peak at ~1640 cm-1 in the NQ-
NS Raman spectrum. Spectra have been background subtracted and normalised to the 
intensity of the peak at 1577 cm-1. 

As the three peaks of interest overlapped, the data were modelled by the sum of three 
Lorentzian peaks: 

𝑦 𝑥! =
𝑎!

1+ 𝑥! − 𝑏!
𝑐!

!

!

!!!

 

where again 𝑛 ∈ 1,… ,𝑃  is the index of the n-th underlying spectral peaks, 𝑃 = 3 is 
the number of spectral peaks, 𝑥! is the Raman shift, 𝑎! is the (positive) amplitude of 
the n-th peak, 𝑏! is the peak centre, and 𝑐! is the peak width at 1577, 1602 and 1640 
cm-1, respectively. As discussed earlier, the amplitude and peak widths are estimated 
using a nonlinear least squares algorithm and the peak centres are known a priori. The 
Raman shift range over which the fit is applied is 1560-1660 cm-1 as this is the range 
that results in the least variation in the residuals over all calibration spectra. 
Constraints on peak widths were determined experimentally with a minimum of 40% 
and a maximum of 250% of the average peak width of the calibration spectra. 

After fitting, the calibration data were grouped by redox potential in order to 
investigate relationships between various fit parameters and redox potential. The 
weighted means and standard deviations of the various parameters at each redox 
potential were calculated using the same inverse weighting method as for the MBA-
NS nanosensor. It was found that the ratio of the height of the peaks at 1577 and 
~1640 cm-1 varied with redox potential, as did the equivalent area ratios. The centres 
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of the peaks at 1577 and 1602 cm-1 did not change with redox potential, and the centre 
of the peak at ~1640 cm-1 only varied with redox potential at potentials more positive 
than -340 mV and thus could not be used to estimate redox potential. Therefore 
calibration curves were only constructed for the peak height and area ratios of the 
peaks at 1577 and ~1640 cm-1. 

As before, a Boltzmann curve was fitted and 95% confidence bands were calculated 
for both of these parameters (Figure 8).  

 

Figure 8: Variation of the 1577/1645 cm-1 peak height (top) and peak area (bottom) 
ratios with redox potential. A Boltzmann curve (red line) has been fitted to points which 
are the weighted means of five data points; error bars are the standard deviation of the 
weighted mean; green lines are the 95% non-simultaneous confidence bands. 

Acceptable ranges for the ratios were calculated as the values at -400 and -250 mV, as 
this is the region where the curves change most rapidly. The redox potential was then 
estimated from both calibration graphs, with the overall error in redox potential 
determined from both the error in the Boltzmann fit and the error in the peak height or 
area ratio. With only two parameters used to estimate redox potential, there is a 
possibility that one parameter with a large error can skew the estimated redox 
potential away from the actual potential. Therefore the estimated redox potential from 
each parameter was combined into a weighted mean to avoid this effect. Spectra were 
marked as ’reduced’ or ’oxidised’ if either or both ratios were outside their acceptable 
ranges, and thus outwith the range of the sensor. 

When used to analyse the calibration data, this method resulted in an average standard 
deviation of 23.3 mV. Individual 95% confidence intervals were calculated from the 
individual standard deviations of each spectrum, where the estimated redox potential 
was in the range -400 to -250 mV. Overall, 85% of the calibration spectra were either 
correctly identified as being outwith the range of the sensor or the error range 
associated with the estimated redox potential contained the actual redox potential. 
Obtaining more data would improve the accuracy of the weighted mean, and also 
improve the error in the calibration curve. In addition, data were collected at equally 
spaced redox potentials; due to the sigmoid shape of the calibration curve, this could 
mean a further loss of accuracy in the region of -350 to -250 mV where the slope is 
steepest. The 95% confidence intervals are greatest at more reducing potentials. This 
is due to the larger error in the height of the peak at 1640 cm-1 as it decreases with 
decreasing redox potential. This peak becomes a shoulder on the combined peaks at 
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1577 and 1602 cm-1, resulting in increased error in the fit in this region at more 
reduced potentials. This error could be minimised by improving the SNR of the 
detector, but the problem can also be overcome by designing reporters with more 
reductive standard potentials 32,33. 

The algorithm was then compared to the manual processing method. Ten consecutive 
spectra were obtained from NQ-NS dried onto an imaging dish and processed by both 
methods. The manual process uses only the peak height ratio, whereas the automated 
process uses both the peak height and area ratios. A comparison of the two methods is 
given in Table 2 and Figure 9. Manual processing of the 10 spectra results in a mean 
redox potential of -257.4 mV with a standard deviation of 3.0 mV, whereas the 
automated processing results in a mean redox potential of -259.3 mV with a standard 
deviation of 2.8 mV. The manual process does not provide an error associated with 
the estimated redox potential, whereas the automated process results in an associated 
mean error of 20.9 mV. 

 

Figure 9: Box plots showing the median, 1st and 3rd quarter percentiles, range and mean 
(filled circle) for the estimation of redox potential from 10 consecutive spectra using 
both manual and automated processing methods. 

 Manual processing Automated processing 
Mean estimated redox 
potential (mV) 

–257.4 –259.3 

Standard deviation (mV) 3.0 2.8 
Mean error (mV) - 20.9 
Time per spectrum 3 minutes 1 second 

Table 2: Comparison of manual and automated processing methods in the estimation of 
redox potential from 10 consecutive spectra obtained from NQ-NS. The manual 
processing method does not provide an error association with estimated redox potential. 
The automated processing method reduces the processing time per spectrum by nearly 
200-fold. 
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The automated method was significantly faster than the manual method: nearly 200 
times faster in processing a single spectrum, and 50-120 times faster in producing a 
colourmap of 147 spectra. The automated method was also more precise than the 
manual method for the MBA nanosensor and due to the lack of calibration spectra 
was no worse for the NQ nanosensor. However for the NQ nanosensor it was shown 
that the estimated values from the automated method were more evenly distributed 
about the mean than for the manual method, indicating that the automated method 
was less biased. All spectra were subject to the same criteria and intra- and inter-
individual bias and variance were not present in the automated method. 

Overall, the automated processing method is much faster and results in a less variable 
estimate of the pH or redox potential than the manual processing method. 

Effect of zinc oxide and silver nanoparticles on redox potential 

The toxicological effects of inhaled particulate matter have been extensively 
investigated. Inhalation of ultrafine particles, such as in diesel exhaust, has been 
shown to cause inflammation in several cell types.34 The toxicity of these species is 
thought to be related to their large surface area to volume ratio, and/or their ability to 
act as a carrier of transition metals into the lungs.35 Nanoparticles have a smaller 
diameter and greater surface area to volume ratio compared to larger particles and are 
now manufactured in large quantities for industrial use (for example, in the 
manufacture of cosmetics, electronics, and paint36); therefore it is important to 
investigate the effects of nanoparticle inhalation during the manufacturing process. 
Engineered nanoparticles have been shown to have greater toxic effects than ultrafine 
particles (which are nanoscale ambient, as opposed to engineered, particles; for 
example air pollution particles), although the effects are strongly dependent on cell 
type.34 

As well as being used as a model of lung cancer,37,38 A549 cells are used in studies of 
inflammation39 and nanoparticle toxicity35,40. Both ultrafine particles and metal 
nanoparticles cause production of ROS in A549 cells.41 Elevated ROS levels cause 
upregulated expression of anti-oxidant genes through the Nrf2-KEAP pathway.42 At 
low particle concentrations this upregulation is enough to degrade ROS, however, at 
higher concentrations, the antioxidant response is insufficient for the levels of ROS 
produced, and the resulting oxidative stress triggers apoptosis.43 

This well-characterised response of A549 cells to nanoparticles makes them an ideal 
system in which to compare our measurements of intracellular redox potential with 
the traditional assays for oxidative stress. 

A549 cells were incubated with NQ-NS overnight before either treatment with 30 
mM 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH; positive control), sub-
lethal treatment with one of 0.5 mg/ml silver nanoparticles (AgNP), 0.5 mg/ml zinc 
oxide nanoparticles (ZnONP) or were left untreated (see Experimental for full 
methods). SERS maps were acquired from untreated, AgNP-treated and ZnONP-
treated cells over the following time periods after treatment: 0-1 hours; 1-2 hours; 2-3 
hours; 3-4 hours and 4-5 hours. SERS spectra were acquired from AAPH-treated cells 
during the first hour after treatment only as there was extensive cell death after this 
period. Briefly, a cell or cells were rapidly scanned to locate any NQ-NS and then 
detailed scans covering an area of 6 x 25 mm were performed, centred on the location 
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of each NQ-NS signal from the rapid scan. 

The automated processing algorithm described above was used to process all SER 
map spectra. After background subtraction, spectra were selected for further 
processing based on the following criteria: 

• R2 value ≥0.6 
• height of the peak at 1577 cm-1 ≥100 counts 

No spectra showed complete oxidation of NQ-NS. The automated processing method 
returned a redox potential with an associated error for each spectrum as described 
above. A weighted average and standard deviation was then calculated for each time 
period and each treatment, using the inverse weighting method. Figure 10 shows the 
change in redox potential for each time period for all treatments. In the 0-1 hour time 
period only AAPH-treated cells showed a significant oxidative shift in redox potential 
compared to untreated cells (p = 0.0014). In the 1-2 hour time period, both AgNP- 
and ZnONP-treated cells showed a significantly more oxidative redox potential 
compared to untreated cells (p <0.0001 and p = 0.0015, respectively). For the other 
time periods there was no significant difference in redox potential between untreated 
cells and metal nanoparticle-treated cells. 

 

Figure 10: Metal nanoparticles increase intracellular redox potential in A549 cells 1-2 
hours after treatment. Cells containing NQ-NS were treated with one of 0.5 mg/ml 
AgNP, 0.5 mg/ml ZnONP or 30 mM AAPH (positive control), or were left untreated. 
Bars show the weighted mean of redox potentials within each time period and 
treatment; error bars represent the standard error of the weighted mean; ** p < 0.01; 
****p <0.0001. 

From Figure 10 it can be seen that both metal nanoparticle treatments showed the 
most oxidised redox potential during the 1-2 hour time period, with AgNP treatment 
resulting in a more oxidised potential than ZnONP treatment. All time periods showed 
significantly more positive redox potentials with respect to the potential measured 
during the 0-1 hour time period. In AgNP-treated cells, the redox potential during the 
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4-5 hour time period was significantly more reduced than the potential during the 1-2 
hour or 2-3 hour time periods (p = 0.0008 and p = 0.0208, respectively), but it was 
still significantly more oxidised than during the 0-1 hour time period (p = 0.0208). 
ZnONP treatment showed the same trend but without reaching significance. The 
intracellular redox potential in untreated cells did not change significantly over the 5 
hours. 

 
These results were then compared to mRNA expression levels for selected antioxidant 
genes measured using qPCR. Nrf2 is a transcription factor that is responsive to 
changes in oxidative stress and an essential part of the cellular antioxidant response. 
Oxidative stress causes Nrf2 to translocate to the nucleus and upregulate expression 
of its target genes, many of which are antioxidants, including hemeoxygenase-1 (HO-
1) 44. The levels of HO-1 mRNA transcripts were measured at three hours and showed 
that ZnONP, but not AgNP, treatment caused a significant upregulation of the HO-1 
transcript (Figure 11). However, the concentration of AgNP at which only 50% of 
cells remained viable (TD50) was much lower than for ZnONP (data not shown). 
Together, these data indicate that the less oxidative effect of ZnONP treatment could 
be due to an increase in antioxidant response, which is not seen with AgNP treatment. 

 

Figure 11: HO-1 mRNA expression 3 hours after treatment with metal nanoparticles in 
A549 cells. 

Discussion and Conclusions 

In this paper NQ-NS were used to measure the increase in intracellular redox potential 
in A549 cells treated with sub-lethal doses of engineered metal nanoparticles of Ag 
and ZnO, which have been shown to be toxic in A549 cells. The intracellular redox 
potential was shown to be most oxidised during the 1-2 hour time period for both 
metal NP treatments, with AgNP-treated cells showing more oxidised potentials than 
ZnONP-treated cells. ZnONP-treated cells showed upregulation of antioxidant genes 
compared to AgNP-treated cells and we speculate that the increased upregulation of 
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antioxidant genes seen in ZnONP-treated cells, compared to AgNP-treated cells, 
would enable metal NP-induced ROS to be degraded more efficiently and thus could 
explain the smaller increase in redox potential. 

For both metal NP treatments, the intracellular redox potential returned to a value 
which was not significantly different to the untreated control population indicating 
that the cellular antioxidant response had reversed the effects of metal NP treatment 
on this timescale, in the surviving cells. In AgNP-treated cells, the redox potential 
became significantly more reductive after an initial oxidative shift, and eventually 
returned to a potential that is not significantly different to the untreated control cells. 
In ZnONP-treated cells this trend did not reach significance, perhaps due to increased 
upregulation of anti-oxidant genes. 

In summary, our SERS nanosensor method of measuring intracellular redox potential 
is capable of measuring differences in oxidative stress caused by nanoparticles in 
A549 cells, and is corroborated by traditional assays of oxidative stress. 
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