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The potential for Raman spectroscopy to provide early and improved 

diagnosis on a wide range of tissue and biopsy samples in situ is well 

documented. The standard histopathology diagnostic methods of reviewing 

H&E and/or immunohistochemical (IHC) stained tissue sections provides 

valuable clinical information, but requires both logistics (review, analysis 

and interpretation by an expert) and costly processing and reagents.  

Vibrational spectroscopy offers a complimentary diagnostic tool providing 

specific and multiplexed information relating to molecular structure and 

composition, but is not yet used to a significant extent in a clinical setting. 

One of the challenges for clinical implementation is that each Raman 

spectrometer system will have different characteristics and therefore 

spectra are not readily compatible between systems. This is essential for 

clinical implementation where classification models are used to compare 

measured biochemical or tissue spectra against a library training dataset. 

In this study, we demonstrate the development and validation of a 

classification model to discriminate between adenocarcinoma (AC) and non-

cancerous  intraepithelial metaplasia (IM) oesophageal tissue samples, 

measured on three different Raman instruments across three different 

locations. Spectra were corrected using system transfer spectral correction 

algorithms including wavenumber shift (offset) correction, instrument 

response correction and baseline removal. The results from this study 

indicate that the combined correction methods do minimize the instrument 

and sample quality variations within and between the instrument sites. 

However more tissue samples of varying pathology states and greater tissue 

area coverage (per sample) are needed to properly assess the ability of 

Raman spectroscopy and system transferability algorithms over multiple 

instrument sites. 

Introduction 

Oesophageal cancer is the fifth biggest cancer killer, with rising 

incidence rates
1
. Once patients are found to have symptoms such as 

trouble swallowing the disease is advanced and usually incurable 

(15% of patients survive 5 years
1
). Individuals with a precursor 

condition called Barrett's oesophagus (caused by reflux disease), 

have an increased risk of developing cancer
2,3

. These patients can 

be diagnosed at an early stage using endoscopic surveillance, which 

includes biopsy. Most gastrointestinal cancers occur on the mucosal 
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surface; however dysplastic changes in the oesophagus are invisible 

to the naked eye during endoscopy
4
. Therefore patients with 

Barrett's oesophagus are subjected to routine endoscopy with 

collection of biopsy samples for analysis by histopathology. 

However the gold standard histopathology is not able to accurately 

and reproducibly identify those patients with early disease or those 

who may be harbouring more advanced disease in un-sampled 

areas of the oesophagus
5
; therefore improved and objective 

diagnostic tools are needed
6
.    

Raman spectroscopy (RS) makes use of biochemical or molecular 

analysis of target tissues rather than an individual’s assessment of 

cellular and tissue appearance
7
, therefore RS provides an objective, 

non-destructive, label free, non-invasive, rapid and economical 

method for diagnosis. RS has the potential to be more automated 

and adaptable to routine screening and provides a spectroscopic 

signature of all molecular constituents of the tissue sample, which 

facilitates the analysis and use of subtle molecular changes to 

classify different pathology and tissue states. Due to these 

pathology and tissue-specific spectroscopic signatures, RS has been 

used as a tool in histopathology
8–14

, and cytology
15–18

. It is based on 

inelastic light scattering and occurs when the biological sample is 

illuminated by monochromatic laser light. The interactions between 

the incident photons and molecules in the sample result in 

scattering of the light to produce a characteristic biomolecular 

fingerprint of the sample
19

. 

Kendall et al demonstrated the ability of RS to discriminate 

between 8 pathological groups in oesophageal cancer: normal 

squamous, three subtypes of Barrett’s oesophagus (intestinal 

metaplasia, cardiac and fundic type mucosa), high-grade dysplasia, 

adenocarcinoma, squamous dysplasia and squamous cell carcinoma 

with sensitivities between 73% and 100% and specificities of 90-

100%
8
. Hutchings et al and Shetty et al have demonstrated the 

advanced use of chemometrics (Principal Component Analysis score 

maps) to generate biochemical maps. These maps were used to  

identify cellular constituents associated with malignancy 
20

, and to 

discriminate between different pathology and tissue types
21

.  

 

Development of a miniature confocal fibre optic probe for Raman 

spectroscopic measurements (Day et al 2009
22

) enabled the use of 

fibre optic Raman probe spectral measurements ex-vivo in which 

Almond et al (Almond et al 2012
23

) performed Raman spectroscopic 

measurements on tissue samples from 28 patients using a custom-

built fibre-optic Raman probe, in conjunction with multivariate 

classification models, to differentiate between benign and 

neoplastic oesophageal cancer and pre-cancer. The Raman probe 

system was able to differentiate between normal squamous, 

Barrett’s oesophagus and neoplasia with sensitivities of (83% to 

86%) and specificities of (89% to 99%). In another study by the 

same group (Almond et al 2014
24

), using tissue from 62 patients, 

the authors demonstrated that the Raman probe system, in 

conjunction Principal component fed linear discriminant analysis 

(PC-LDA), was able to achieve a sensitivity of 86% and a specificity 

of 88% for detecting high-grade dysplasia and adenocarcinoma. An 

additional study using a Raman fibre optic probe was conducted by 

Bergholt and co-workers who used, in clinic during endoscopic 

examination, multimodal image-guided Raman endoscopy 

technique for real-time in vivo diagnosis of cancer in the 

oesophagus.
25

 75 oesophageal tissue sites from 27 patients were 

measured and using a LDA diagnostic model was able to achieve an 

accuracy of 96%, sensitivity of 97% and specificity of 95% in the in 

vivo diagnosis of oesophageal cancer.     

There is clearly a clinical need for these types of validated 

multivariate disease-specific classification models, developed to 

classify and discriminate pathology classes. However due to 

instrument artefacts and environmental differences between 

locations (mentioned below), a successful classification model 

constructed using spectra from one instrument system may not 

have the ability to accurately predict spectra measured on another 

second instrument.  

Physical and chemical constitution (e.g. viscosity, particle size, and 

surface texture) of the tissue samples and standards can impact this 

transfer process. The instrument response function can affect signal 

intensity values (these differences/changes could be due to part 

replacement, aging of parts and sources, and gradual change in 

quantum efficiency of the detector over time) and wavenumber 

registration shifts. Ideally these factors can be prevented by pre-

calibrating prior to sample measurement using calibration 

standards. Lastly, instrument environment can affect the validity of 

the classification model on the different instruments. Absolute 

temperature changes, both short and long term, may possibly 

induce instrument changes due to thermal expansion, leading to 

misalignment of optical components and the shifting of spectral 

peaks along the wavelength axis
26

. There are a number of 

standardization methods to attempt to correct the intensity and 

wavenumber shifts including single wavelength standardization 

(SWS), direct standardization (DS) and piecewise direct 

standardization (PDS)
26

. These methods involve determining the 

instrumental differences from a subset of samples measured on the 

primary site instrument and regressing against the same subset 

measured on the secondary site instrument. This determines a 

spectral response that can be used to correct the model differences 

for future measurements. 

The ability to implement models created with data collected on a 

number of machines at various times that can classify data 

measured on different instruments at different sites is critical for 

large scale implementation of Raman spectroscopy in the clinic. In 

this work we investigate the use of calibration standards 

(wavenumber offset correction, instrument response correction 

and baseline fluorescence correction) to develop transferable 

classification models capable of discriminating between 

intraepithelial metaplasia (IM) and adenocarcinoma (AC) 

pathologies in the oesophagus tissue using Raman spectroscopic 

mapping. Stone et al
27

 first attempted system transferability 

between two similar Raman systems (at the same site) by 

determining the energy transfer function of each system from a 

calibrated tungsten-filament lamp and a secondary NPL (National 

Physical Laboratory) standard and then correcting the measured 

oesophageal tissue spectra by multiplying this by the transfer 

function. The authors noted that by calibrating for energy sensitivity 

in each of the systems, there were very few differences in the mean 

tissue spectra between the two systems.  This current study, 

however, is the first paper that has attempted to build a 

classification model, from mapped Raman tissue spectra, and 

validate in three different geographical instrument sites with the 

intention of creating a transferable diagnostic tool suitable for 
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clinical application. Additionally it is the first paper to document the 

use of Raman map spectra (compared to commonly point-

measured spectra) collected from oesophageal tissue samples to 

develop and validate a pathology classification model.    

Materials and methods 

Tissue collection and preparation 

All tissue used in this work was obtained from patients 

undergoing scheduled endoscopy (for Barrett’s surveillance or 

dysplasia) or from patients undergoing surgery for 

oesophageal cancer. These procedures were performed under 

local (endoscopic resection) or general (oesophageal 

resection) anaesthetic in accordance with an approved ethical 

proposal [Gloucestershire Local Research Ethics Committee]. 

At all times the General Medical Council (GMC) Guidelines on 

good clinical practice were followed. 

20 oesophageal samples were collected in total, 10 IM and 10 

AC. Informed written-consent was provided, prior to collection 

of the tissue. Each specimen was placed in a labelled cryovial 

(Thermo Scientific, Waltham, MA, USA) and the specimens 

were immediately snap-frozen in liquid nitrogen, before 

storage at -80°C. 

For every specimen, tissue sections were cut and stained with 

H&E (Haematoxylin and Eosin) and reviewed by a consultant 

histopathologist. Acetate paper on which the specimen was 

mounted in the operating theatre acted not only to orientate 

the sample but also allowed the specimens to adhere to the 

microtome chuck without the need for cutting agents such as 

Optimal Cutting Temperature compound (OCT). 

A freezing microtome was used to obtain a 5-6 micron section 

which was mounted on a plain glass slide for H&E staining, 

while three 8 micron thick tissue sections were mounted on 

three (one for each instrument site) circular 20mm x 1mm 

Raman-grade Calcium Fluoride (CaF2) discs (Crystran, Poole, 

UK) and stored at -80
◦
C in 20mm round coin capsules 

(Leuchtturm, Geesthacht, Germany). Before being used in all 

of the Raman experiments samples were allowed to passively 

thaw at 23
o
C for up to 15 minutes prior to measurement. 

 

Raman spectral tissue measurement  

All three sites (Biophotonics Research Unit, Gloucestershire 

Hospitals NHS Foundation Trust, Gloucester, UK; University of 

Exeter, Exeter, UK; and University College London, London, UK) 

used a Renishaw RA800 series benchtop Raman system 

configured for pathology use; 785nm laser excitation with a 

X50 objective, and motorised XYZ stage.   The system is 

equipped with transmitted and reflected white light imaging 

for sample location. StreamLine™ Raman imaging, a fast 

mapping method, was used for data collection. The spectral 

resolution was 2.5 cm
-1

 with a range of 150-2100 cm
-1

.   The 

Raman spatial resolution is ~1 um.   The system comes with 

fully-automated alignment and calibration routines to ensure 

optimal data reproducibility and transferability. An acquisition 

time of 60s/line was used to collect a 50 × 50 pixel Raman 

image of two selected regions of interest from the tissue 

section (determined by reviewing the H&E slide). 

The spectrometers were regularly calibrated and checked 

using an additional set of external standards including silicon, 

green glass and polystyrene, to automatically calibrate the 

wavenumber axis and to ensure optimal signal.  

 

Data Processing and Analysis 

Streamline™ maps were loaded into Matlab R2014b (The 

Mathworks Inc., Natick, Massachusetts, USA) for data pre-

processing. The spectral range was cropped to the fingerprint 

region (400–1800 cm
-1

). 

 

Three spectral correction transfer methods were applied and 

tested to determine their influences on model classification 

performance: instrument response correction, wavenumber 

offset correction and EMSC fluorescence baseline correction.  

 

Instrument response correction 

Instrument response correction was achieved by comparing 

the ratio of the daily measured and calibrated standard 

spectra from each of the instrument system measured from a 

piece of standardized green glass (three pieces from the same 

source were used, one on each of the three systems) to 

provide an instrument response profile that was then used to 

correct spectra obtained from the tissue specimens. 

 

Wavenumber off-set correction 

Spectra were wavenumber off-set corrected using the 

phenylalanine peak of the average spectrum of each map. 

Peak fitting a pseudo-Voigt profile was used to correct the 

phenylalanine position to 1003cm
-1

.  

 

Extended Multiplicative Scatter correction (EMSC) 

Fluorescence Baseline Correction 

Using Extended Multiplicative Scatter Correction (EMSC), a 

least squares modelling procedure, in a manner already 

described in detail in previous publications
28,29

 including an 

investigation for electronic removal of paraffin peaks from 

infrared spectra
30

. EMSC was used to account for scaling and 

artefacts using a polynomial baseline (3
rd

 order), non-tissue 

measured instrument spectrum for each of the instrument 

systems (measuring without CaF2 substrate or tissue sample 

present) and a representative mean tissue spectrum for each 

instrument spectral dataset. In brief, EMSC is adapted in order 

to neutralize any background (e.g. fluorescence) using a least 

squares modelling procedure. This involves an interference 

matrix introduced into the EMSC algorithm composed of the 

non-tissue instrument spectrum and the mean tissue spectrum 

for each instrument site. This function removes baseline 

fluorescence arising from any tissue fluorophores and 

instrument optics and normalises the dataset to reduce the 

effect of total signal variation (e.g. due to variable focussing 

and thickness of the sample). 

 

Cosmic ray and fluorescence saturation removal 

It is crucial to either remove or replace sharp spikes due to 

cosmic rays and saturated spectra due to fluorescence in order 

to prevent them unduly influencing the data analysis. These 
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artefacts were filtered from the spectral images by applying a 

5 × 5 moving window two-dimensional median filter to each 

wavenumber. For the 5 × 5 window used, the centre pixel was 

replaced with the median value of all pixels in the window for 

the chosen wavenumber.  

 

Principal Component Analysis (PCA)  

Prior to creating and validating a classification model, PCA was 

performed on the complete tissue dataset prior to and after 

implementing the correction algorithms. This determined 

whether the correction methods were able to minimize 

instrument system differences created as a result of different 

instrument environment and instrument response function as 

well as potential sample quality differences.   

PCA reduces the spectral data to a smaller number of 

components that describe the major variations in the dataset, 

in this case instrument, sample quality and pathology 

variations. 

  

Partial Least Squares followed by Discriminant Analysis (PLS-

DA) 

A total of 219,367 individual Raman spectra were collected, 

across all three systems (intraepithelial metaplasia = 114,456; 

adenocarcinoma = 104,911).  

The data matrix was mean centred prior to the application of 

Partial Least Squares Discriminant Analysis (PLS-DA). PLSDA 

reduces the spectral data to a smaller number of components 

that describe the major variations in the dataset, while 

simultaneously correlating the captured variance with the 

consultant pathology classification obtained for each tissue 

sample
31

.  

The number of components used for discriminant analysis was 

determined by increasing the number included until the ability 

of the algorithm to accurately predict the pathology group of 

spectra in the second leave-some-out test dataset no longer 

increased.
31

 

 

Model validation using leave-one-map-out (LOMOCV) cross-

validation 

To fully assess the suitability of Raman spectroscopy for 

distinguishing between the two pathology groups 

(intraepithelial metaplasia and adenocarcinoma) and to test 

the system transferability performance across the three 

instrument sites, the dataset was split 

into training and validation sets by leaving one map out of the 

tissue spectra  

The training dataset was used to generate a statistical model 

and the validation dataset was projected onto the model to 

assess its performance. 

Results and discussion 

In order to assess the ability of the wavenumber offset 

correction (WOC) algorithm on the tissue spectral data and 

whether it will adequately correct for any potential 

wavenumber shift at any of the instrument sites, the polymer 

spectra recorded every day, prior to tissue measurements, was 

analysed prior and post WOC. Figure 1 shows the mean 

spectra of the polymer data calculated from a 5s time-acquired 

50 x 50 pixel map. In figure 1a, it is clear that there is a slight 

shift in the ~1033cm
-1

 peak (and therefore rest of the 

spectrum) between each of the sites. Three polymer peaks 

were initially selected across the fingerprint range and a 2
nd

 

order polynomial correction, including an offset, was applied 

to correct for wavenumber shifts between sites. However, on 

inspection of the polynomial coefficients, it was determined 

that the values were effectively zero for all terms apart from 

the offset. This indicated that it was only necessary to apply an 

offset correction to the tissue data set. For the actual tissue 

dataset, this offset was corrected using the phenylalanine 

1003cm
-1

 tissue peak. Without correction of these slight shifts 

in the tissue dataset, it could negatively affect the ability of our 

algorithm to accurately differentiate between pathology 

groups because the tissue peaks accounting for pathology 

state differences will be masked by these spectral shifts. By 

applying the pseudo-Voigt profile peak-fitting algorithm to the 

data, figure 1b demonstrates that it is possible to correct for 

these spectral shifts and align the spectral data.  

 

Figure 1 – Plot of mean spectra of polymer standard (a) before 

and (b) after corrections for offset wavenumber correction. 

Right panels represent zoom enhanced area of the spectra for 

the 1033cm
-1

 peak 

 

Using WOC in addition to response correction and EMSC on 

the complete tissue data set from each of the instrument sites, 

figure 2 demonstrates the effectiveness of these combined 

correction methods to reduce the variation in the standard 

deviation at all of the sites. Site 1 still seems to show increased 

variation in comparison to the other sites. Although similar 

tissue areas are selected to be measured from the H&E by the 

site 1 user, it is possible that each user at the other two 

instrument sites could be measuring a slightly different area 

from site 1 and therefore could account for the difference in 

the calculated standard deviation.  

 

Figure 2 – Plot of mean spectra of pathologies (by instrument 

site) with 0.5STD before and after offset wavenumber, 

fluorescence baseline correction and normalisation applied 

 

However the combined correction methods (as depicted in the 

flowchart in figure 3) are helping to correct for any sample 

thickness differences as well as variations in baseline, caused 

by fluorophores in tissue and any instrument optical 

fluorescence. In addition the instrument response function is 

corrected by comparing the ratio of the daily green glass 

standard measurement and the calibrated standard spectra to 

decipher the instrument response profile, which is then 

applied to the same day collected map tissue spectra.    

 

Figure 3 – Steps applied of correction and processing of tissue 

data 
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In order to illustrate the impact of the correction methods to 

minimise the instrument site variation within the entire 

dataset, PCA was applied to the mean-centred tissue dataset 

and the first two PCA components are plotted in figure 4. PC1 

and PC2 account for the greatest variance in the tissue data 

independent of any pathology supervision or prior knowledge. 

It is clear in figure 4a, that there is potentially an instrument 

and sample quality variation between and within the 

instrument sites. The individual sites are separating and site 3 

is seems to have 3 clusters of data which could be due to 

either pathology or sample quality differences.  

After applying the correction algorithms in figure 4b which will 

reduce the variation due to sample thickness and quality, 

fluorescence baselines as well as spectral offset and 

instrument transfer function, it is clear that between and 

within the individual instrument sites, that these differences 

are reduced and the data seems to be more tightly clustered. 

However there still appears to be some instrument site 

variation even after the correction has been applied. Due to 

the small sample size (10 adenocarcinoma and 10 

intraepithelial metaplasia tissue samples) as well as small 

region of area actually mapped on each tissue section (two 

50x50 mini-maps at ~1.1µm spatial resolution), we do not 

expect there to be a great variance within the pathology states 

in the existing limited tissue dataset.  Therefore, in this current 

tissue dataset, it is assumed that any instrument and sample 

quality variation would become more prominent. We believe 

that these remaining site variations could be due to two 

different factors: 1) instrument and 2) sampling area.  

Correction for instrument differences (i.e. wavenumber offset 

correction, instrument response and background correction) 

have been applied, therefore the remaining differences seen in 

the figure 4b between the sites could be either due 

deficiencies in the correction methods or remaining 

instrument differences which we have not addressed. For 

example, the signal and noise levels were higher in site 1 (due 

to higher laser power at objective) which would have 

increased both the Raman peak signals from tissue as well the 

instrument noise, enough to separate some of site 1 data from 

site 2 & 3 datasets, and demonstrated in the PC plot. 

Additionally, point spread function (PSF) could also play a part 

in instrument differences as it is already a challenge to 

maintain a constant PSF imaging performance over the full 

detector of one detector, never mind three different detectors 

on the three different systems.  

The second source of difference is possibly due to sampling 

differences between the sites. After further analysis of the PC 

plot, it was discovered that a majority of the data points 

having the most variation were in the IM pathology. After 

checking with the areas selected from each of the tissue 

sections from all the sites, it was concluded that there was a 

small difference in how the IM tissue sampling areas were 

selected between sites 1 and sites 2 & 3. The Barrett's 

epithelium in IM, compared with adenocarcinoma, contains a 

number of tissue features: goblet cells and intervening non-

goblet columnar cells in crypts with irregular, budding and 

distortion. IM areas selected by sites 2 & 3 concentrated 

mostly on dense areas of goblet cells showing dysplasia while 

site 1 selected areas included more tissue feature coverage: 

the goblet cells, non-goblet columnar cells in the crypts as well 

as some of the luminal surface. We believe it is the inclusion of 

a broader region of tissue features at site 1 measurements 

compared to site 2 & 3 that is responsible for the increase in 

data variation. For future measurements, there will be more 

agreement of the sampling area and features being measured. 

These considerations will hopefully help reduce some of the 

variation between the measurements sites.  

 

Figure 4 - Plot of PCA scores of PC1 vs PC2 of mean-centred tri-

centre data to demonstrate the instrument site dependence of 

data and need for correction algorithms. (a) before (b) after 

correction 

 

Table 1 documents the training performance of the site 1 

tissue dataset after applying PLS-DA and the impact of 

applying the correction algorithms. The tissue data from site 1 

was mean centred and then PLS was applied to reduce the 

spectral data to smaller number of components the major 

variation in the dataset relevant to the pathology states. 

Although the correction method improved the resulting 

specificity (99.5% vs 95.9%) in discriminating adenocarcinoma 

from intraepithelial metaplasia, the sensitivity reduced from 

99.5% to 94.7% following correction, which indicates little 

impact on the training performance for a single site. However 

this is not greatly surprising as the dataset is from one 

instrument site and therefore the instrument transfer function 

corrections we applied will have minimal impact compared to 

multi-site analysis.   

 

Table 1 - Table for training performance of PLS-DA on site 1 

before and after correction applied to differentiate 

intraepithelial metaplasia (IM) from adenocarcinoma (AC) 

   

In order to assess some of the spectral differences between 

the two pathology groups of interest (adenocarcinoma and 

intraepithelial metaplasia), the corrected tissue spectra from 

all three instrument sites were combined and the mean 

spectrum for each of the two pathology groups was calculated 

(figure 5). By analysing the spectral differences in these two 

spectra, adenocarcinoma has higher intensities in nucleic acids 

(cytosine and uracil at 783cm
-1

 and 840cm
-1

 O–P–O stretch) 

but reduced protein content (amino acid peaks at 754, 1002, 

1121, 1603-1622cm
-1

, and amide III at 1246cm
-1

). Shetty et al
20

 

documented similar changes and attributed this to cells 

undergoing dysplastic or malignant change in carcinogenesis in 

oesophageal tissue. This observation is also in agreement with 

Stone et al
10

 who observed an increase in nucleic acid content 

in increasing carcinogenesis in laryngeal cancer tissue samples 

using similar peak positions for reference as did Haka et al
32

 in 

breast cancer tissue using Raman spectroscopy. 

 

Figure 5 - Mean spectra for intraepithelial metaplasia (IM) vs 

adenocarcinoma (AC) for all sites 
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Finally, to assess the classification performance of measured 

tissue spectra from all three instrument sites with and without 

correction applied, leave one sample out cross validation 

(LOOCV) and using data from one instrument site as the 

training site (site 1) analysis was performed. Table 2 describes 

the classification performance achieved. Again, although the 

correction methods improved the sensitivity of the 

classification model to differentiate between adenocarcinoma 

and intraepithelial metaplasia (from 86% to 96% when site 2 

was the test set and 73% to 79% when site 3 was the test set) 

the specificity was reduced (from 84% to 77% for site 2 as test 

set and 85% to 81% when site 3 was the test set). This suggests 

that although the correction method improves the 

classification sensitivity of the model (i.e. the ability of the 

model to correctly identify those samples that are 

adenocarcinoma correctly) there is a reduction in the 

specificity (ability of the model to correctly identify those 

samples that are not classified as adenocarcinomas).         

 

Table 2 - Table of classification performance for LOOCV with 

and without all corrections methods applied to differentiate 

intraepithelial metaplasia (IM) from adenocarcinoma (AC) 

 

Overall, the results together indicates that although the 

correction models do minimize the instrument and sample 

quality variations within and between the instrument sites, 

they do not currently improve the overall performance of the 

classification model when taking into account both the 

specificity and sensitivity performance. In order to further 

improve the classification performance of these models, 

potentially further standardisation procedures, calibrations, 

transfer corrections and modelling options need to be 

implemented in order to achieve similar results to the within-

site model. Additionally this classification model was 

constructed from only 20 tissue samples over two pathology 

groups with limited sampling area from each tissue sample.  A 

larger sample collection with more tissue samples of varying 

pathology states and greater tissue area coverage (per sample) 

is needed to properly assess the ability of Raman spectroscopy 

and system transferability algorithms over multiple instrument 

sites in oesophageal cancer diagnostics.  

 

A few studies in the last 20 years have investigated models 

transferability in the field of spectroscopy
33–36

. Myles et al
37

 

published a study on a multivariate classification model 

constructed from near-infrared spectra measured in order to 

discriminate between green Arabica and Robusta coffee 

beans. This model was transferred to a second instrument and 

investigated for classification performance. In order to allow 

this classification model to perform optimally on this second 

system, multiple correction algorithms were investigated 

including: modified version of slope/bias correction (SBC), 

orthogonal signal correction (OSC), and model updating (MU). 

These corrections resulted in misclassification errors in the 

second instrument site between 5-10%. Anibal et al
38

 assessed 

the performance of multivariate calibration transfer methods 

(such as Piecewise Direct Standardization (PDS)) used to 

discriminate between unadulterated samples and samples 

adulterated with four Sudan dyes. These were measured using 

UV-visible spectroscopy by different operators and varying the 

time in which the samples were analysed to represent the 

different experimental parameters/conditions that need 

correcting. By using PDS, the authors were able to determine 

transfer functions and apply them to improve the classification 

performance for the other measurement conditions to yield 

results comparable to the original measurement condition. 

Rodriguez and co-workers
39

 used standardisation models on 

Raman spectra of a set of pharmaceutical chemical samples. 

These chemicals were measured on five-commercially 

available 785nm Raman spectrometers (different laboratory-

based and portable platforms). As part of the standardisation 

process, the authors applied shift correction, intensity 

correction, and resolution matching and interpolation. The 

results indicated that the differences in Raman spectra from 

these chemical standards acquired on different spectrometers 

can be corrected, with satisfactory results, using their 

recommended standardisation protocol. They concluded that 

the most dramatic effects came from correcting for 

instrument-instrument variations in Raman shift axis and 

resolution matching.        

All these previous studies were performed on commercial 

chemicals and food products. Human tissue samples 

measurements are subject to greater variations in sample 

quality, thickness, density, composition and preparation, which 

require a greater level of standardisation and system transfer 

spectral correction algorithms.  

 

A larger study including both oesophageal and colon cancer 

tissue samples using the existing correction algorithms 

documented in this current study as well as a number of 

multivariate calibration transfer methods (such as Piecewise 

Direct Standardization (PDS) model updating (MU)) are 

currently being investigated within our collaboration.  

Of interest to future clinical implementation of Raman 

spectroscopy as is the need to generate a classification model 

from data collected on a number of different machines and to 

then use the system transferability correction algorithms to 

predict pathology samples collected from a completely 

different set of sites and Raman spectroscopy systems. This 

current study used instruments of similar parameter designs 

however the true test of the implementation of this 

technology into clinic and worldwide is being able to 

implement this model on independent machine(s) of different 

design specifications.  This would however require significant 

collaboration between an increased number of institutes, 

much larger sample sizes and more advanced multivariate 

analysis.  

 

Conclusions 
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Raman spectroscopy combined with advanced multivariate 

analysis is able to decipher a wealth of biochemical 

information from tissue samples of different pathology states. 

This information can be used to identify biomarkers associated 

with pre-malignant and carcinogenic change. This is important 

for non-invasive detection of disease as well as its classification 

and grading to help in patient diagnosis and prognosis.  

Streamline™ Raman mapping and imaging in conjunction with 

rapid spectral analysis has significant potential to be able to 

collect more tissue spectra data from tissue samples increasing 

the amount of information available to spectroscopists to 

develop validated classification models. 

In order to implement this technology in clinic and in general 

introduce Raman spectroscopy as a clinical tool for more 

global use in medical diagnostics, classification models 

constructed from spectra from one or more instruments must 

to be transferable between instruments and centres. Studies, 

such as this, help to investigate the potential of these models 

with their system transfer correction algorithms to transfer 

between different Raman spectroscopy systems at 

geographically different locations. There are a number of 

challenges ahead in order to develop the classification and 

optimal system transfer models, however collaborative studies 

such as this introduces the means and foundation for these 

further investigations.     
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(a)  

(b)  

Figure 1 – Plot of mean spectra of polymer standard (a) before and (b) after corrections for offset wavenumber 

correction. Right panels represent zoom enhanced area of the spectra for the 1033cm
-1

 peak 
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Figure 2 – Plot of mean spectra of pathologies (by instrument site) with ±0.5STD before and after offset 

wavenumber, instrument response correction, and fluorescence baseline correction and normalisation applied 
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Figure 3 – Steps applied of correction and processing of tissue data  
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(a)  

(b)  

Figure 4- Plot of PCA scores of PC1 vs PC2 of mean-centred tri-centre data to demonstrate the instrument site 

dependence of data and need for correction algorithms (a) before (b) after 
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Table 1 – Training performance of PLS-DA on site 1 before and after correction applied to differentiate 

intraepithelial metaplasia (IM) from adenocarcinoma (AC) 

 

Figure 5 - Mean spectra for intraepithelial metaplasia (IM) vs adenocarcinoma (AC) for all sites 

 

Table 2 - Classification performance for LOOCV with and without all corrections methods applied to differentiate 

intraepithelial metaplasia (IM) from adenocarcinoma (AC) 
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