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Infrared microscopy has become one of the key techniques in the biomedical research field for interrogating tissue.  In 

partnership with multivariate analysis and machine learning techniques, it has become widely accepted as a method which 

can distinguish between normal and cancerous tissue with both high sensitivity and high specificity
1, 2

. While spectral 

histopathology (SHP) is highly promising for improved clinical diagnosis, several practical barriers currently exist, which 

need to be addressed before successful implementation in the clinic.  Sample throughput and speed of acquisition are key 

barriers and have been driven by the high volume of samples awaiting histopathological examination.   FTIR chemical 

imaging utilising FPA technology is currently state–of-the-art for infrared chemical imaging, and recent advances in its 

technology have dramatically reduced acquisition times.  Despite this, infrared microscopy measurements on a tissue 

micro array (TMA), often encompassing several million spectra takes several hours to acquire.  The problem lies with the 

vast quantities of data which FTIR collects, each pixel in a chemical image is derived from a full infrared spectrum, itself 

composed of thousands of individual data points.  Furthermore data management is quickly becoming a barrier to clinical 

translation and poses the question of how to store these incessantly growing data sets.  Recently
3 

 doubts have been 

raised as to whether the full spectral range is actually required for accurate disease diagnosis using SHP.  These studies 

suggest that once spectral biomarkers have been pre-determined it may be possible to diagnose disease based on a 

limited number of discrete spectral features.    In this current study, we explore the possibility of utilising discrete 

frequency chemical imaging for acquiring high-throughput, high resolution chemical images.  Utilising a Quantum Cascade 

Laser imaging microscope with discrete frequency collection at key diagnostic wavelengths, we demonstrate that we can 

diagnose prostate cancer with high sensitivity and specificity.  Finally we extend the study to a large patient data set 

utilising tissue micro arrays and show that high sensitivity and specificity can be achieved using high-throughput, rapid 

data collection, thereby paving the way for practical implementation in the clinic. 

1 Introduction 

Histopathology is currently the gold standard for identifying 

the manifestation of disease in tissue. Principally relying on 

changes in morphology and architecture highlighted through 

selective staining
4, 5

, a highly trained pathologist can diagnose 

disease, suggest possible treatments and even provide 

information on likely prognosis.  Microscopic examination of 

stained tissue biopsy sections presents the pathologist with a 

high degree of information, and histopathology is currently 

unsurpassed in its diagnostic accuracy.  However, manual 

examination of individual tissue biopsies is extremely time 

consuming, with each section being individually interrogated 

for the presence of abnormalities. Limited throughput 

inevitably results in significant delays between the time a 

biopsy is obtained and a diagnosis being made with clear 

implications for patient care and treatment. Furthermore 

disease diagnosis based on tissue morphology and architecture 

is inherently subjective, often resulting in intra and inter 

observer error
6
.  This situation has been exacerbated by 

national cancer screening programs, with the number of tissue 

biopsies being harvested increasing annually.  Desire for 

increased throughput, improved accuracy and a reduction in  

repeat biopsies are clear drivers for the implementation of 

complementary methods for disease diagnosis.   

  Over the last decade spectral histopathology (SHP) has 

demonstrated great promise for the diagnosis of the diseased 

state. Fourier transform infrared chemical imaging has gained 

attention in the biomedical field as a rapidly emerging 
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technology for disease diagnosis
7, 8

. Biological material can be 

interrogated without the need for exogenous labels, little or 

no sample preparation, and in a non-destructive manner.  The 

technique exploits the high chemical sensitivity of infrared 

spectroscopy, in combination with microscopy, to provide 

spatially resolved measurements that are rich in biochemical 

content.   Whereas conventional histology relies on the 

subjective interpretation of tissue architecture and cellular 

morphology, this approach relies on reproducible physical 

measurements of sample chemistry, and the potential to 

reduce misdiagnosis. 

  In partnership with machine learning methods, FTIR chemical 

imaging has demonstrated the ability to distinguish between 

normal and cancerous tissue with high sensitivity and 

specificity
9, 10

, and also to determine cancer grade
11

 and 

staging
12

.   However, clinical translation has been inhibited 

until recently by technological advancements failing to deliver 

what is required to make it competitive with current 

histological methods.  Developments in focal plane array (FPA) 

detector technology
13

 have drastically reduced acquisition 

times, but until recently
14

 could not compete with the high-

resolution images obtainable in Brightfield imaging.  Early signs 

of invasive cancer are often manifested in the basement 

membrane, the basal layer in prostate
15

 and myoepithlium in 

breast cancer
16, 17

.  Conclusive early diagnosis requires 

detection of subtle changes on the sub-cellular level across 

microscopic membranes only obtainable through high-quality 

high-resolution chemical images. 

  Recent technological advancements have resulted in 

commercially available infrared microscopes utilising 0.62 NA 

15X magnification optics with a 128x128 FPA enabling imaging 

of a 140 µm x 140 µm area to be imaged as a single 

measurement with 1.1 µm pixel size and a diffraction-limited 

spatial resolution of about 6 um at 1667 cm
-1

However the 

inherent trade-off between high-resolution and acquisition 

times inevitably makes high resolution imaging impractical due 

to excessive measurement times.   Obtaining high-resolution 

(1.1 µm) chemical images from a single 1 mm tissue micro 

array (TMA) core will typically take between 5-6 hours to 

acquire followed by a further 40-50 minutes to process the 

interferograms and stitch the tiles together
18

. The time taken 

to record single cores generally makes FTIR chemical imaging, 

even using 128x128 FPA unsuitable for high throughput 

imaging of tissue biopsies and full TMA’s.  The problem lies 

with the vast quantities of data an FTIR chemical imaging 

system acquires when using an FPA detector.  A single infrared 

tile consists of 16384 pixels (for a 128x128 FPA) and each pixel 

itself consists of an entire infrared spectrum. Imaging a full 

TMA core with 1 mm diameter at 1.1 µm pixel resolution is 

typically performed using 64 infrared tiles, resulting in a large 

spectral datacube requiring over 13GB to store. Since FTIR 

relies on the Felgett advantage and collects all wavelengths 

simultaneously, restricting the spectral range   does not reduce 

the acquisition time.   Speed of acquisition and data 

management issues are rapidly becoming a significant barrier 

to clinical translation. 

  Recently, doubts have been raised as to whether entire 

infrared spectra are necessary for disease diagnosis using SHP.  

Studies suggest that once spectral biomarkers have been 

indentified, it may be possible to use a selection of key 

wavelengths for diagnosing disease
3, 19, 20

.  In this paper we 

report on a novel study using discrete frequency imaging 

utilising a Spero Quantum Cascade Laser (QCL) based full-field 

imaging infrared microscope for disease diagnosis.  We 

investigate the practicalities of utilising high-resolution, high-

throughput chemical imaging using discrete frequencies and 

consider implications for improved disease diagnosis. 

 

2 Materials and methods 

 

2.1 Sample Preparation 

  Formalin-fixed, paraffin embedded prostate tissue samples were 

obtained following informed consent and ethical approval (Trent 

Multi-centre Research Ethics Committee 01/4/061).  A 12 µm thick 

section was taken from each paraffin block and fixed to a BaF2 slide 

(75mmx25mmx1mm) for infrared transmission measurements. BaF2 

was chosen since it has a better low wavenumber cut-off than CaF2 

(950 cm
-1

 compared with 1000 cm
-1

) and does not suffer from the 

electric field standing wave effect
21-24

 which can be a problem for 

low-e infrared reflecting slides.  Serial sections from each block 

were fixed to glass and underwent Haematoxlin and Eosin (H&E) 

staining for Brightfield imaging.  The samples mounted on BaF2 

were left in wax and did not undergo deparaffinization.  This 

reduces the risk of  further chemical alterations from clearing 

solvents, and reduces Mie scattering via refractive index matching
25, 

26
.  

 

2.2 Infrared Chemical Imaging 

  Infrared chemical images were acquired with a Spero infrared 

microscope (Daylight Solutions Inc., San Diego, CA, USA) utilising 

quantum cascade laser technology
27

.  Employing four separate high-

brightness QCL modules in a single multiplexed source enables 

continuous access to the fingerprint region between 900-1800 cm
-1

.  

The system is equipped with a high-pixel density (480x480) 

uncooled microbolometer FPA.  A 0.7 NA, 12.5X compound 

refractive objective was used in transmission mode, providing a 

large field of view of 650 µm x 650 µm with a corresponding pixel 

size of 1.35 µm yielding a diffraction-limited spatial resolution of 

about 5 μm at 1667 cm
-1

. 

 The tissue used in the study arise from 29 separate cancer patients 

consisting of 50 unique 1 mm diameter cores spread over two 

separate TMA’s.  Each core is assigned as either cancerous 

(containing malignant tissue), or normal associated (from a cancer 

patient but containing no malignant tissue). Wherever possible a 

normal core and a cancerous core were measured for each patient.  

However this was not always possible due to some cores being 

missing from the array.  The sample set consisted of an equal 

number of 25 normal associated and 25 cancerous cores.    

Background images were collected prior to each TMA core, taken 
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from a clean area of the sample that was free of tissue or paraffin.  

Chemical images of each TMA core were collected using the mosaic 

method, with each core measured individually as a 2x2 mosaic. A 

single core using 27 discrete wavelengths consisting of 921600 

pixels took approximately 5 minutes and 30 seconds to collect. Each 

sample tile is ratioed to its background in real-time and, upon 

completion of the collection, automatically exported as a datacube 

in MATLAB format ready for stitching post collection. 

 

 

2.3 Data Pre-processing 

  Data pre-processing was performed using MATLAB 2013a (The 

MathWorks Inc., Natick, MA, USA) and the ProSpect Toolbox 

(London Spectroscopy Ltd., London, UK).  Infrared tiles were 

stitched together using software written in house and saved as a 

960x960x27 hyperspectral datacube, and also as a chemical image 

based on the intensity of the amide I band.  Stitching together 4 

tiles to form a hyperspectral data cube using a dual core Intel i7-

2600 with 16MB RAM took on average just 6 seconds per core and 

required only 80MB of storage space. Spectra were quality tested to 

remove areas of the images where no tissue was present, or where 

there was a high degree of scattering.  Quality testing was based on 

the intensity of the amide I band, with those spectra having amide I 

absorbance between 0.1-2.0 being retained.  Each spectrum was 

baseline corrected using a linear rubber band correction at 1000 

cm
-1

 and 1734 cm
-1

.  Finally the spectra were normalised to the 

intensity of the amide I band to account for different thicknesses of 

the tissue sample.  

 

3 Results and Discussion 

3.1 Wavelength Selection for Discrete Frequency Imaging 

 

Successful exploitation of discrete frequency chemical imaging for 

high-throughput disease diagnosis requires the intelligent selection 

of  salient frequencies that provide the greatest discriminatory 

power between  diseased and healthy states.  Failure to choose the 

correct wavelengths could result in crucial spectral biomarkers 

being missed and directly impact diagnostic accuracy.  In addition, 

not all wavelengths are suitable biomarkers and often provide little 

or no useful biochemical information.  Acquiring too many 

wavelengths increases measurement times and therefore reduces 

throughput.  Numerous examples exist in the literature of well-

established biomarkers
28, 29

 determined using FTIR chemical 

imaging.  However, to date no studies have been performed on the 

transferability of biomarkers obtained using FTIR to discrete 

frequency IR spectroscopy.  We have addressed this by acquiring 

full band spectra and subsequently identifying key biomarkers at 

sparsely located frequencies. 

      Chemical images were acquired in the spectral range 1000 cm
-1 

-

1800 cm
-1

 from two patient tissue cores who had been diagnosed 

with prostate cancer.  The first patient core was histologically 

classified as Normal Associated Tissue (NAT) and contained normal 

tissue components only.  The second patient core was classified as 

cancerous and was described morphological features consistent  

with a Gleason grade of 4.  Since the cores available for the study 

had Gleason grades ranging between 3 and 5, choosing a core with 

a Gleason grade of 4 encompasses the middle of the cancer severity 

range. In principle, utilising a larger patient set for acquiring 

continuous infrared spectra would enable improved identification 

of the key wavelengths.  However, for the scope of this proof of 

concept study and due to the limited time available, we elected to 

choose a normal core and a cancerous core in the middle of the 

cancer severity range.  Chemical images for each core based on the 

intensity of the amide I band are shown in figure 1.   

 

Figure 1 : QCL chemical images of the amide I band intensity and 

H&E stained serial section (bottom) for normal associated tissue 

(left) and cancerous tissue (right) used to identify the key 

wavelengths for discrete frequency classification 

 

Employing similar methods as Fernandez
20

, a database was 

constructed consisting of 5000 spectra each for cancerous 

epithelium and normal associated epithelium. The spectra were 

quality tested, truncated between 1350 cm
-1

 - 1500 cm
-1

 (to remove 

spectral regions describing bands of paraffin), and normalised to 

the amide I band. Mean spectra of the normal associated and 

cancerous epithelium tissue are displayed in figure 2.  Upon first 

inspection the spectra appear relatively similar, although some 

subtle differences can be discerned between 1000 cm
-1

 -1300 cm
-1

. 

 Half of the spectra from each class were selected at random and 

fed into a Random Forest
30

 algorithm (software available from 

http://code.google.com/p/randomforest-matlab/).  Random 

Forests have the advantage that, unlike other supervised classifiers, 

they do not require feature selection prior to use.  A Random Forest 

will return a measure for variable importance and identify the most 

important wavelengths for classification. Alternative methods for 

wavelength selection are available such as partial least squares 

discriminant analysis (PLS-DA) and variable importance for 
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projection (VIP) as described by Lloyd
31

. The classifier was trained 

using 500 trees with the number of wavelengths selected at 

random to try and split each node (mtry) set to 2.  The remainder of 

the spectra in the database that had not been used for training 

were used to test the model. 

  Receiver operator curves present an effective way to visualise the 

performance of the classifier.  Each tree votes to classify a spectrum 

to a specific class, and the number of votes provide a probability 

estimate to each spectrum belonging to a particular class.  Varying 

the probability acceptance thresholds adjusts the trade-off 

between sensitivity and specificity and produces a receiver operator 

curve (ROC). The ROC’s obtained using the Random Forest classifier 

are displayed in figure 3.   

 
Figure 2 : Mean spectra for normal associated epithelium and cancerous 

epithelium from the database constructed from two prostate tissue cores 

following truncation to remove the spectral regions describing wax, and 

normalisation to the 1652 cm
-1

 band. 

 

Figure 3 : Receiver Operator Curves for normal and cancerous epithelium 

spectra using 2500 from each class for training and testing. AUC=0.9991 

 

 

The optimal situation would be for curves to be situated at the top 

left hand corner of the plot, which indicates both high sensitivity 

and high specificity.  Conversely, a poor classifier would be shown 

as a plot close to a diagonal line between the origin and top right 

corner.  Area under the curve (AUC) is a widely accepted measure 

of classifier performance.  AUC for the plot shown in Figure 3 is 

0.991 demonstrating high-performance of the classifier.  Setting a 

probability of acceptance threshold of 0.5 enables a confusion 

matrix to be calculated and the ability to determine the  proportion 

of each class that are correctly classified.  Table 1 shows that 

normal associated epithelium spectra are correctly classified with 

an accuracy of 97.25%, and cancerous epithelium with an accuracy 

97.19%.   

 

 

 Normal Cancer 

Normal 97.25 2.25 

Cancer 2.81 97.19 

 

Table 1: Confusion matrix showing classification accuracy for normal 

associated and cancerous epithelium using the Random Forest classifier with 

500 trees 

 

Wavelengths were then ranked in order of variable importance 

using a GINI importance plot to determine which were most 

important in distinguishing between normal and cancerous 

epithelium.  Fig 4 a and 4b show typical GINI plots used to select the 

25 most important features. The top 25 wavelengths from a single 

GINI plot were selected for data collection.  Subsequent  repetition 

of the analysis shows that the first 14 wavelength are consistently 

in the top 16 but the remaining 11 wavelengths selected can be 

ranked as far down as 58. This is not too surprising given that the 

difference in importance starts to drop off significantly after 20.  

 

The twenty five discriminating wavelengths that were originally 

used in order of variable importance are shown in Table 2.   The 

selected wavelengths broadly overlap absorption bands centred at 

1032 cm
-1

 ν(C-O) glycogen, 1080 cm
-1 
νs(PO2

-
), 1236 cm

-1
νas(PO2

-
), 

1540 cm
-1 

(amide II), 1656 cm
-1

 (amide I).   
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Figure 4 : (a) GINI importance plot as a function of wavelength and (b) 

ranked in order of variable importance    

 

 

Wavenumber/cm
-1

 

(1) 

1024  

(2) 

1020  

(3) 

1028  

(4) 

1016  

(5) 

1012  

(6) 

1072  

(7) 

1000  

(8) 

1004  

(9) 

1032  

(10) 

1636  

(11) 

1068  

(12) 

1088  

(13) 

1684  

(14) 

1092  

(15) 

1008  

(16) 

1640  

(17) 

1688  

(18) 

1692  

(19) 

1064  

(20) 

1648  

(21) 

1236  

(22) 

1696  

(23) 

1096  

(24) 

1524  

(25) 

1044  
       

 

Table 2 : 25 key wavenumbers / cm
-1

 ranked in order of variable importance 

as identified by the random forest classifier.  Figures in parentheses indicate 

the variable importance ranking with the lowest number being the highest 

ranking. 

 

3.2 Discrete frequency imaging and classification 

  Discrete frequency chemical images were acquired from each of 

the 50 prostate tissue biopsy cores.  Two additional wavelengths at 

1652 cm
-1

 and 1734 cm
-1

 to the twenty five key wavelengths (Table 

2) were also used, to enable the spectra to be quality tested based 

on the difference in absorption peak intensity at these two 

wavelengths as the peak height of the amide I band.  Figure 5 shows 

chemical images from a single prostate tissue core based on the 

intensity of the 1652 cm
-1

, 1524 cm
-1

, 1236 cm
-1

 bands and the H&E 

stained serial section.  The chemical images shown have been 

quality tested and spectra with amide I peak absorbance intensity 

between 0.1-2.0 retained.  The image illustrates that rapid chemical 

imaging using discrete frequencies enables different types of tissue 

to be highlighted depending on the chosen frequency.  Chemical 

images obtained at 1652 cm
-1

 and 1524 cm
-1

 enable differentiation 

between epithelium and stroma while the 1236 cm
-1

 chemical 

image highlights regions of stroma. 

 

 
Figure 5 : Discrete frequency chemical images of a prostate tissue single 

core obtained using (clockwise from top left) 1652 cm
-1

, 1524 cm
-1

, 1236 cm
-

1
 band intensity and H&E stained serial section. 

 

Chemical images from each of the 50 cores were compared to the 

corresponding H&E stained serial sections to identify regions of 

cancerous and normal associated epithelium.  The patients were 

then randomly divided into two separate libraries to form a training 

cohort (15 patients) and a testing cohort (14 patients).  The patients 

in each cohort were fairly evenly distributed across the two 

separate TMA slides.  The training cohort had a split of 8 patients on 

one slide and 7 on the other.  While the testing cohort was split by 

8 patients on one slide and 6 on the second slide.  Using the 
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methods previously described by Fernandez
20

, two spectral 

databases were constructed from these cohorts consisting of a 

training data set and an independent test set.  Dividing the patients 

(and the data) prior to building the classifier ensures that the test 

set is completely independent since no spectra used in training the 

model will be used for testing.  Equal numbers of spectra from each 

class (normal associated and cancerous epithelium) were extracted 

from the training database.  Spectra were quality tested, baseline 

corrected and normalised to the amide I band.  The mean 

cancerous epithelium and normal epithelium spectra based on 

207505 measurements each are shown in Figure 6.  Despite the 

limited number of data points in each spectrum, subtle spectral 

differences between the two classes are discernible, particularly 

between 1000 cm
-1

 - 1240 cm
-1

.   

  Half the spectra contained in the training database were randomly 

selected to train the model, with the remainder forming a 

validation test set.  Metrics fed into the classifier were based on the 

absorbance values for each of the 25 discrete frequencies, and also 

ratios of absorbances for each individual wavelength which yielded 

325 features in total.  The Random Forest classifier was then trained 

on the 207505 partitioned spectra using 200 trees which enabled 

the classifier to be constructed in approximately 90 minutes.  The 

remaining spectra in the training data base were used to validate 

the model.  The receiver operator curves obtained are displayed in 

figure 7.  AUC values for the classifier are close to 1 (0.9895) 

indicating that the classifier can easily differentiate between normal 

and cancerous epithelium spectra.  Despite utilising only 25 

wavelengths the correctness of classification is high with sensitivity 

and specificity of 93.39% and 94.72%  respectively, as shown by the 

confusion matrix in Table 3.   

   The large number of features used to train the Random Forest 

classifier, and the substantial size of the data set, are the main 

factors responsible for lengthy training times.  In an attempt to 

speed up training, the classifier was also trained using only the 

absorbance values at each of the 25 discrete frequencies.  Training 

using 207505 spectra per class using 200 trees enabled the Random 

Forest classifier to be constructed in just 8 minutes.  The ROC’s 

obtained using 25 features are shown in Figure 8.  The reduction in 

the features used in training has an impact on the performance of 

the classifier, the AUC decreasing from 0.9895 to 0.9625.  

Furthermore the sensitivity and specificity decreases to 89.14% and 

90.32% respectively, suggesting that despite the increased 

processing times, using 325 features constructed from the 25 

discrete frequencies is more effective.   

 

Figure 6: Discrete frequency mean spectra utilising 27 wavelengths for 

cancerous and normal associated epithelium. Dashed lines are present as a 

guide to the eye. 

 

Figure 7: Receiver operator curves (ROC) with 25 wavelengths (325 features) 

using validation data for normal associated and cancerous epithelium. Area 

under the curve values (AUC) are normal=0.9851, cancer=0.9851. 

 

 Normal Cancer 

Normal 93.39% 6.61% 

Cancer 5.28% 94.72% 

 

Table 3 : Confusion matrix showing correctness of classification using 25 

wavelengths for normal and cancerous epithelium 
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Figure 8 : Receiver operator curves (ROC) with 25 wavelengths (25 features) 

using validation data for normal associated and cancerous epithelium. Area 

under the curve values (AUC) are normal=0.9625, cancer=0.9625. 

 

The training data was then subjected to repeated random sub-

sampling validation using ten repeats.  In each case half the spectra 

in the database were randomly selected and used for training, while 

the remainder served as validation spectra.   Table 4 shows the 

mean and standard deviation for the calculated sensitivity and 

specificity of the ten classfiers trained. The mean sensitivity and 

specificity from the repeated subsampling is high and provides a 

very small standard deviation indicating the classifier accuracy is 

not dependent on the spectra used to train and test the model.  

 Sensitivity Specificity 

Mean 94.60% 93.39% 

Standard 

deviation 
0.0012 0.0010 

 

Table 4: Mean and standard deviation of sensitivity, specificity, obtained 

using repeated random sub-sampling validation of ten trained classifiers. 

 

3.3 Discrete frequency classification with restricted numbers of 

wavelengths 

While it is evident that 25 discrete wavelengths allows good 

classification accuracy on the validation data set, the effect of the 

number of discrete wavelengths measured on classification 

accuracy is a key question.  Clinical translation of discrete frequency 

infrared imaging requires high-throughput, high-resolution imaging 

utilising as few discrete wavelengths as possible.  Naturally, there 

will be a trade-off between the number of wavelengths aquired and 

the classification accuracy.  We have addressed this by reducing the 

number of wavelengths used to train the model. We elected to 

reduce the number of wavelengths used in classification rather than 

re-measuring all the cores with the respective number of 

wavelengths due to time considerations and the desire for better 

comparability.  In each case the sub-set of wavelengths used were 

those with the highest variable importance values (table 2), to 

ensure optimal classifier performance.  Six separate experiments 

were performed on the training database using varying numbers of 

discrete wavelengths.  Table 5 details the discrete wavelengths 

used for training and validating the Random Forest classfication 

model. 

Number of 

discrete 

wavelengths 

Discrete wavelengths /  cm
-1

 used for Random Forest 

classification 

20 
1024 

1636 

1064 

1020 

1068 

1648 

1028 

1088 

 

1016 

1684 

 

1012 

1092 

 

1072 

1008 

 

1000 

1640 

 

1004 

1688 

 

1032 

1692 

 

18 
1024 

1636 

1020 

1068 

1028 

1088 

1016 

1684 

1012 

1092 

1072 

1008 

1000 

1640 

1004 

1688 

1032 

1692 

16 
1024 

1636 

1020 

1068 

1028 

1088 

1016 

1684 

1012 

1092 

1072 

1008 

1000 

1640 

1004 

 

1032 

 

14 
1024 

1636 

1020 

1068 

1028 

1088 

1016 

1684 

1012 

1092 

1072 

 

1000 

 

1004 

 

1032 

 

12 
1024 

1636 

1020 

1068 

1028 

1088 

1016 

 

1012 

 

1072 

 

1000 

 

1004 

 

1032 

 

10 
1024 

1636 
1020 1028 1016 1012 1072 1000 1004 1032 

 

Table 5 : Discrete wavelengths used for training the classifier with 20, 18, 16, 

14, 12, and 10 different wavelengths 

The performance of each classifier is shown in the ROC’s in Figures 

9(a-f). Decreasing the number of wavelengths used in classification 

reduces the performance of the classifier as observed by the AUC 

values of 0.9780 and 0.9739 for 20 and 18 wavelengths 

respectively.  Reducing the number of discrete frequencies is 

expected to reduce classifier performance since less information is 

being used during training.  Surprisingly, training the random forest 

with just 18 wavelengths still enables excellent discrimination 

between normal associated and cancerous epithelium tissue.  

Reducing the numbers of wavelengths further to 16 discrete 

frequencies only has a marginal effect on classifier performance 

(AUC=0.9772). However when using 12 or 10 discrete frequencies 

the classifier performance begins to deteriorate with AUC values of 

0.9557 and 0.9421 respectively.  

 AUC values provide a good comparison on classification accuracy, 

however a more meaningful measure is the proportion of correctly 

classified spectra.  Table 6 shows the proportion of correctly 

classified cancerous (sensitivity) and normal associated epithelium 

(specificity) as a function of the discrete frequencies used in 

classification.  The values for sensitivity and specificity are the mean 

values based on repeated random sub-sampling using ten repeats. 

 

Number of 

Discrete 

Frequencies 

25 20 18 16 14 12 10 

Sensitivity (%) 94.60 93.02 92.27 91.88 91.13 89.11 87.15 

Specificity (%) 93.39 91.71 91.16 91.03 90.05 88.53 86.80 

 

Table 6: Table showing sensitivity and specificity for the validation data 

using random subet sampling using ten repeats 
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The sensitivity and specificity are broadly in line with the AUC 

values, and using all 25 wavelengths enables high classification 

accuracy.  Reducing the number of discrete frequencies to 16 still 

results in good classification accuracy with sensitivity and specifcity 

of 91.88 % and 91.03 % respectively.  Performance of the classifier 

becomes poorer when using 12 or less discrete frequencies.  

However using only 10 wavelenghs still enables surprisingly good 

classifcation accuracy with sensitivity and specificity of 87.15 % and 

86.80 %.  Inspection of Figure 9(f) reveals that, when using 10 

discrete frequencies, the majority of the wavelengths are in the 

range 1000 cm
-1

-1072 cm
-1

, indicating important spectral 

biomarkers are located here.  

  The number of discrete frequencies chosen when acquiring 

chemical images is a key parameter.  However the time penalty 

associated with collecting increasing numbers of discrete 

frequencies is also an important consideration.  Furthermore, as the 

number of discrete frequencies increase, so does the time required 

to train the Random Forest classifer.  The performance of the 

Random Forest classifier as a function of AUC, sensitivity, specificity, 

acquisition time per core, and training time are shown in Table 7. 

No. of 

frequencies 
AUC Sensitivity Specificity 

Collection 

time per 

core/min 

Training 

time 

/min 

25 0.9851 94.60 93.39 5.5 90 

20 0.9780 93.02 91.71 4.47 60 

18 0.9739 92.27 91.16 4.33 48 

16 0.9772 91.88 91.03 4.13 37 

14 0.9669 91.13 90.05 4 32 

12 0.9557 89.11 88.53 3.6 24 

10 0.9421 87.15 86.80 3.27 17 

  

Table 7 : Table showing AUC, sensitivity, specificity, collection time per core, 

and classifier training time as a function of the number of discrete 

frequencies used with Random Forest classifier 

 

The resulting sensitivity and selectivity are excellent when using the 

full 25 discrete frequencies, and a single core can be measured in 

5.5 minutes which is a reasonable timescale.  However constructing 

the classifier takes the longest time at ca. 90 minutes.  Utilising only 

10 discrete frequencies enables fast data acquisition (3.27 minutes), 

and the Random Forest classifier can be constructed in just 17 

minutes.  However the improved throughput and analysis time is 

offset by the reduced sensitivity and specificity of 87.15% and 

86.80% respectively. To put this into perspective it is crucial to 

understand what timescales would be clinically acceptable.  Once 

the classifier has been trained and robustly validated there would 

not be a requirement to retrain the classifier on a regular basis. 

Therefore, provided that the classifier can be trained within 

reasonable timescales then the key parameter is the collection time 

per core.  Utilising between 14-16 discrete frequencies enables 

each core to be measured in approximately 4 minutes while 

maintaining sensitivity and specificity >90%.  Although there is a 

slight reduction in sensitivity and specificity compared to utilising 

the full 25 discrete frequencies, there is a considerable time saving 

of approximately 90 seconds per core.  We would suggest that 

acquiring high-resolution images of a single TMA acquired in just 

four minutes, while maintaining high sensitivity and specificity 

would be clinically acceptable.     

As QCL-based, full-field imaging technology continues to advance 

over the coming years, this tradeoff will become less apparent to 

the clinician. The underlying technology employed in this work is 

scalable and has the potential to reach data collection times 1-2 

orders of magntiude shorter, limited by the thermal time constant 

of the bolometer (typically 0.33/fps) and the time required to step 

the stage a single FOV when building mosaic images. Even today, if 

a slightly lower pixel resolution of 4.25 µm is deemed acceptable for 

the application, a 9.5X increase in throughput could be achieved 

simply by using the 0.3NA 4X objective with a 2mm x 2mm FOV. In 

this configuration, tissue cores with diameters up to 2 mm could be 

imaged in a quarter of the times reported in this work. Currrent and 

expected future trends in data acquisiton times as a function of the 

number of discrete wavelengths employed in the diagnostic for two 

different area-pixel resolution configurations are shown in Figure 

10. 
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Figure 9 Receiver operator curves using validation data for normal 

associated and cancerous epithelium with (a) 20, (b) 18, (c) 16, (d) 14, (e) 12 

and f (10) discrete frequencies. AUC values are 0.9780, 0.9739, 0.9720, 

0.9669, 0.9557 and 0.9421 respectively. 
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 Estimating future throughput trends assumed two camera frames (at 30 

fps) are used per discrete wavelength to ensure adequate settling and 125 

msec stage mosaic step times. Based on these results, it becomes 

immediately apparent that whole-slide diagnostic imaging could eventually 

be completed in a matter of minutes using the protocols developed in this 

work. 

Figure 10. Data acquistion times vs. the number of discrete wavelengths 

included in the diagnostic for the current and future QCL full-field imaging 

technology used in this work. Two different imaging configurations were 

used in this analysis: (1) 1.3 mm x 1.3 mm (2x2 mosaic) at 1.35 µm pixel size 

(this work), and 2.0 mm x 2.0 mm (single FOV) at 4.25 µm pixel size.  

 

3.4 Discrete frequency classification : Independent test set 

  Testing classifier performance using the same patients for training 

and testing is likely to produce favourable results since inter-patient 

variability does not become a factor.  Implementation of SHP in the 

clinic requires that good classification of disease state can be 

achieved as new patients are introduced.  Confidence in SHP using 

discrete frequency imaging can only be achieved if it performs well 

on patients in an independent test set.  Each random forest 

classifier was used to classify epithelium spectra from the 14 

patients in the independent test set.  The ROC’s obtained in each 

case are shown in figures 11(a-f) and 12. Figure 11(a) shows the 

ROC obtained when using 25 discrete frequencies for training and 

classification on the independent test set.  The AUC values which 

were obtained for  the validation set were observed to be all close 

to 1, indicating good discrimination between classes when training 

and testing occurs on the same patients.  However testing the 

classifier on the independent test set reduces the AUC values from 

0.9851 for the validation data to 0.8395 for the independent test 

set.  Reduced classification accuracy is expected to occur for the 

independent test, since the data used to test the model are from 

new patients and therefore completely independent.  Reducing the 

number of discrete frequencies decreases AUC values for the 

independent test set, in a similar manner observed for the training 

data set.  The AUC value of 0.8396 obtained using 20 discrete 

frequencies instead of 25 (0.8395) are very similar, indicating 

classification performance has not deteriorated significantly.  

Although there is a slight reduction in AUC (0.8163) when using 16 

wavelengths each ROC plot appears broadly similar.  Classification 

performance only appears to deteriorate significantly when utilising 

14 or less discrete frequencies. Using only 10 discrete frequencies 

(figure 12) the AUC value decreases to 0.7808, which is in stark 

contrast to the validation set which had an AUC value of 0.9421. 

  The effect of reducing the number of discrete frequencies on 

sensitivity and specificity is shown in Table 8.  Utilising the full 25 

discrete frequencies enables reasonable classification accuracy 

rates of 72.14% and 80.23% for sensitivity and specificity 

respectively.  Reducing the number of discrete frequencies to 16 

only has a limited impact on classification with sensitivity and 

specficity values of 70.46% and 78.10%.  In contrast to the 

validation set the sensitivity does not appear to deteriorate 

significantly when reducing the number of discrete frequencies.  

Specificity, however, does appear to be strongly correlated to the 

number of discrete frequencies and performance drops off sharply 

when less than 14 wavelengths are used.  When using only 10 

wavelengths the classification of the independent test set is poorer 

with a mean sensitivity and specificity of 68.73% and 73.51% 

respectively. 

  The poorer performance of the classifiers on the independent test 

set is surprising considering the excellent classifier performance 

using the training data.  Since all patients in this study have been 

diagnosed with prostate cancer, there is likely to be considerable 

biochemical variability between patients.  To perform well on new 

patients the model needs to be trained on a dataset which 

encompassess this variation. Given the limited patients numbers 

available in this study for training and testing, it is likely that the 

model did not have sufficient variability built in to enable good 

discrimination between normal and cancerous tissue for new 

patients. Similar findings have been published by Pounder
32

 when 

using spectral histology of breast tissue using FTIR chemical 

imaging.  In their study good classification performance was 

osberved on the training data for classifying epithelium, 

lymphocytes and myofibroblast rich stroma with AUC values of 

0.94.  Upon classifying an independent test set there was a 

deterioration in classifier performance with AUC values in the range 

of 0.8-0.88. The authors described this effect as being due to the 

limited number of cores (50) and patients used in the study.  These 

findings are broadly in line with the classifier performance which we 

have detailed in this paper. We have also considered whether 

instrumental or sample preparation parameters could be a 

contributory factor to the poorer classification accuracy of the 

independent test set.  Variability in sample and substrate thickness, 

and whether the samples are left in wax or dewaxed are all 

parameters which could potentially affect classifier performance.  

However a much larger study investigating the effect of each 

parameter will be required to determine the optimum parameters 

for classification performance.  Another possibility for the poorer 

classification on the independent test set is the selection of the 

salient spectral frequencies.  In this proof of concept study only two 

patients were used for selecting the spectral frequencies used to 

train and test the model.  Given the biochemical variability within a 
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patient population, it is unlikely that two patients are a sufficiently 

large dataset for identifying the key biomarkers. In the future it is 

recommended that a larger patient population is used for 

frequency collection and this is planned to be conducted.   Although 

our preliminary results are promising, larger studies using a more 

diverse patient database would be required to fully evaluate the full 

potential of discrete frequency imaging for disease diagnosis.      
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Figure 11 Receiver operator curves using the independent test set for 

normal associated and cancerous epithelium with (a) 25, (b) 20, (c) 18, (d) 

16, (e) 14, and(e) 12 discrete frequencies. AUC values are 0.8395, 0.8396, 

0.8261, 0.8163, 0.8044 and 0.7876 respectively. 
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Figure 12 : Receiver operator curves (ROC) with 10 wavelengths using 

independent test set for normal associated and cancerous epithelium. Area 

under the curve (AUC) values are 0.7808. 

 

 

Discrete 

Frequencies 

25 20 18 16 14 12 10 

Sensitivity (%) 72.14 71.29 71.13 70.46 69.48 68.25 68.73 

Specificity (%) 80.23 80.83 78.86 78.10 76.69 75.07 73.51 

 

Table 8 : Table showing sensitivity and specificity for the independent test 

set using random subet sampling for ten  trained clasifiers 

 

Conclusions 

Discrete frequency infrared chemical imaging has the potential to 

provide high-resolution, high-throughput chemical images on a 

timescale which could revolutionise spectral histopathology.  In this 

study, we have demonstrated that high quality chemical images of 

tissue biopsy cores comprised of almost a million pixels  can be 

obtained in a matter of minutes. Comparable chemical images 

obtained on a state of the art FTIR system using an FPA detector 

would have taken several hours.  We have clearly demonstrated 

that on a validation set that, excellent classifier performance can be 

achieved by careful selection of discrete frequencies.  We have 

further shown that significant time advantages can be achieved by 

using just 16 discrete frequencies while maintaining good 

classification accuracy.  Testing the classifier on an independent test 

set produced mixed results, with poorer accuracy than on the 

validation set.  However, reasonable classification accuracy could 

still be achieved when using 16 or more discrete frequencies. 

Classifier performance may have been compromised by only using 

two patients for selecting the optimal wavelengths. Utilising a larger 

patient population for determining the key biomarkers will be 

important in any future studies.  Limitations on the number of 

patient tissue core biopsy samples available are the most likely 

cause of the reduced accuracy when testing on new patients.  

Prospects for this new and exciting technology are bright. However, 

further work needs to be performed on significantly larger patient 

numbers to fully understand its potential for successful 

implementation into the clinic.  
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