
This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Faraday
 Discussions

www.rsc.org/faraday_d

Faraday
 Discussions
Royal Society of 
Chemistry

This manuscript will be presented and discussed at a forthcoming Faraday Discussion meeting. 
All delegates can contribute to the discussion which will be included in the final volume.

Register now to attend! Full details of all upcoming meetings: http://rsc.li/fd-upcoming-meetings

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Mie scatter corrections in single cell infrared microspectroscopy 1 

 2 

Tatiana Konevskikh1, Rozalia Lukacs1, Reinhold Blümel2, Arkadi Ponossov1, Achim Kohler1 
3 

 
4 

1Department of Mathematical Sciences and Technology (IMT), Norwegian University of Life Sciences, 1430 5 

Ås, Norway 6 

2Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA 
7 

 8 

 
9 

                                                 
10 

 
11 

 12 

Key Words: Mie scattering, infrared microscopy, Extended Multiplicative Signal Correction (EMSC)  13 

*Corresponding author: Tatiana Konevskikh  14 

Tel: +47 67 23 15 84 15 

Fax:  +47 64 96 54 01  16 

E-mail: tatiana.konevskikh@nmbu.no 17 

Abbreviations: Extend multiplicative signal correction (EMSC), Multiplicative signal correction 18 

(MSC), Fast Fourier transform (FFT), Principal Component Analysis (PCA)  19 

20 

Page 1 of 28 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



Abstract 21 

Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of infrared 22 

microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction 23 

algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we 24 

critically reviewed existing algorithms for corrections of Mie scattering and suggest improvements. We 25 

developed an iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the 26 

retrieval of pure absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm 27 

uses the Van de Hulst approximation formula for the extinction efficiency employing a complex refractive 28 

index. The iterative algorithm involves the establishment of an EMSC meta-model. While existing iterative 29 

algorithms for the correction of resonant Mie scattering employ three independent parameters for 30 

establishing a meta-model, we could decrease the number of parameters from three to two independent 31 

parameters, which reduced the calculation time for the Mie scattering curves for iterative EMSC meta-model 32 

by a factor 10. Moreover, by employing the Hilbert transform for evaluating the Kramers-Kronig relations 33 

based on an FFT algorithm in Matlab, we further improved the speed of the algorithm by a factor 100. For 34 

testing the algorithm we simulate distorted apparent absorbance spectra by utilizing the exact theory for the 35 

scattering of infrared light at absorbing spheres taking into account the high numerical aperture of infrared 36 

microscopes employed for the analysis of single cells and tissues. In addition, the algorithm was applied to 37 

measured absorbance spectra of single lung cancer cells. 38 

..    39 
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Introduction 40 

Since the invention of infrared microscopes in the 90s, infrared microscopy has become an attractive tool for 41 

the analysis of single cells and connective tissues in biological and medical sciences1. Via infrared 42 

microscopy, tissues and cells can be analysed chemically without destroying the chemical structure of the 43 

material. Unfortunately, strong scatter effects that hamper the chemical interpretation of spectra occur, which 44 

have been interpreted as Mie-type scattering2. According to Mie theory3, 4, single cells are highly efficient 45 

scatterers in the infrared, since the wavelength of the infrared radiation is the same order as the size of the 46 

cells.  47 

The correction of Mie type scattering in infrared spectra of single cells is difficult, since scattering and 48 

absorption are highly entangled. The reason for this is that due to the strong scattering, a large part of the 49 

scattered light does not reach the detector: only scattered light that is collected by the Schwarzschild optics 50 

reaches the detector, while a substantial part of the light is scattered into solid angles, which are not covered 51 

by the Schwarzschild optics. The scattered light that does not reach the detector leads to apparent absorption 52 

signatures in the measured absorbance spectrum, and the researcher is at a loss to decide which part of the 53 

measured absorbance spectrum is due to scattering and which part is due to chemical absorption. Thus, in 54 

FTIR microspectroscopy of single cells, the measured absorbance spectrum is also termed the apparent 55 

absorbance spectrum, since it contains both absorption and scattering signatures. Due to the difficulties in the 56 

interpretation of absorption peaks, scattering and absorption of infrared radiation at cells have been studied 57 

during recent years and algorithms have been established to separate scattering and absorption in apparent 58 

absorbance spectra in infrared spectroscopy of single cells5-11. All established algorithms, are based on Mie-59 

theory, an exact theory for the scattering of infrared light at absorbing spheres developed by Gustav Mie in 60 

19053. The theory describes the scattering of electromagnetic radiation at spheres rigorously. Based on the 61 

exact Mie theory and approximation formulas thereof, a number of approaches have been developed, which 62 

aim at disentangling the scattering and absorption signatures in infrared spectra of single cells. In 2008, 63 

Kohler et al. developed an algorithm based on extended multiplicative signal correction (EMSC), which 64 

corrects Mie scattering in infrared spectra of cells9. The algorithm employs an approximation formula for the 65 

extinction efficiency and takes into account a constant refractive index. Since the exact size, morphology and 66 

refractive index of a cell are unknown in all practical situations, the algorithm employs a meta-model that 67 

comprises a range of cell sizes and refractive indices. The algorithm involves several approximations. (1) It 68 
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considers only the extinction efficiency in forward direction when calculating the absorbance, while infrared 69 

microscopes use Schwarzschild optics and collect light over a large numerical aperture. (2) The extinction in 70 

forward direction is calculated by an approximation formula developed by V. De Hulst4. (3) The algorithm 71 

considers the refractive index as constant and real in the employed wavelength range, while it is known that 72 

for absorbing scatterers, the refractive index has a non-zero imaginary part and a fluctuating real part, i.e., is 73 

dispersive (4). The algorithm approximates the apparent absorbance by the scattering efficiency. Despite the 74 

approximations employed, the algorithm corrects the broad Mie scatter oscillations in the apparent 75 

absorbance of single cell spectra, while so-called dispersive artefacts due to the resonant Mie effect remain 76 

uncorrected. The term ‘dispersive artefact’ circumscribes the fact that absorption resonances lead to 77 

fluctuations in the real part of the refractive index, which affect the extinction efficiency and thereby the 78 

measured absorbance spectrum. In 2010, Bassan et al. 6 developed an iterative algorithm based on EMSC, 79 

which allows correcting the dispersive artefact. The algorithm developed by Bassan et al. 6 involves several 80 

approximations. (1) As in Kohler’s algorithm9, the apparent absorbance is approximated by the extinction 81 

efficiency in forward direction developed by V. de Hulst4. (2) While Bassan’s algorithm6 takes into account a 82 

fluctuating real refractive index, it does not use the imaginary part of the refractive index. Recently, van de 83 

Dijk et al.10 have introduced an iterative algorithm taking into account the high numerical aperture of 84 

infrared microscopes. The algorithm employs exact Mie formulas for the absorbance and treats the refractive 85 

index as complex. While it was shown that the algorithm corrects sharp dispersive Mie signatures in spectra 86 

of PMMA spheres10, it has also been demonstrated that the algorithm is not applicable to biological samples, 87 

which have a complex composition and a shape that often deviates substantially from a sphere11.  88 

Although the algorithm of Bassan et al. 6 does not take into account a complex refractive index, it has been 89 

widely employed during recent years, since it provides a stable extraction of the pure absorbance spectrum. It 90 

is currently considered as the best existing method for correcting the Mie scatter distortions in infrared 91 

microspectroscopy of cells and tissues.  92 

The aim of the present paper is to further develop the algorithm by Bassan et al. 6 by taking into account a 93 

complex refractive index according to Mie theory. The algorithm of Bassan et al. 6 requires the calculation of 94 

the Kramers-Kronig transform iteratively. Since this turns out to be a very time consuming process, we 95 

further aimed at improving the speed of the algorithm. In order to test the newly developed algorithm, we 96 

created a test set of apparent absorbance spectra. The test set consists of spectra that were distorted according 97 
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to exact Mie theory. For the creation of the test set, the optical set-up including the Schwarzschild optics 98 

with a focusing and collecting optics has been taken into account. The algorithm presented in this paper is 99 

based on the algorithm of Kohler et al.9 and the algorithm of Bassan et al. 6 based on a meta-model taking 100 

into account a broad parameter range for parameters such as refractive index, size of the cell and effective 101 

sample thickness. While the resonant Mie scatter correction algorithm developed by Bassan et al. 6 uses three 102 

independent parameters for building the meta-model, we will show in the present paper that the meta-model 103 

can be set up with two independent parameters, which further improves the speed of the algorithm and the 104 

usage of memory in the modelling step.   105 

Page 5 of 28 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



Simulation of pure absorbance spectra 106 

To validate the Mie scatter correction algorithm developed in this paper, a simulated data set of pure 107 

absorbance spectra was created. The spectra were simulated such that the obtained absorbance spectra 108 

resembled a matrigel spectrum of Bassan et al.6, i.e. a spectrum of an artificial base membrane consisting 109 

mainly of proteins. The matrigel spectrum is considered as a nearly scatter-free pure absorbance spectrum. A 110 

random number generator was used to change of heights (±20%), and shift band positions (±1 cm-1) of peaks 111 

by superimposing Lorentz lines for 50 spectra. This data set was divided into two data sets of 25 spectra. For 112 

data set one, we systematically changed the amplitudes at the peaks positions 1116, 1127, 1172, 1233, 1294, 113 

1388, 1544 and 1648 cm-1 by making them either higher or smaller for each respective band. For data set 114 

two, we changed the amplitudes at the positions 1075, 1155, 1192, 1243, 1315, 1404, 1456, 1551 and 1656 115 

cm-1 by again making them either higher or smaller for each respective band. When analysing these data sets 116 

by PCA, two clusters of samples were obtained according to the design of the simulation. The simulated 117 

spectra are shown in Fig. 1a. The corresponding score plot for the first two PCA components is shown in 118 

Fig. 1b. The first two components account in total for 78,3% of the variance in these data. From the 119 

simulated pure absorbance spectra, the imaginary parts of refractive indices ������ were calculated according 120 

to  121 

������ = ��	
���	����			������	
 ,	 �1�	122 

where ���� is the effective thickness of the cell11 and �� is the wavenumber. The real part of the fluctuating 123 

part of the refractive index was calculated by using the Kramers-Kronig transform 124 

����� = �� + �� P� �∙ !����"#	
" �$%� ,	 �2�	125 

where �� is the constant part of the real refractive index, P denotes the Cauchy principal value integral and 126 

�� is the imaginary part of the refractive index12. 127 

 128 

Simulation of apparent absorbance spectra according to exact Mie theory 129 

In order to simulate apparent absorbance spectra, exact Mie theory was used. In the simulations, the optical 130 

setup of an infrared microscope with a numerical aperture NA was taken into account. The apparent 131 

absorbance was calculated according to 132 

'()) = − log�� .1 − �("/ 0�12 + ���/	
" � 34��5� + 4��5�6 sin�5� �5:;<� =,	 �3�	133 
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where ? is the radius of the spherical scatterer, G is the size of the aperture and �� is the wavenumber. The 134 

integration is performed over the numerical aperture 5@� with integrand functions 4�,��5�, which are 135 

calculated from the scattering amplitudes A�,��5�. Details are given in the Supplementary Material S.2 of 136 

paper Lukacs et. al11. For each simulated pure absorbance spectrum (see description in the previous section), 137 

imaginary and real parts of the refractive index were calculated according to Eqs. 1 and 2 and displayed in 138 

Fig. 1c and 1d, respectively. For each simulated apparent absorbance spectrum '()), random values were 139 

chosen for �� and ? from the intervals 1.1 < �� < 1.4 and 2EF < ? < 5.5EF. Following this procedure, a 140 

set of 50 simulated apparent absorbance spectra was obtained. The apparent absorbance spectra are shown in 141 

Fig. 1e. The score plot of the first two components of the corresponding PCA analysis is shown in Fig. 1f. 142 

We can see that due to the scatter distortions, the two groups that were observed in the score plot of the first 143 

two components of the PCA of the pure absorbance spectra (Fig.1b) are now mixed. It is important to note 144 

that visualization of score plots of higher components reveals the grouping also in the apparent absorbance 145 

spectra. This is expected, since the scatter distortions are simply leading to a distortion of the main variation 146 

pattern, but the information related to the grouping according to the chemical difference is still obtained in 147 

the simulated apparent absorbance spectra. It is important to mention that the simulated apparent absorbance 148 

spectra as shown in Fig. 1c include the so-called dispersive artefact. When the apparent absorbance spectra 149 

in Fig. 1c are corrected according to the EMSC algorithm developed by Kohler et al. 9, the dispersive artefact 150 

can be clearly seen (results not shown). The dispersive artefact is due to the fluctuations of the real refractive 151 

index caused by the absorption resonances and is not corrected by the algorithm developed by Kohler et al. 9, 152 

since the model assumes a real and constant refractive index. 153 

We further would like to mention that the apparent absorbance spectra in Fig. 1e contain ripples which are 154 

higher frequency oscillations. Ripples can be seen clearly in the region from 2800cm-1 to 1800cm-1. These 155 

ripples are also appearing in other spectral regions, but are less visible since they overlap with chemical 156 

absorbance bands. While we have observed ripples in spectra of pollen11, ripples are usually not dominant in 157 

spectra of human and animal cells and tissues. 158 

 159 

Extended multiplicative signal correction and meta-modelling 160 
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For the extraction of the pure absorbance spectra from simulated apparent absorbance spectra, an iterative 161 

algorithm based on EMSC was developed, which is a further extension of the algorithms presented in Kohler 162 

et al.9 and Bassan et al.7. Multiplicative signal correction (MSC) and EMSC have been introduced for pre-163 

processing of near-infrared spectra13, 14. It has been shown in the past that both methods are versatile tools for 164 

correcting infrared spectra of biological materials6, 9, 15-17. When EMSC is used for estimating and correcting 165 

Mie scattering, a measured absorbance spectrum '())���� is approximated by a reference spectrum HI������ 166 

times a multiplicative effect b, plus deviations from this reference spectrum expressed by a constant baseline 167 

c plus a sum of components JK���� times respective parameters LK  168 

'())���� = MHI������ + N + ∑ LKJK���� + P�����QRSKT� .	 �4�	169 

The un-modelled part is captured by the residual term P����. Further baseline effects may be included in the 170 

model by adding polynomials to the EMSC model15, 16. Since EMSC models an apparent absorbance 171 

spectrum around a reference spectrum, the estimation of the model parameter has turned out to be a very 172 

stable process. This is because infrared spectra of biological materials have very similar spectral signatures 173 

deriving from protein, fat and carbohydrate absorptions, leading to a visually very similar overall shape of 174 

the spectrum. When the parameters are estimated according to Eq. 4, the apparent absorbance spectrum is 175 

corrected according to  176 

'UVII���� = W�XRR�	
�#U#∑ YZ)Z�	
�<QRSZ[\ ]
^ .	 �5�	177 

In an EMSC Mie model, the component spectra JK���� are obtained from a meta-model based on Mie theory. 178 

In the meta-model used by Kohler et al.9 and Bassan et al. 7, the scatter extinction was approximated by the 179 

formula derived by Van de Hulst4, which was originally developed for a constant and real refractive index 180 

and writes as 181 

0�12���� ≈ 2 − �̀ $4� a + . �̀"= �1−Nb$ a�,	 �6�	182 

where a is given by 183 

a = 4d?���� − 1�				�7� 	
and ? and � are the radius of the spherical particle and the real refractive index, respectively. In order to 184 

allow for the correction of the dispersive artefact, Bassan et al. 7 introduced in Eq. 6 for � a non-constant real 185 

refractive index, which was calculated from an estimate of the pure absorbance according to the Kramers-186 
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Kronig transform (Eq. 2), while the imaginary part ������ of the refractive index may be calculated from an 187 

estimate of the pure absorbance spectrum '���� according to Eq. 1. This relation was simplified in Bassan et 188 

al. 7 assuming that the imaginary part ������ of the refractive index is proportional to the absorbance '����, 189 

i.e. 190 

������ ≈ $ ∙ '����	 �8�	191 

where $ is a proportionality factor. The proportionality is only a rough approximation since the wavenumber 192 

varies on the range under consideration. When the imaginary part of the refractive index, ������, is known, 193 

the real part, �����, can be calculated according to the Kramers-Kronig relation in Eq. 2.  194 

 195 

The iterative algorithm developed by Bassan et al. works as follows: 196 

The algorithm of Bassan corrects a scatter distorted apparent absorbance spectrum '())���� according the 197 

following interative procedure, which is based on the EMSC model in Eq. 4.  198 

Initialization: Eq. 4 requires the initialization of a reference spectrum HI������, which ideally should be 199 

closed to the pure absorbance spectrum. To initialize the algorithm, a matrigel spectrum6 was used as pure 200 

absorbance spectrum '����.  201 

Iterative algorithm:  202 

1. The reference spectrum HI������ in Eq. 4 is replaced by an estimate of the pure absorbance spectrum. 203 

2. The estimate of the pure absorbance spectrum is further used to calculate the imaginary part of the 204 

refractive index ������ according to Eq. 1., From the imaginary part of the refractive index ������, the 205 

real part of the refractive index, �����, is calculated by the Kramers-Kronig transform according to 206 

Eq. 2. The real part of the refractive index is then used to calculate the extinction efficiency 0�12���� 207 

according to Eq. 3 for a wide range of parameters a, �� and the proportionality factor of Eq. 8, 208 

denoted by s. For each parameter typically its range is covered by 10 different values. The apparent 209 

absorbance '())���� is then calculated for the range of parameters a, �� and s by assuming that 210 

'())���� ≈ 0�12����, resulting in a set of 10x10x10=1000 apparent absorbance spectra.  211 
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3. The set of apparent absorbance spectra '())���� is approximated by a meta-model using PCA, 212 

resulting in a set of principal components JK���� that are used as components in Eq. 4. The EMSC 213 

parameters in Eq. 4 are estimated by ordinary least square fits. After estimation of the EMSC 214 

parameters, the spectrum is corrected according to Eq. 5, resulting in a corrected spectrum	'UVII����. 215 

4. The estimate of the pure absorbance spectrum is replaced by the corrected spectrum 'UVII���� and 216 

the algorithm is reiterated starting with step 1. 217 

The iterative algorithm by Bassan et al.6 deserves some comments. It is important to mention that the 218 

assumed porportionality '())����~0�12���� that is employed in step 1, is a rough approximation of Eq. 3 11. It 219 

involves neglecting the third term in Eq. 3 resulting in  220 

'()) = − log���1 − �("/ 0�12�	 �9�	221 

where ? is the radius of the sphere and i is the detector area, and further the expansion of the logarithm ot 222 

Eq. 9 up to linear order, resulting in 223 

'()) ≈ �("/ 0�12,	 �10�	224 

explaining the proportionality between '())���� and 0�12����.  225 

 226 

Improved algorithm suggested in this paper. 227 

The iterative algorithm suggested in this paper involves several improvements. First, the iterative algorithm 228 

in this paper is based on a meta-model, which involves a complex refractive index according to the Mie 229 

theory. We used an approximation formula for the extinction efficiency, that has been derived by Van de 230 

Hulst4  231 

0�12���� ≈ 2 − 4k#`2( l Nb$ ma $4��a − m� − 4k#`2( l WNb$ ma ]� Nb$�a − 2m�
+ 4 WNb$ ma ]� Nb$�2m�			�11� 

with  232 

a = 4d?���� − 1�  and  tanm = ��/�� − 1� (12) 233 
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where � and �� are the real and the imaginary parts of the refractive index, respectively. The differences 234 

between Eq. 6 and Eq. 11 are illustrated in11. The differences are significant, both with respect to the position 235 

of the band and the absolute values of the estimated extinction and absorbance. 236 

The second improvement relates to the complexity of the meta-model. While in Bassan et al. 6 a parameter 237 

model was used including ranges of three parameters (3 dimensions), it can be shown that a 2-dimensional 238 

parameter model is sufficient for the parameter estimation. Details about the reduction from the 3-parameter 239 

model to the 2-parameter model are given in the appendix A. The application of a 2-dimensional parameter 240 

model decreases the computation time and required of computer memory. This can be illustrated by an 241 

example. When the three parameter ranges represented by the size of the cell, the background refractive 242 

index and the scaling parameter s of Eq. 8 are covered and 10 values are used to cover each parameter range, 243 

1000 Mie extinction curves need to be simulated and used for the establishment of the meta-model. 244 

Employing a two-parameter model, 100 spectra are sufficient to cover the same range. Thus, memory usage 245 

is reduced by a factor 10 and the computation time for establishment of the meta-model is reduced as well.  246 

A third improvement of the algorithm was achieved by speeding up the Kramers-Kronig transform of Eq. 2. 247 

Kramers-Kronig relations are mainly used in optical spectroscopy to determine the complex refractive index 248 

�q = � + 4��	of the medium from the measured absorption, transmission or reflection spectrum. The 249 

refractive index is an important quantity when considering the scattering and absorption of light at biological 250 

materials. The real part n of this index describes the refractive properties of the material; the imaginary part 251 

��	of it, determines the absorptive properties of the material. The most employed method for obtaining n 252 

from �� and vice versa is the Kramers-Kronig transform, which expresses the real part n in terms of the 253 

imaginary part �� according to 254 

����� = 2d rs $ ∙ ���$�$� − ���t%
� �$, �13?� 

and the imaginary part �� in terms of the real part n by 255 

������ = −2��d rs ��$�$� − ���t%
� �$. �13M� 

In Appendix B, we show that these relations are equivalent to the Hilbert transform, since the real part of the 256 

refractive index is an even function of the wavenumber and the imaginary part of the refractive index is an 257 

odd function of wavenumber, i.e. ����� = ��−��� and ������ = −���−���. This can be seen from the Lorentz 258 

model. Details are given in Supplementary Material S.1 of reference11.The Hilbert transform writes as  259 
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����� = 1d rs ���$�$ − ��t%
#% �$ = − 1d�� ∗ ������	�14?� 

and 260 

������ = −1d rs ��$�$ − ��t%
� �$ = 1d�� ∗ �����	�14M� 

respectively, where ∗ denotes convolution. The Hilbert transform can be calculated via Fast Fourier 261 

Transform (FFT). The FFT method is based on the fact that both real and imaginary parts of the complex 262 

refractive index defining the Hilbert transform are proportional to the convolution product between ����� or 263 

������ and the convolution kernel function 
��	
. In Eqs. 14 there is a singularity, when s is equal to ��. The 264 

singularity problem is theoretically bypassed by introducing the Cauchy Principal Value18.  265 

 266 

The new iterative algorithm works as follows: 267 

The algorithm corrects a scatter distorted apparent absorbance spectrum '())���� according to the following 268 

interative procedure which is based on the EMSC model in Eq. 4.  269 

Initialization: The reference spectrum HI������ in Eq. 4 is initialized by a matrigel spectrum6 or another 270 

appropriate non-distorted spectrum. 271 

Iterative algorithm:  272 

1. The reference spectrum HI������ in Eq. 4 may be either updated6 or the same reference spectrum may 273 

be used in each iteration. 274 

2. The estimate of the pure absorbance spectrum is further used to calculate the imaginary part of the 275 

refractive index ������ according to Eq. 1. The real part of the refractive index, �����, is calculated 276 

from the imaginary part of the refractive index, ������, by the Hilbert transform (function Hilbert in 277 

Matlab) according to Eq. 14a. The calculations of the Hilbert function are based on the FFT 278 

algorithm. The real part of the refractive index is then used to calculate the extinction efficiency 279 

0�12���� according to Eq. 11 involving a complex refractive index. In order to cover the relevant 280 

parameter range, the scaled parameters v and w� according to Eqs. A20 and A21 are used (see 281 

Appendix A) with the ranges w� ∈ 30.2	FE, 2.2	FE6 ∙ 4d and v ∈ y5 ∙ 10� �z , 6 ∙ 10{ �z|. The 282 

corresponding ranges of n0, a and f are given in A13. A set of 50 apparent absorbance '())���� is 283 
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then calculated according to Eq. 9 uniformly covering the parameter ranges for w� and v, and stored 284 

as rows in a matrix M.  285 

3. The set of apparent absorbance spectra '())����, i.e. the matrix M is approximated by a meta-model 286 

using PCA resulting in a set of principal components JK���� that are used as components in Eq. 4. 287 

Prior to approximation by PCA, the matrix M is orthogonalized with respect to the reference 288 

spectrum HI������. This is to avoid competition between the parameters M and LK (see Eq. 4) in the 289 

subsequent parameter estimation. The EMSC parameters in Eq. 4 are estimated by ordinary least 290 

squares fits. After estimation of the EMSC parameters, the spectrum is corrected according to Eq. 5 291 

resulting in a corrected spectrum 'UVII����. 292 

4. The estimate of the pure absorbance spectrum is replaced by the corrected spectrum 'UVII���� and 293 

the algorithm is reiterated starting with step 1. 294 

This iterative algorithm is described schematically in Fig. 2. We suggest to call the algorithm fast 295 

resonant Mie scatter correction. 296 

EMSC correction of simulated and measured apparent absorbance spectra 297 

The correction of an apparent absorbance spectrum according to the algorithm suggested in this paper is 298 

demonstrated in Fig. 3. In Fig. 3a an example of a simulated apparent absorbance spectrum is shown. The 299 

spectrum is simulated employing Eq. 3. As parameters we used �� = 1.35 and ? = 3.81	FE	. Corrected 300 

spectra that were obtained by the first three iterations of the correction algorithm proposed in this paper are 301 

shown in Fig. 3b together with the reference spectrum and the pure absorbance spectrum. As a reference 302 

spectrum we used the average spectrum of all simulated pure absorbance spectra. Alternatively, the matrigel 303 

spectrum could be used. It can be seen that the algorithm converges quickly and that the corrected spectra are 304 

close to the pure absorbance spectra used for the simulation. Ripples that can be observed in the region 305 

between 4000 cm-1 and 3500 cm-1 were not corrected successfully. This is expected, since the Van de Hulst 306 

formula used for the correction (see Eq. 11) does not describe the Mie ripples. In Fig. 4a, a simulated 307 

apparent absorbance spectrum containing strong ripples is shown. As parameters, we used �� = 1.36 and 308 

? = 5.12	FE	. Ripples with these intensities are usually not observed in infrared microspectroscopy of single 309 

cells. An explanation for this will be given elsewhere. In the corrected spectra in Fig. 4b it can be seen 310 

clearly that the Van De Hulst algorithm is not capable of correcting the ripples.  311 
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The complete set of corrected spectra for the simulated apparent absorbance spectra from Fig.1e is shown in 312 

Fig. 5. The spectra that correspond to the red scores of the pure absorbance spectra in Fig. 1b are plotted red 313 

in Fig. 5, while the spectra that correspond to the blue scores of the pure absorbance spectra in Fig. 1 b are 314 

plotted blue in Fig. 5. The reference spectrum is shown in green. It can be seen that the correction of the 315 

spectra worked well. The two groups of spectra can be separated visually after correction. As mentioned 316 

before, ripples are not well corrected, which does not pose a major problem, since strong ripples are usually 317 

not observed in the infrared microspctroscopy of single cells. The computation time for the correction of 50 318 

spectra (one iteration in the iterative algorithm) using a 4th generation Intel ®CoreTMi7-4702HQ quad core 319 

processor,16GB memory and Matlab 2015 is 77 seconds. This is a substantial improvement to the algorithm 320 

developed by Bassan et al.6  which uses 765 seconds on the same computer (employing numerical integration 321 

and a parameter model with 3 parameters). No speed optimization of the algorithm by vectorization or 322 

parallel programming was done so far. It is important to mention that the Kramers-Kronig part of of the 323 

algorithm is improved by a factor of approximately 200 when using the algorithm based on the Hilbert 324 

transform compared to the numerical integration. The improvement of the Kramers-Kronig part shows 325 

especially advantages when more than 1 iterations are applied in the iterative algorithm.   326 

In order to demonstrate that chemical information that was distorded in the apparent absorbance spectra can 327 

be restored, we investigated peak ratios before and after correction. In Fig. 6, the peak ratios for the 328 

simulated pure absorbance spectra of the band at 1546 cm-1 and the band at 1387 cm-1 are shown in blue. The 329 

peak ratio of this band is simulated such that the 50 spectra can be clearly separated into two groups of 25 330 

spectra each. The spectra 1-25 have a lower peak ratio than the spectra 26-50. The corresponding peak ratios 331 

for the apparent absorbance spectra are shown in magenta. It is obvious that the scatter distorted apparent 332 

absorbance spectra do not allow to separate these two groups with the help of the peak ratio of the band at 333 

1546 cm-1 and the band at 1387 cm-1. The apparent absorbance spectra were then corrected by the iterative 334 

algorithm. Corrected spectra are shown in red (one iteration), green (two iterations) and black (three 335 

iterations). The ratio obtained from the average spectrum of all simulated pure absorbance spectra that was 336 

used as the referense spectrum for the EMSC model is shown as the blue dashed line for comparison. It can 337 

be seen that the iterative algorithm retreives a good estimation of the ratio of the simulated pure absorbance 338 

spectrum.  339 
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We further tested the algorithm on a set of measured infrared microspectroscopy spectra of lung cancer cells. 340 

Details about the data set can be found in Kohler et al 9. The measured spectra are shown in Fig. 7 (red) 341 

together with the corrected spectra (green). For the correction one iteration step was used. As reference 342 

spectrum the matrigel spectrum was used6. In Fig. 7, it can be seen that correction works visually very well. 343 

The resonant Mie effect that was not corrected by the algorithm presented in Kohler et al9, is now 344 

successfully corrected.  345 

 346 

The importance of the reference spectrum for the iterative algorithm 347 

An important comment relates to the updating of the EMSC reference spectrum in the iterative algorithm. 348 

The dashed line in Fig. 2 indicates, that there are two options: Either the reference spectrum is updated by the 349 

new estimate of the pure absorbance spectrum obtained after each iteration or the initial reference spectrum 350 

is kept and only the imaginary part of the refractive index and, after Kramers-Kronig transformation, the real 351 

part of the refractive index are updated. We have observed that an update of the reference spectrum may lead 352 

to instabilities in the iterative algorithm and the result obtained may completely depend on the number of 353 

iterations used, i.e. the iterative algorithm may drift completely apart from reasonable solutions. Thus, we do 354 

not suggest to update the reference spectrum for EMSC in the iterative algorithm.  355 

The use of a good reference spectrum is crutial for the success of the correction algorithm. In Fig.7 it is 356 

obvious that the corrected spectra become in their overall shape very close to the reference spectrum. This 357 

can be clearly seen when comparing the reference spectrum (for example in Fig. 4b) with the corrected 358 

spectra in Fig. 7. The same observation can be made in the paper of Bassan et al. 6, where the same reference 359 

spectrum was used as in the current paper. In reference6, after correction all spectra are in their overall shape 360 

similar to the matrigel spectrum used as a reference in EMSC. This is due to the high flexibility of the meta-361 

model used for the correction. Notwithstanding, although the corrected spectra tend overally in their shape 362 

towards the reference spectrum, we could clearly show that chemical information can be restored by the 363 

suggested algorithm.  364 

 365 

Conclusions 366 

In this work we presented an improved iterative EMSC algorithm for correcting Mie scattering in infrared 367 

microspectroscopy of single cells and tissues. The iterative EMSC algorithm employs a meta-model based on 368 
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an approximate formula by Van De Hulst, taking into account a complex refractive index for correcting Mie 369 

scattering. The new iterative algorithm was tested using a simulated set of apparent absorbance spectra and a 370 

set of measured apparent absorbance spectra. The simulated apparent absorbance spectra were obtained by 371 

first simulating pure absorbance spectra and then generating scatter distorted apparent absorbance spectra by 372 

full Mie theory. For the simulations, the full optical set up of an infrared microscope including the collecting 373 

and focusing Schwarzschild optics were taken into account. The set of simulated spectra used in this paper is 374 

thus more difficult to correct than the spectra simulated in the reference6, where spectra were simulated by 375 

using exactly the same approximation formula that was afterwards used for correction algorithm. In addition, 376 

the spectra simulated in reference6 were obtained by addition of pure absorbance spectra to simulated scatter 377 

spectra. This facilitated the correction of the spectra in reference6, since scatter distortions where only added 378 

on top of the pure absorbance spectra. In our simulations the scatter distorted spectra where obtained 379 

according to Eq. 3 and do not contain additive contributions of pure absorbance spectra. It is important to 380 

mention that according to the Mie theory, apparent absorbance spectra are not obtained by adding pure 381 

absorbance spectra to scatter contributions. Thus, the retrieval of chemical information from the simulated 382 

apparent absorbance spectra taking into account the full optical setup as employed in the current paper, 383 

demonstrates well the capability of the algorithm presented in this paper. 384 

The measured spectra used for correction in the current paper were obtained from single lung cancer cells9. 385 

The correction of the measured spectra was successful, while it is obvious that the corrected spectra tend in 386 

their overall shape towards the matrigel spectrum employed. The high flexibility of the meta-model results in 387 

corrected spectra that are in their overall shape very similar to the reference spectrum used in the EMSC 388 

model, while we showed by employing a simulated data set that chemical characteristics of the pure 389 

absorbance spectra could be restored. 390 

The iterative algorithm developed by Bassan et al. 6 involves a numerical integration in order to perform a 391 

Kramers-Kronig transform. In the algorithm presented in this paper, we replaced the integral of the Kramers-392 

Kronig by a fast Fourier transform (FFT) algorithm. This reduced the computation time of the Kramers-393 

Kronig transform approximately by a factor 100. Moreover we have shown that two independent parameters 394 

w� and v (each parameter contains 10 equidistant values in its respective range) are sufficient for 395 

compressing 100 Mie scattering curves into a small number of principal components loading spectra to 396 

estimate the scattering contributions in the EMSC meta-model.  397 
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While we have shown that the new algorithm retrieves the pure absorbance spectra from highly distorted 398 

apparent absorbance spectra, ripples that are present in simulated apparent absorbance spectra could not be 399 

corrected, since the Van de Hulst approximation does not account for ripples. The ripples that are visible in 400 

the simulated apparent absorbance spectra can be explained by diffractive surface waves. While we have 401 

observed that the appearance of ripples is not present or suppressed in measured spectra, we believe that the 402 

correction of ripples is in general not required for the correction of infrared microspectroscopic spectra of 403 

single cells and tissues. Ripples may be absent in measured spectra because the apertures used in infrared 404 

microspectroscopy are comparable to the size of the cells, while the exact Mie theory which assumes an 405 

incoming plane wave assumes apertures that are much bigger than the probed cell. Thus, diffractive surface 406 

waves that are causing ripples in exact Mie theory may be suppressed in practical measurement situations.  407 

 408 
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 412 

Appendix A: Complexity of meta model 413 

For building a meta-model we take into account a suitable parameter space for the approximation formula 414 

employed for the extinction efficiency. The approximation formula given by Eq. 11 contains the parameters 415 

a and m. We define 416 

w = 4d?�� − 1�,	 �A1�	417 

where n is the real refractive index and a is the size of the sphere. It follows that a = ��w.    418 

When the pure absorbance spectrum '���� is known, the imaginary part of the refractive index can be 419 

calculated according to   420 

������ = ��	
���	����			������	
 ,	 �A2�	421 

where ���� is the effective thickness of the cell11. The real part of the refractive index ����� can then be 422 

calculated by the Kramers-Kronig relation according to 423 
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����� = �� + �� ~� �∙ !����"#	
" �$%� ,	 �A3�	424 

where �� is the constant part of the real refractive index and the integral term  425 

������� = �� r� �∙ !����"#	
" �$%� 	 �A4�	426 

is the fluctuating part of the real refractive index. 427 

It follows that  428 

w = 4d?���+��� − 1�.	 �A5�	429 

If ���  is calculated from the pure absorbance spectrum '���� according to Eqs. A2 and A4, the effective 430 

thickness ���� of the cell is in general not known. We therefore define a scaled imaginary part of the 431 

refractive index, ��� ����, according to 432 

��� ���� = ��	
�			
 ,	 �A6�	433 

where 434 

������ = ���� ����,	 �A7�	435 

with the scaling constant   436 

� = ��	����			������.	 �A8�	437 

The fluctuating part is consequently calculated according to 438 

������� = ����,�����	 �A9�	439 

where 440 

���,����� = ��r � �∙ �!�"#	
" �$%� .	 �A10�	441 

Thus, we obtain  442 

w = 4d?���+����,� − 1�	 �A11�	443 
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and 444 

�?�m = � �! �t� ��,�#�.	 �A12�	445 

Generally the exact numbers for ?, �� and � are not known. Only ranges for these values can be given. 446 

These parameters have to be estimated in the modeling process. The following ranges were found to be 447 

optimal  448 

�� 	 ∈ 31.1, 1.46,	 �A13?�	449 

�	 ∈ y10� �z , 3 ∙ 10� �z|,	 �A13M�	450 

?	 ∈ 32FE, 5.5FE6.	 �A13N�	451 

Since the parameters ? and �� are not independent (see A5), these parameter ranges are not absolute. We 452 

include for example considerably higher values of ? than indicated by the range in (A13c), when the 453 

refractive index in an apparent absorbance spectrum is below the maximum value of (A13a), since the two 454 

parameters enter Eq. A5 as a product. The parameters in Eqs. A13 are not independent and one parameter 455 

can be omitted by rescaling as we will show in the following. We can write Eq. A11 as 456 

w = 4d?��� − 1� .1 + � ��,�� �#��=	,	 �A14�	457 

and Eq. A12 as 458 

�?�m =  �!���\� t ��,�.	 �A15�	459 

By defining  460 

w� = 4d?��� − 1�,	 �A16�	461 

and 462 

v = �� �#��,	 �A17�	463 

we obtain  464 

w = w��1 + v���,��,	 �A18�	465 
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and 466 

�?�m =  �!� �� t ��,�	 �A19�	467 

with the respective ranges that correspond to the values in Eqs.A13: 468 

v ∈ y5 ∙ 10� �z , 6 ∙ 10{ �z|	 �A20�	469 

w� 	 ∈ 30.2FE, 2.2FE6 ∙ 4d	 �A21�	470 

It follows that the obtained model contains two independent parameters v and w�. The parameter v is the 471 

new scaling value for the non-constant refractive index. A correct estimate of this parameter is important for 472 

the biochemical interpretation of the FTIR spectra. The parameter w� corresponds to the w-value of the non-473 

resonant case used in Kohler et al9. A good estimation of the w�-value is important for the estimation of the 474 

physical parameters as size of cells ? and constant part of the real refractive index ��. 475 

Appendix B: Hilbert transform and Kramers-Kronig relations for a calculation 476 

of the complex refractive index 477 

In order to define the complex refractive index �q���� = ����� + 4������	of materials from measured 478 

absorption, transmission or reflection spectra in optical spectroscopy, Kramers-Kronig relations are used. 479 

The complex refractive index is an important physical quantity when considering the scattering and 480 

absorption of infrared light at biological materials. The real part n���� of this index describes the refractive 481 

properties of the material; the imaginary part ������	of it determines the absorptive properties of the material. 482 

A method for obtaining n����and ������ is the Kramers-Kronig transform, which relates the real part n���� to 483 

the imaginary part ������ of the complex refractive index: 484 

����� = 2d rs $ ∙ ���$�$� − ���t%
� �$, �B1?� 

������ = −2��d rs ��$�$� − ���t%
� �$, �B1M� 

where P denotes Cauchy’s Principal Value. 485 
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These relations are equivalent to the Hilbert transform, provided that the real part is an even function of 486 

wavenumber and the imaginary part is an odd function of wavenumber, i.e. ����� = ��−��� and ������ =487 

−���−���: 488 

����� = 1d rs ���$�$ − ��t%
#% �$ = − 1d�� ∗ ������, �B2?� 

������ = − 1d rs ��$�$ − ��t%
#% �$ = 1d�� ∗ �����.		�B2M� 

Let us consider the connections between Eqs. B1 and B2. Because of ������ is an odd function of 489 

wavenumber, this property permits the conversion of the Hilbert transform pair (Eq.B2a) into the Kramers-490 

Kronig relations. The Hilbert transform pair (Eq.B2a) is expanded as 491 

����� = 1d rs ���$�$ − ��t%
#% �$ = 1d rs ���$�$ − �� �$�

#% + 1drs ���$�$ − �� �$t%
�  

with ������ = −���−��� we get 492 

����� = 1d rs ���$�$ + �� �$ + 1d rs ���$�$ − �� �$t%
�

t%
� = 2d rs $ ∙ ���$�$� − ���t%

� �$. 
Because of ����� is an even function of wavenumber, this property permits the conversion of the Hilbert 493 

transform pair (Eq.B2b) into the Kramers-Kronig relations. The Hilbert transform pair (Eq.B2b) is expanded 494 

as 495 

������ = − 1drs ��$�$ − ��t%
#% �$ = − 1drs ��$�$ − �� �$�

#% − 1drs ��$�$ − �� �$t%
�  

with ����� = ��−��� 496 

������ = 1drs ��$�$ + �� �$ −t%
�

1drs ��$�$ − �� �$t%
� = −2��d rs ��$�$� − ��� �$t%

� . 
The Hilbert transform can be calculated via the Fast Fourier Transform (FFT). The FFT method is based on 497 

the fact that both real and imaginary parts of the complex refractive index defining the Hilbert transform are 498 

proportional to the convolution product between ����� or ������ and the convolution kernel function 
��	
.  499 
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In Eqs. B2 there is a singularity, when s is equal to ��. The singularity problem is theoretically bypassed by 500 

introducing the Cauchy Principal Value.  501 

Derivations of Hilbert transform and Kramers-Kronig relations 502 

If �q���� is an analytic function, then 
 q����#	
 	is an analytic function too except at the pole $ = ��. Cauchy’s 503 

theorem states that 504 

� f�$�d$ = 0,		
provided that the closed contour encloses no poles of the analytic function ��$�. Let us apply Cauchy’s 505 

theorem to the function	 q����#	
 , where �� is a point on the real axis, and the contour, shown in Fig. 8, is the union 506 

of four curves with parametric representations 507 

C1:	$ = �,	where	−� ≤ 	�	 ≤ 	 �� − a;	508 

C2:	$ = 	 �� + akK� ,	where	0 ≤ 	�	 ≤ 	d;	509 

C3:	$ = �,	where	�� + a ≤ 	�	 ≤ 	�;	510 

			C4:	$ = 	�kK�,	where	0 ≤ 	�	 ≤ 	d.	511 

From Cauchy’s theorem we have 512 

s �q�$�$ − �� �$ +	
#`
#� s �q��� + akK���� + akK� − �� 4akK��� +�

� s 	�q�$�$ − �� �$ +�
	
t` s �q��kK���kK� − �� 4�kK��� = 0�

� . 
Therefore 513 

s �q�$�$ − �� �$ +	
#`
#� 4 s �q��� + akK���� +�

� s �q�$�$ − �� �$ +�
	
t` 4 s �q��kK���kK� − �� �kK��� = 0�

� . 
Putting a → 0 and � → ∞, we have 514 

lim`→�,	�→%
¢s �q�$�$ − �� �$ +	
#`

#� s �q�$�$ − �� �$ +�
	
t` 4 s �q��� + akK���� +�

� 4 s �q��kK���kK� − �� �kK����
� £ = 0. 

lim`→�¢s �q�$�$ − �� �$ +	
#`
#% s �q�$�$ − �� �$t%

	
t` £ − 4d�q���� = 0. 
We obtain the last line since the fourth term vanishes as �	 → 	∞ if ¤4E|�|→% �q�$� = 0. 515 

According to the definition of the Cauchy Principal Value of an integral we get 516 
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lim`→t�¢s �q�$�$ − �� �$ +	
#`
#% s �q�$�$ − �� �$t%

	
t` £ = rs �q�$�$ − �� �$t%
#% , �1� 

and therefore, from (1), we have 517 

1d4 r s �q�$�$ − �� �$t%
#% = �q����.	

Taking the real and imaginary parts of �q���� = ����� + 4������, we get 518 

	¦3�����6 = ������ = − 1drs ��$�$ − �� �$t%
#% , 

¦#�3������6 = ����� = 1drs ���$�$ − �� �$t%
#% .	

The last two expressions are called the Hilbert transform pair.  519 

Now we focus on the numerical solution of the Hilbert transform pair.  520 

By means of the Fourier transform definition an analytic signal §���	can be represented in the following way 521 

§��� = ¨#�3©���6 = s ©���exp	�42d�����t%
#% , 

where 522 

©��� = ¨3§���6 = s §��� exp�−42d��� ��.t%
#%  

According to the definition of the Hilbert transform for a function §��� we have 523 

§���� = ¦�§���� = 1d rs §�$�$ − � �$t%
#% = 1d� ∗ §���. 

Since  524 

¨ W 1d�] = −43$4L����6 = ¬−4, � > 0;0, � = 0;4, � < 0.  

Then  525 

¨3§����6 = ©®��� = ¨ ¯ 1d� ∗ §���° = ¨3§���6 ∙ ¨ W 1d�] = −43$4L����6 ∙ ©���. 
Multiplying both parts of the last expression by 43$4L����6, we get 526 

43$4L����6 ∙ ©®��� = ©���. 
This equation is used for the numerical solution of the Hilbert transform pair. The algorithm of calculating 527 

the Hilbert transform consists of three steps: 528 
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1) to calculate the spectrum ©���: 529 

©��� = ¨3§���6; 
2) to apply the expression 43$4L����6 ∙ ©®��� = ©��� for calculating ©®���: 530 

©®��� = −43$4L����6 ∙ ©��� 
3) to calculate §����: 531 

§���� = ¨#�3©®���6. 532 

These three steps are used in Matlab for the calculation of Eqs.B2 via the function Hilbert. 533 

More details about numerical solution of the Kramers-Kronig transforms based on the FFT algorithm are 534 

presented in P.Bruzzoni et19. 535 
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Figure 1. (a) A set of simulated pure absorbance spectra. (b) PCA of simulated pure absorbance spectra. (c) 

Imaginary part of the refractive index obtained from the simulated absorbance spectra (d) Real part of the 

refractive index obtained from the simulated absorbance spectra. (e) Apparent absorbance spectra obtained by 

employing exact Mie theory taking into account the optical setup of an infrared microscope. (f) PCA of 

simulated apparent absorbance spectra. 
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Figure 2: Schematic illustration of the iterative algorithm for the retrieval of the pure absorbance spectrum 

from the apparent absorbance spectrum. After each iteration, a new estimate of the pure absorbance spectrum 

is obtained. The next iteration is initialized by using the estimate of the pure absorbance spectrum for 

updating the real and imaginary parts of refractive index for the iterative algorithm.  

 

Figure 3. (a) An example of a simulated apparent absorbance spectrum is shown. (b) Spectra corrected by an 

iterative EMSC meta-model employing the Van De Hulst approximate formula with complex refractive index 

are shown. Corrected spectra for iteration 1, 2 and 3 of the correction algorithm (green, brown and violet, 

respectively) are close to the underlying pure absorbance spectrum (blue dashed line) and different from the 

reference spectrum (red line) employed. For simulation of the apparent absorbance spectrum in (a) we used 

the parameters �� � 1.35 and � � 3.81	��. 
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Figure 4. (a) Apparent absorbance spectrum containing ripples. For the simulation of the apparent absorbance 

spectrum the parameters �� � 1.36 and � � 5.12	�� were used. (b) The corrected spectra for iteration 1, 2 

and 3 of the correction algorithm (green, brown and violet, respectively). They still contain the ripple 

structure. As expected, the EMSC meta-model employing the Van De Hulst approximate formula with 

complex refractive index does not correct the ripples.  

 

Figure 5. The complete set of simulated apparent absorbance spectra shown in Fig.1c is corrected by the 

algorithm presented in this paper. The spectra that correspond to red scores of pure absorbance spectra in Fig 

1b are drawn in red; the spectra that correspond to blue scores of pure absorbance spectra in Fig. 1b are 

marked blue.The reference spectrum is shown in green. Some corrected absorbance spectra contain ripples. 

As expected, the EMSC meta-model employing the Van de Hulst formula with complex refractive index does 

not remove ripples. 
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Figure 6: The peak ratio is shown for the bands at 1546 cm
-1
 and 1387 cm

-1
 for the simulated pure absorbance 

spectra (blue), for iteration 1, 2 and 3 of the correction algorithm (red, green and black, respectively) and for 

the apparent absorbance (magenta). The ratio for the reference spectra is plotted as the blue dashed line for 

comparison. 

 

Figure 7. The measured infrared microspectroscopy spectra of lung cancer cells are shown in red together 

with the corrected spectra in green. For the correction one iteration step was used. As a reference spectrum (in 

blue) the matrigel spectrum was used. 

 

Figure 8. Contour in the complex plane used to derive the Kramers-Kronig relations. The integration path, 

which is skirting the singularity point � � ��, is indicated by arrows. The radius R of the outer semicircle tends 

to infinity. The radius �	of the small semicircle about �� tends to zero.  
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