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In recent years spectral histopathology (SHP) is
established as label free method, to identify cancer
within tissue. Here, this approach is extended. It is not
only used to identify tumour tissue with a sensitivity of
94 % and a specificity of 100 %, but in addition the
tumour grading is determined. Grading is a measure
how much the tumour cells differ from the healthy
cells. The grading refers to G1 (well differentiated) over
G2 (moderately differentiated) to G3 (poorly
differentiated) and in rare cases to G4 (anaplastic). The
grading is prognostic and is needed for the therapeutic
decision of the clinician. The presented results showed
a nice agreement between the annotation by the SHP
and by the pathologists. A correlation matrix is
presented. The presented results show, that SHP
provide prognostic values in colon cancer, which are
obtained label free and automated. It might become an
important automated diagnostic tool at the bedside in

precision medicine.
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Introduction

Colorectal cancer
Colorectal cancer is a major cause of morbidity and mortality
throughout the world and the third most common cancer
worldwide. It affects men and women almost equally, with just over
1 million new cases every year [1]. In the majority of cases the
colorectal carcinoma originates in polyps, referred to as benign
adenomas. About 80 % of colorectal carcinomas are sporadic with
no hereditary deposition. The two most common hereditary risk
factors are “familial adenomatous polyposis” (FAP) [2, 3] and the
(HNPCC or

“hereditary non polyposis colon cancer” Lynch

Syndrome) [3]. Patients with FAP suffer from hundreds or
thousands of polyps in the colorectal mucosa, with a manifested
near 100 % risk of malignancy. The Lynch syndrome shows only a
small number of polyps. Non hereditary risk factors are aging, high
fat nourishment in combination with a lack of physical exercise, and

smoking.

The first level of detecting and characterizing colon cancer is visual
inspection during colonoscopy. A diagnosis is performed on a
biopsy by pathologists via histopathological examination using
haematoxylin and eosin (H&E) stained tissue thin sections. The
current guidelines of the UICC for classification of colorectal
carcinoma follow the TNM (Tumour, lymph nodes, metastasis)
system [5]. The staging is a measure how the cancer has spread
through the organism. The TNM system characterizes the local
infiltration of the primary tumour, the lymph node status and
potential distant metastasis in other organs. In contrast to staging,
the WHO GRADING system addresses the differentiation of tumour
cells [6]. The grade score reaches from G1 (well differentiated) over
G2 (moderately differentiated) to G3 (poorly differentiated) and in
rare cases to G4 (undifferentiated). Well and moderately
differentiated tumours are summarised as “low grade” — and poorly
and undifferentiated tumours as “high grade” carcinomas. The
grading of cancer tissue samples is important for the prognosis of
cancer patients [7-9]. Fig. 1 shows exemplary images of H&E stained
colorectal cancer tissue at different differentiation states and for
comparison a sample of normal colon mucosa. Here we illustrate,
that spectral histopathology did not only distinguish between
tumour and healthy tissue but in addition provides the grading of

the tumour.
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Spectral Histopathology via Infrared imaging

In the last decade, many studies show that spectral histopathology
is capable for classifying tissue [10, 11] and especially diseased
tissue [12-20]. The IR spectra measured per pixel represent mostly
an integral signal of the proteome and genome. Each spectrum is
assigned to a specific colour. This resulted in an index colour image,
by which the tissue is classified and especially tumour is identified.
Particularly colorectal carcinoma is identified thereby by IR imaging
[21, 22]. Even these previous studies have shown that SHP can
differentiate between healthy and cancer tissue label-free, it is of
limited value for clinical diagnosis, because this question is easily
and very fast answered by histopathology already. Therefore here

the approach is significantly extended and in addition the grading of

Figure 1: Different dedifferentiation states of colon carcinoma. G1, G2 and G3 show the
grading states during tumour genesis and H represents a H&E stained sample of healthy
colonic tissue with normal cells.

the tumour is determined. The grading is much more difficult to
classify and depends critically on the expertise of the respective
pathologist and the time taken for the diagnosis. Biomax tissue
micro arrays (TMA) were measured by an Agilent Cary 620 FTIR
microscope and subsequently H&E stained. The resulting index
colour images were analysed and compared with the morphological
characteristics provided by H&E staining. These results exhibited a
good correlation between the annotation by SHP and the
annotation by pathologists as shown in a correlation matrix. This
shows that the method is a useful tool for label free automated and

precise classification of colon cancer tissue grading.

This journal is © The Royal Society of Chemistry 20xx
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Bioinformatics workflow

We established a workflow which integrates FTIR microscopy,
bioinformatics and histopathology (Fig. 2). Primarily, the tissue thin
sections were measured by FTIR imaging using a focal plane array
detector (FPA) with 128 times 128 MCT elements. The measured
spectral map is clustered by an unsupervised algorithm in the
training stage (hierarchical clustering - HCA, kmeans). The resulting
index colour image represents the spectral distribution over the
examined tissue section. Parallel the tissue is still accessible for H&E
and/or immunohistochemical staining due to the marker free
character of the SHP. In collaboration with pathologists the index
colour image based on the spectral map is correlated with the
classically stained image of the sample. A database of spectral
“fingerprints” is generated for different tissue and disease types

from this expert annotation.

The spectral database enables us to train supervised classification
algorithms like the artificial neural networks (ANN), support vector
machines (SVM), or random forests (RF). [23, 24, 25] As previously
shown in our approach we are using Random Forest (RF) classifiers,
which have proven to be accurate, easy to use and robust. The

workflow was established in our lab previously for colon and lung
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Figure 2: Workflow of the training and validation stage. In the training stage the
spectral maps were correlated to classical histopathological annotation by an expert.
The resulting spectral database is used for the training of a supervised classification
algorithm which is validated on independent samples in the validation stage.
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cancer. [22, 31] Unknown spectral maps of tissue thin sections can
be automatically annotated with the trained RF (validation stage).
The accuracy of the trained supervised classifier is determined on
independent pool of patients to ensure that no over fitting is

occurring.
Experimental:

Sample preparation

Tissue micro arrays (TMA, Tab. 1) displaying samples of colorectal
carcinomas with different gradings were purchased from US Biomax
Inc. (Rockville, MD, USA). The samples are 5 um thick and were
placed on LowE — slides [Kevley Technologies, Chesterland, OH,
USA]. Before the spectral measurements, they were de-paraffinised
using standard protocols [26]. Afterwards the samples were stored

and measured under dry air.
Data acquisition

Infrared hyperspectral data acquisition was performed in
transflection mode using an Agilent system (Santa Clara, California,
USA), consisting of a Cary 620 infrared microscope in combination
with a Cary 670 FTIR spectrometer. Spectral data were collected by
a mounted liquid nitrogen cooled focal plane array (FPA) MCT
detector with 128 by 128 elements, providing a field of view (FOV)
of approximately 715 pum x 715 um. The Fourier transformation was
performed by the Agilent Resolution Pro Software with Mertz phase
correction, an Blackman-Harris-4-term apodization and a zero filling
of 2. The spectra were saved between 3700 - 950 cm™ with a
spectral resolution of 4 em™. For the transflection (reflection-
absorption) measurements, the tissue sections had been prepared
on LowE slides. An inherent problem by the occurrence of a
standing wave electric field in the transflection-mode was described
for infrared microscopy which leads to shifts of and variances in the
ratio of absorption bands especially between amid | and amid I
band [32, 33]. However, simulations have shown that the resulting
intensity artefact is minimized when objectives with high numeric
aperture are used [34]. Therefore, here a high numeric aperture of
0.62 is used. In addition we tested the second derivative which
minimizes the effects of the standing wave artefact. This resulted in

the same supervised classification of the colon cancer grading.

Therefore, we used the vector normalized spectra.

J. Name., 2013, 00, 1-3 | 3
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The resulting raw spectral maps were pre-processed using the
previously described workflow [22]. Strong artefacts possibly arising
from cracks or folds in the tissue were eliminated by quality control
based on the signal to noise ratio and the intensity of the amid |
band. The remaining spectra were subjected to a Mie and
resonance-Mie correction based on EMSC [27, 28, 29] in the
wavenumber range from 2300 to 950 em™. The correction is
performed with only one iteration step but a higher number of

iteration steps (up to 20) were tested due to low scattering effects
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Figure 3: The first RF detects different tissue types and pathological regions. The
spectra of tumorous regions were transferred to the second RF which determines the
grading of the cancer cells.

it does not alter the final classification. During the last step the
spectra were smoothed by a 9 point Savitzky Golay filter [30]
providing second derivative spectra for the unsupervised
multivariate methods like hierarchical and kmeans clustering. For
the RF classification the spectra were not smoothed and derivated.
For both methods the analysis was performed on the fingerprint

region from 1800 — 950 em™
Data selection and training of a supervised classifier

As we have shown before, the RF classifier is capable of
distinguishing tissue types and identifying cancerous regions in
colorectal tissue sections [22]. Here we established a hierarchical
application of two consecutive RFs (Fig. 3). Spectra annotated as
cancerous were isolated and furthermore analysed by a second RF
trained for recognizing the grade of differentiation of colorectal
carcinomas. Training data were acquired from two spots of G1 and

three spots of G2 and G3, respectively. Compared to the first RF

4| J. Name., 2012, 00, 1-3

Journal Name

using 100 data points in the fingerprint region, the second RF is
supplied with 385 data points on an equidistant wavenumber scale
from the wavenumber interval of 1800cm™ -950cm™. All
computations were performed in MATLAB (TheMathWorks Inc.,
Natick, MA, USA).

For this study 191 sample spots collected from 125 patients,
covering different carcinoma grades (1, 2 and 3) were analysed. 19
samples of 16 patients were annotated G1, 145 samples of 90
patients represent G2 and G3 was analysed within 27 samples of 19
patients (Tab. 1). The TMAs provided by US Biomax are
standardised and annotated by two clinical pathologists. The
microarrays were H&E stained after IR data collection. This allowed
us to compare the morphological characteristics of the tissue spots
with the index colour images provided by IR-SHP, leading to a good
correlation not only of tissue types but even regarding the grading
of colon carcinomas. This study was performed in two phases.
During the training stage, samples of each grade were selected
randomly, spectra were analysed and training spectra
representative for each grade were identified by visual inspection
supported by the expertise of a Biomax independent clinical
pathologist. The distribution of the measured patients over the
three TMAs is shown in table 1. The number of patients in the
training set is balanced (2 for G1, 3 for G2 and 2 for G3). From these
we established a training dataset of 987 representative spectra -
355 spectra for G1, 285 spectra of G2, and 347 spectra of G3. The
training data set is well balanced among the three dedifferentiation

grades.

Table 1: Summarization of the measured samples by their grading, the used TMA slides
and patient number used overall and for training.

Biomax ID chosen patients (cases) G1 G2 G3
C01002b 32(32) 6(6) 18 (18) 8(8)
BCO51111 70 (136) 6(9) 55 (110) 9(17)
€0722 23 (23) 4(4) 17 (17) 2(2)
No. independent Patients - validation 14 87 17
No. patients - training 2 3 2

In the validation stage the trained grading RF classifier was
validated on 14 patients with a well differentiated (G1), 87 patients
with a moderately differentiated (G2), and 17 patients with a poorly
differentiated (G3) tumour. This distribution represents the clinical
occurrence of colorectal adenocarcinomas with around 10 % well
(G1),

70% moderately (G2) and 20% poorly differentiated

carcinomas [35]. In the validation the data set has not to be

This journal is © The Royal Society of Chemistry 20xx
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balanced between the three grades. The prediction of the grading
RF was performed on the tumour spectra identified by the
previously published first RF [22]. The grading RF was trained with
5000 trees and 16 features randomly chosen from the spectral data
points per decision in the trees. We present the H&E stained images

of the core samples, combined with corresponding spectral images
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Figure 4: From A to C exemplary index colour images of the first RF are presented.
The high correlation between the H&E and the SHP can be seen. The colour code is as
follows: green and yellow hues denote connective tissue, white: musculature, cyan:
connective tissue with supporting cells, pink: lumen of the crypts, olive: blood, light
blue: mucus — these is occurring in tissue wholes and is highly influenced by
scattering effects as seen in A but it does not affect the tumour detection -, blue:
pathological connective tissue, orange: inflammatory tissue, red: tumour region. D)
The same spot as C but only the pathological regions are presented.

This journal is © The Royal Society of Chemistry 20xx
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that are the basis of the spectral grading of the tumour.

Results and discussion:

Classification of colon tissue and colon carcinoma by infrared

spectral histopathology

In the past we reported on the automated label free classification
of colon cancer tissue sections [22]. Such classification by the first
RF is shown in Fig. 4 in comparison with the H&E stained sample
image. We reached an accuracy of 96 % combined with a high
sensitivity of 94 % and a specificity of 100 %. This analysis was
performed on 46 randomly chosen independent samples. The
spectra that were classified as tumorous (see Fig. 4D) were further
analysed in the second RF which determined the grading of the

cancer cells.

SHP yields reliable classification of well differentiated colonic

carcinomas

For each grade one microarray tissue sample is shown as an
example in Fig 5. In total 191 tissue spots were measured and
analysed. The validation samples are presented, while the training
data originated from independent samples. Fig 5 shows the H&E
stained sample of a colorectal well differentiated cancer overlaid
with tumour class spectra of the RF based IR image. The cancerous
regions via IR-SHP are clearly identified. The grading is given by the
colour codes: G1 — well differentiated - in red, G2 — moderately
differentiated - in green and for G3 — poorly differentiated - in blue

pixels.

We have chosen a threshold value of 5 % of all tumour spectra for
the highest grade to be taken into account for the final classification
to prevent false classification. The occasionally visible pixels
annotating higher grades than G1 are isolated and mostly located at
the edge of tumour tissue. They represent between 3.5 % (G3) and
4.2 % (G2) of all spectra that were annotated as “tumour” by the
first level RF. The majority of 92.3 % of tumour spectra were
classified as G1, matching the annotation given by two clinical
pathologists at US Biomax. Thus, the lowest grade with cells
showing the least dedifferentiation of cancerous cells is reliable
recognized by the algorithm. The pixels of the SHP index colour
image match with the tumour cells quite well even at higher

maghnification of the H&E stained image. Small parts of the samples’

J. Name., 2013, 00, 1-3 | 5
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cancerous regions are shown at a higher magnification in Fig 5 A, B
and C. Tumour cells with barely visible changes in the morphology
of the nuclei were assigned by the classifier as G1 cancer. The RF
based spectral image derived from as a marker free method leads
to a precise classification of G1 colonic cancer tissue. This is
promising, because tumour grading provides information on
treatment and prognosis of colon cancer patients. Patients suffering
from an early detected well differentiated cancer have a better
prognosis and may be treated with a less aggressive medication,
providing a better and also individual treatment with positive
outcome and the consequence of a better health related quality of
life. For 19 of 191 samples, these were characterized as well
differentiated (G1). For 18 of these 19, the annotation by our
method was correct, leading to a sensitivity of 94 %. The lack of
false positive predictions results in a specificity of 100 % regarding
G1. Note that the indicators of sensitivity and specificity for the
evaluation of classifiers can only be specified for binary classifiers.
Thus we present these indicators (Fig. 8A) for each individual grade
against the remaining other grades, rather than providing

comprehensive indicators for the overall prediction of all three

grades. As a comprehensive indicator for all three classes, we

500 pm

Figure 5: H&E stained image overlaid with spectral false colour image representing
the annotation of tumour. The three grades are shown with different colours. G1 is
marked red, green was used for grade 2 and blue pixels represent G3.
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present a confusion matrix in Fig. 8B.

A significant fraction of cancerous regions in G2 samples is

classified as G1.

Fig 7 shows one exemplary tissue core sample annotated as G2
carcinoma by the pathologists’ annotation. The IR image is again
enlarged to the same resolution of the H&E stained image. The
overlay shows a compliance of the tumour identified with SHP and
cancerous regions visibly highlighted through the H&E staining. The
majority of spectra in this case have been classified as G1 or G2
represented by red and green pixels. Again small amount of isolated
G3 (blue) pixels (approximately 1 %) are scattered throughout the
index colour image. They have not been taken into account for the
analysis. In particular, 60 % of the tumour class spectra were voted
G1 while 39 % were classified as moderately differentiated (G2).
Thus the sample is annotated as a G2 tumour; even though the
large amount of over 60 % were annotated G1. This is reasonable
due to the fact that a tumour is never a homogenous mass of cells
in exact the same state of dedifferentiation. In routine

histopathological work up, the grading was performed according to

the less differentiated part of the tumour. There are always cells or

Figure 6: H&E stained sample of grade 2 tumour overlaid with IR spectral image.
The three colours red, green and blue cover again the three grades in ascending
order.

This journal is © The Royal Society of Chemistry 20xx
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whole regions present, still barely differing from their tissue of
origin. In the enlarged areas shown in Fig 6, tumour cells with
enlarged nuclei are visible. The changes in shape and morphology
during the progress of dedifferentiation are more pronounced as
compared to the G1 sample. In total, 145 core samples, annotated
as moderately differentiated (G2) carcinoma by clinical
pathologists, were in the dataset. 119 out of these 145 samples
were correctly predicted by SHP. The remaining 26 samples were
annotated as G3, but none was spectrally graded lower than the

grading by a pathologist.

G3 colorectal carcinoma shows the whole range of the

dedifferentiation progress.

Fig 7 shows a Biomax TMA sample annotated by Biomax
pathologists as G3 carcinoma, exhibiting diffuse regions of poorly
differentiated cells. The enlarged areas show selected regions with
a variety of cancer cells. The nuclei are big in relation to the cell
bodies and their shape differs distinctly from the healthy cells in

their tissue of origin. The morphology of tumour cells is prominently

Figure 7: H&E stained sample of a G3 colorectal carcinoma. The colour code is
used as before. All three grades are determined in this sample, with a high
amount of G3 (approx.34%), leading to the annotation matching the diagnosis
given by clinical pathologists.

This journal is © The Royal Society of Chemistry 20xx
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illustrated in the H&E stained sample, due to the massively up
regulated transcription activity necessary for high proliferation rate.
About one third (33.9 %) of all spectra annotated as tumour in this
sample, were classified as poorly differentiated (G3) carcinoma. The
rest is annotated as moderately differentiated (G2 - 44.4 %) and
21.6 % of tumour spectra were classified as well differentiated (G1).
With this outcome of the prediction the sample is annotated as G3
carcinoma that is matching also the pathologists’ diagnosis. In the
dataset were 27 core samples coming with the diagnosis of a G3
adenocarcinoma. The classifier predicted 25 out of 27 correctly.
Further 24 samples were annotated as G3 but were actually not
matching the pathologists vote. According to the 24 false negatives
regarding moderately differentiated (G2) samples, exact these 24
are presented here again as being annotated with a higher grade,
than by the pathologists. This might be due to the fact that the
intermediate G2 and G3 are broadly similar in their biochemical
status of the tissue. Tumour cells from G1 carcinomas, which are
still well differentiated, are better distinguished from the higher
grades than moderately (G2) and poorly (G3) differentiated each
other. None of the microarrays includes a sample of a G4
carcinoma; therefore, no analysis was possible of tissue and cells

showing anaplasia.

SHP analysis leads to a reproducible annotation of colorectal

carcinoma grading

Overall SHP predicted the given diagnosis of cancer grading in 85 %
of 191 cases of colorectal cancer tissue samples. For each grade the
sensitivity, specificity and accuracy was determined using standards
for evaluating a binary classifier. The prediction was assigned to
true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). These four basic values corresponding to the actual
diagnosis and classification outcome, built the basis of the
evaluation of the classifier. In Fig 8B the sensitivity, specificity and
accuracy for each grade is demonstrated in a diagram. The
sensitivity reaches from 83 % to 94 % giving the peak-ratio of the
automated annotation. The specificity is determined with values
from 87 % up to 100 % for well differentiated (G1) carcinomas. Both
values combined lead to the accuracy of the classifier. It reaches
from 86 % to 99 % as in Fig. 8A. Again this shows the improved
capabilities of our SHP approach in detecting G1 tumours. Summing

up these evaluations in a confusion matrix, the emphasis on the

J. Name., 2013, 00, 1-3 | 7
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Figure 8: A) sensitivity, specificity and accuracy determined for each grade. Note that these statistical values could refer only to a binary classifier. B) confusion matrix comparing

the prediction of the classifier with the annotation given by the pathologist (all values in %). Red colour indicates a high value of congruence. The red diagonal pattern is intrinsic

to in this presentation. The blue squares represent fields of mismatch and show low values.

identification of well differentiated (G1) is even more visible. Fig 8B
shows the confusion matrix of our classifier, with columns
corresponding to the actual value, in our case the diagnosis given by
the pathologists and rows corresponding to classification value, the
predicted grade via SHP. The matrix has a colour scheme for better
understanding, beginning with blue for low values and ending in red
for the high values. The desirable intrinsic diagonal pattern could be
seen in three red fields referring to the fact that the classifier
achieves high agreement rates. It illustrates also that well
differentiated (G1) has the best identification rates. In summary the
presented work demonstrates a workflow for fast, accurate and
reproducible annotation of colorectal carcinoma. Earlier we
presented that SHP is capable of distinguishing different tissue
types and disease patterns like cancerous tissue regions in
colorectal tissue sections and now we advance our work for
analysing the dedifferentiation state of tumour cells. It paves the

way to a precise and individual care for patients suffering from

colorectal carcinoma.

Conclusions

This follow up study present a new level in SHP for classification of
colon carcinoma. We demonstrate that FTIR imaging may not just
classify tissue morphology and identify tumour as has been
demonstrated in numerous previous studies, but is also able to
distinguish cell differentiation and thereby tumour grading. The

grading in addition to the detection of the tumour paves the way to

8 | J. Name., 2012, 00, 1-3

a better and more precise characterization of colon carcinoma. The
approach of using a hierarchy of two (or potentially even more)
spectral classifiers seems promising and should also lead to good
results in annotation and characterization of other diseases. [31]
Furthermore, our study utilizes higher order features — namely
relative proportions of areas associated with different grades — for
characterizing the samples.In our case, a label-free, robust, reliable,
operator independent and reproducible method for the
identification and characterization of colon cancer and its grading is

presented.
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