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How do polydisperse repulsive colloids crystallize?

Robert Botet,∗a Bernard Cabane,b Lucas Goehring,c, Joaquim Li,c and Franck Artznerd

A modified version of the Gibbs-ensemble Monte-Carlo method reveals how polydisperse charged
colloidal particles can build complex colloidal crystals. It provides general rules that are applicable
to this fractionated crystallization that stems from size segregation. It explains the spontaneous
formation of complex crystals with very large unit-cells in suspensions of nanoparticles with broad
size distribution.

1 Introduction
Fundamental physics requires experiments to observe, and theory
to explain. In principle, nothing more is needed for a complete
understanding of the phenomena. However, in some situations,
this sharing of the work is not sufficient, either because the ex-
perimental data are counter-intuitive (disagreement with the the-
ory) or because the theory itself is impracticable. If one these
case arises, numerical simulations turn out to be the essential tool
to complement our ideas through direct ‘observation’ of the the-
ory or through artificial changes of the microscopic rules (as in
a Maxwell’s demon-like approach to analyze the cause-to-effect
mechanisms).

In the present article, we discuss results of numerical simula-
tions dedicated to the comprehension of recent experiments in
which a dispersion of polydisperse repulsive nanoparticles was
compressed through osmosis. Details of the experiments will be
published elsewhere1. A suspension of ordinary colloidal silica
particles (Ludox, polydispersity 14%, average radius 8 nm), was
compressed through dialysis. This caused a spontaneous segre-
gation of the particles, fractionated crystallization and multiple-
phases coexistence (involving various crystal structures). For in-
stance, the low-compression part of the phase sequence was seen
to be: colloidal liquid at the lowest volume fractions, then nu-
cleation of the BCC crystalline phase at a silica volume fraction
φ > 0.19, and then coexistence of BCC + Laves AB2 crystal phases
for φ > 0.22. The complete phase diagram was found to be much
richer than expected according to current theories.

It is important to note that we do not describe here ordinary
fractionated crystallization caused by different solubilities of co-
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c Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen,
Germany.
d Institut de Physique, CNRS UMR 6626, Univ. Rennes, 35042 Rennes, France.

existing substances, but a new kind of fractionation that organizes
populations of particles with different sizes, and makes the best
use of available space. Without any theory at hand to explain the
formation of such uncommon structures as the Laves AB2 crys-
tals2, we used the Gibbs-ensemble Monte-Carlo method3 to un-
derstand the mechanisms used by the system to sort the various
particle sizes and to put them in the correct places.

Actually we encountered many unanswered questions from
the experimental data. The numerical simulations helped us
to answer some of them. We replicate hereafter this particular
state of mind, dividing our comprehension process in a series of
short questions and discussing the answers given by the numer-
ical study. The reader interested in a quantitative comparison
between the experimental data and the numerical simulations
should refer to1.

To close this Introduction, let us give a warning which might
be important when comparing experimental data with numerical
simulations: the regular Monte-Carlo method does not consider
real kinetic processes, but is the efficient tool to search for the
equilibrium state using the physical ground of free energy min-
imization. Then, the results presented below are linked to the
equilibrium state. If it is not the case (in experiments, in kinetic
numerical simulations), other intermediate crystalline structures
may appear for some time as unstable phases.

2 The system under study
We consider a dispersion of spherical hard particles. The surface
of each particle is electrically charged with 0.4 e/ nm2. The parti-
cle radius is denoted: a, and its value is Gaussian-distributed with
the average value 〈a〉= 8nm and standard deviation σ , truncated
to the range: [4 nm ; 12 nm] (that is: no radius is smaller than 4
nm or larger than 12 nm). The polydispersity, δ , of this population
is defined as: δ 2 = 〈a2〉/〈a〉2− 1. Then, the value of δ coincides
with σ/〈a〉 for the small values of σ , and has the limiting value
1/
√

12' 29% for the infinite value of σ (rectangular distribution).
Throughout the article, we shall take the value σ = 1.2 realizing
the polydispersity δ = 15% of the population.
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If large polydispersity (say δ > 25%) has to be considered, the
influence of moments of order larger than 2 should be studied,
that is to investigate various distributions – such as log-normal
or Schulz distributions – with the same values of 〈a〉 and δ . In
related problems, the shape of the radius-distribution is known
to be unessential4.

We consider here the DLVO theory5, in which the interaction
energy between two charged particles, labelled i and j, is gener-
ally of the Yukawa (screened-Coulomb) form:

Ui j/kBT = ZiZ j
lB
ri j

e−κri j , for ri j ≥ ai +a j (1)

where Zi is the effective charge of the particle i, and ri j the distance
between their centers. lB = 0.7 nm is the Bjerrum length, and
κ = 1/lD is the screening parameter, with lD = 3 nm the Debye
screening length in our experimental conditions. The values of lB
and lD are expected to be constant throughout the system.

Two definitions have to be stated:

• the energy at contact (i.e. using (1) for ri j = ai + a j), tradi-
tionally written: βε, is a central parameter for discussion. Its
averaged value is βε = 21.6 for the present set of parameters

• the potential energy per particle at equilibrium is here de-
noted generically: E. It is defined as the sum of the pair-
potentials (1) between all the couples of particles forming
the equilibrated system, divided by the total number of par-
ticles, after having minimized the system free-energy using
the Monte-Carlo method.

At small or intermediate volume fractions – namely: φ ≤ 0.41
for δ = 15% –, the Wigner-Seitz radius is larger than 〈a〉+ lD.
In these conditions, the attractive Van der Waals interaction
between silica spheres in water is smaller than the thermal
energy, kBT , then can be neglected. In the same way, we do not
discuss here controversial additional weak long-ranged attractive
pairwise potential such as appearing in the Sogami-Ise theory6.
Within our approach, such interaction would result in the same
results as in the case of the purely repulsive DLVO potential, with
an effective value of the osmotic pressure slightly larger than the
experimental pressure7.

3 Q1: which of the FCC or BCC crystalline
structures should appear for a system
made of polydisperse distribution of re-
pulsive particles at the thermodynamic
equilibrium?

A1 : systems of monodisperse particles interacting through repul-
sive Yukawa potential, form either FCC or BCC crystal structures
in the equilibrium solid phase8. The BCC phase appears when
φ < 0.5 and the Debye screening length lD is larger than a thresh-
old depending on φ . In all the other cases, the FCC phase is the
solid structure at equilibrium.

In the case of polydisperse particles, the question is more com-
plicated. Let us suppose first that the solid phase can only be FCC
or BCC, without coexistence (note that, for the parameters as cho-
sen, only the FCC crystalline phase can appear in the monodis-
perse case, since the value of lD/〈a〉 ' 0.38 is below the liquid-
BCC-FCC triple critical point). We performed random exchanges
of couples of particles in the system composed of either a sin-
gle FCC phase or a single BCC phase, according to the standard
Metropolis Monte-Carlo algorithm, until thermodynamic equilib-
rium is reached. The evolution of the difference of energy at
equilibrium per particle, (EFCC −EBCC)/kBT , versus the volume
fraction is plotted on the Fig.1, on which the monodisperse case
is also plotted for comparison. Unlike the monodisperse case, the
polydisperse population is seen to undergo a clear change in the
stability of the BCC/FCC structure: when φ > 0.3, the BCC crys-
tal is energetically more likely to appear than the FCC structure.
Moreover this trend increases with the volume fraction.

Fig. 1 Differences between the energies per particle of the FCC crystal
and of the BCC crystal, at equilibrium, versus the system volume
fraction, φ , for particles of average radius 〈a〉= 8 nm, Debye length
lD = 3 nm, density of charge = 0.4 nm−2. Black circles are the exact
calculation for the monodisperse case (δ = 0) ; red squares are from the
Metropolis Monte-Carlo method, 500,000 random particle-exchanges for
each of the 50 realizations of the random radius-distribution with
polydispersity δ = 0.15, on the 2662 sites of the BCC crystal, or the 2916
sites of the FCC crystal. Positive values of the energy difference indicate
that BCC structure should be the stable phase at the equilibrium. Then,
polydispersity favors the BCC structure for the high volume fractions.

This is the sign of correlated organization of the charges in the
system, decreasing the energy of the BCC crystal more efficiently
than for the FCC structure.

4 Q2: how do the polydisperse particles
distribute in a system with BCC crystal
coexisting with FCC crystal?

A2 : to understand why BCC becomes the stable phase when
polydispersity is high enough, we consider the problem of the
2-phases system (coexistence): let us then suppose that the pop-
ulation of polydisperse particles is arranged in part as a BCC
lattice and in part as a FCC lattice, with proportions ρBCC and
ρFCC = 1−ρBCC, respectively.
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To know the thermodynamic equilibrium of the system, we use
a variant of the Gibbs ensemble Metropolis random exchanges
of particles, introduced to study the thermodynamic evolution of
different phases coexisting in a liquid9. Particles are exchanged
randomly between the phases according to the usual Metropolis
Monte-Carlo scheme, keeping any time constant the total number
of particles, the total volume of the system and the temperature.
In this method, the homogeneous coexisting phases are simulated
in separated boxes without interfaces between the phases, and
each box is with periodic boundary conditions. Particle exchanges
occur either inside a single phase, or from different phases.

To make the approach more efficient, we sample the configu-
ration space into a finite number of configurations, for example
taking the 19 configurations corresponding to the coexistence of
one cubic BCC crystal and one cubic FCC crystal, the total sum of
the sites being in between 3500 and 4500 (in order to compare
systems of about the same total sizes). When thermodynamic
equilibrium is reached in every configuration, the total energy, E,
of the system is evaluated for each configuration. The program is
then scanning little by little the energy landscape of (a sampling
of) the configuration space, and the approximate partition func-
tion Z = ∑conf exp(−E/kBT ) gives access to all thermodynamic
quantity at equilibrium. The average value of the proportion of
the BCC phase at equilibrium is estimated through:

〈ρBCC〉=
1
Z ∑

conf
ρBCC e−E/kBT (2)

and similarly for 〈ρFCC〉.

Let us discuss the results for the value φ = 0.3 realizing the
equality of the pure BCC and pure FCC energies, as seen on
the Fig.1. As it could be expected, 〈ρBCC〉 = 〈ρFCC〉 = 0.5 is ob-
tained in this case because of the choice EBCC = EFCC for the
pure phases. However, the actual value of the energy per par-
ticle for BCC and FCC crystals of the same size, is found to be
E = 22.2 kBT , significantly lower than the value for the single
phase EBCC = EFCC = 23.0 kBT . This means that the system put
different particle distributions in the different phases. This hap-
pening is exemplified in the Fig.2 where the at-equilibrium radius
distributions in the two phases are compared for the configura-
tion corresponding to the BCC crystal of 2000 sites, and the FCC
crystal of 2048 sites. The radius-distribution in the FCC phase has
approximately the Gaussian shape with polydispersity 6.5%, that
is much smaller then the polydispersity (15%) of the total dis-
tribution including all the particles in the system. Consequently,
both wings of the initial Gaussian distribution distribute in the
BCC phase.

5 Q3: why does the BCC crystal accept han-
dling two modes of particle radius while
FCC sticks to one mode?

A3 : the detailed management of the initial radius-distribution
by the system results from the different abilities of the phases to
accept particles of different radii (that is here: of different elec-
tric charges). Following this idea, one can define a parameter of

Fig. 2 At-equilibrium radius-distributions of the particles located in the
phases of a system made of a FCC finite lattice of 2048 sites and of a
BCC finite lattice of 2000 sites, both with periodic boundary conditions.
The Gibbs Monte-Carlo scheme was applied with 300,000 random
particle exchanges and 50 random realizations of the total
radius-distribution (plotted as the dashed curve) with polydispersity
δ = 0.15, for the system volume fraction φ = 0.3, all other parameters as
listed in the caption of the Fig.1. The FCC phase takes all the particles
with radii close to the average value 〈a〉, letting the wings of the
distribution to be managed by the BCC lattice. The polydispersity of the
population of particles making the FCC lattice is 0.065 much smaller
than the polydispersity of the total distribution, δ = 0.15.

tolerance as the maximum relative decrease of the system energy
when changing the charges of a couple of particles, keeping the
total charge unchanged. More precisely, let us define the toler-
ance, τ, by the expression:

τ = min
{
−∆E

Uo

}
(3)

in which ∆E is the variation of the system energy when the
charges of two particles are changed from the initial values Z to:
2Z and 0, respectively, and Uo = Z2κlB is a reference energy for
the system. The minimum value in (3) is taken over all the possi-
ble positions of the couple of particles with modified charge. This
concept supposes that the system is able to detect the best (from
the point of view of the energy) relative positions of the two con-
cerned particles. Then the repulsive interactions are expected to
be long-ranged – as the Yukawa potential is –, even if the charac-
teristic lengths are finite. For a regular lattice with only one sort
of sites, the value of τ is given by the expression:

τ =
e−κro

κro
(4)

where ro is the value of the distance between nearest neighbours.
For the BCC lattice of volume fraction φ , one has

ro/a = (π
√

27/3φ)1/3, and for the FCC lattice at the same
volume fraction: ro/a = (π

√
32/3φ)1/3. Then, τBCC > τFCC for

all values of φ (for lD = 3 nm and a = 8 nm considered here:
τBCC/τFCC = 1.3, for φ = 0.3). This indicates that the FCC crystal
is less tolerant than BCC, or, equivalently, that changing the
charges of two particles following: Z→ 2Z, and Z→ 0 results in
a larger decrease of the BCC lattice energy than in the FCC case.
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This is the reason why, from the point of view of the energy, the
system prefers to fill the FCC lattice with particles of almost the
same charges, and to arrange the rest of the particles on the BCC
lattice.

As a conclusion, we propose here the ‘tolerance rule’ under the
form: in the case of coexistence of several phases, the less tolerant
phase prevails over all the other phases in the distribution of the
radii.

6 Q4: which information can the method
give about experiments of compression
of a system of charged polydisperse par-
ticles?

A4 : as explained in the Introduction, we explored recently col-
loidal crystallization of polydisperse Ludox HS silica nanopar-
ticles dispersed in water through near-equilibrium dialysis to
achieve very slow compression of the polydisperse suspension1.
We demonstrated that, in charge-stabilized colloidal dispersions
at intermediate compressions, the system exhibits two crystalline
phases, namely: a BCC phase and a Laves AB2 phase, in coex-
istence with liquid. Moreover, the FCC phase is missing. The
Laves AB2 crystalline system is known to be relevant for opal
structure10, and more generally for packing of bidisperse parti-
cles11 with radius ratio

√
2/3' 0.82. The tolerance of this phase,

as defined in (3), is such that: τAB2/τBCC = 3.55, in the experi-
mental conditions, then the Laves lattice is much more tolerant
than BCC to accepting uneven particles. Therefore, an argument
similar to the one developed in the Section B, leads to the con-
clusion that the BCC phase should collect most of the particles
close to the mode of the radius-distribution, while the wings of
the distribution should fill the AB2 phase.

To be more quantitative, the Gibbs ensemble Monte-Carlo
method was used for the system made of a BCC phase in coex-
istence with a AB2 phase. As previously, the ensemble average of
each crystalline phase proportion is evaluated after sampling the
configuration space. It results in the ensemble-average values:
〈ρBCC〉 = 0.52 ;〈ρAB2〉 = 0.48 corresponding to the respective vol-
ume proportions of the phases at equilibrium. Then, considering
the system close to these values, that is: a BCC crystal of 9×9×9
unit cells, and a Laves AB2 crystal of 5× 5× 5 unit cells, the re-
sulting respective radius-distributions are plotted on the Fig.3.

Here too, we find that the less tolerant phase (the BCC phase
in this case) collects most of the particles with radius close to the
average radius. The final polydispersity of the BCC phase parti-
cles is 7.5% in this example, emphasizing the role of the repulsive
interaction in the process, since that polydispersity exceeds signif-
icantly the terminal value 5.7% of the polydispersity of the crystal
phase made of hard spheres colloidal particles precipitating from a
fluid phase at equilibrium12,13 . Moreover, the AB2 phase is pretty
well filled with particles with the particle-radius ratio about 0.8,
the bigger particles being located in the octahedral sites, and the
smaller ones in the tetrahedral sites.

This suggests a simple “rule of thumb” for the respective pro-
portions of the two phases: suppose that the radii of the particles

Fig. 3 At-equilibrium radius-distributions of the particles located in the
phases of a system made of a BCC crystal of 1458 sites and of a Laves
AB2 crystal of 1500 sites, both with periodic boundary conditions. The
Gibbs Monte-Carlo scheme was applied with 300,000 random particle
exchanges and 50 random realizations of the total Gaussian
radius-distribution with 〈a〉= 8 nm, polydispersity δ = 0.15, for the
system volume fraction φ = 0.3, all other parameters as listed in the
caption of the Fig.1. The BCC phase takes most of the particles with
radii close to the average value 〈a〉, letting the wings of the distribution
be managed by the AB2 lattice. The polydispersity of the population of
particles making the BCC lattice is 7.5% to be compared with the
polydispersity of the total distribution, δ = 15%. The two modes of the
AB2 radius-distribution are the vertical red segments, respectively at 6.9
nm for the tetrahedral sites, and at 9.3 nm for the octahedral sites. The
ratio between these two values is 0.74 close to the value 0.82 for the
AB2 packing of hard spheres. Compared with the Fig.2, one can easily
understand that the system prefers the present configuration for which
all the modes are nearly at the correct place (unlike the BCC phase on
the Fig.2, which had to be filled with a bi-disperse distribution).

filling the less tolerant phase are distributed in the Gaussian shape
with polydispersity smaller than the overall polydispersity δ , and
almost all the particles of radius 〈a〉 belong to this phase. Calcu-
lating the two modes of the remaining radius-distribution of the
particles in the high-tolerant phase is then a simple exercise. If
we constrain the ratio between the two radius modes to be

√
2/3

for the system to fit efficiently the AB2 phase †, then one finds the
relation:

ρB '
δ ?

δ
(5)

with ρB the proportion of the less-tolerant phase at equilibrium,
and δ ? = 5−

√
24 ' 10%. In (5), we approximated : 2lnρB/(1−

1/ρ2
B)' ρB.

Interpretation of the equation (5) is as follows: when δ < δ ?

the only less-tolerant phase (here : BCC) can exist ; when δ > δ ?,
the proportion of the BCC phase is a decreasing function of the
polydispersity, δ , of the system, that is: polydispersity favors the
search for more tolerant phases.

It is worth noting that appearance of the Laves phase in this
context can be related to a work on bidisperse particles14. In-
deed, such complex crystal structures were found to be sponta-
neously stabilized in the case of mixtures of spherical particles
with two different diameters, interacting via simple repulsive po-
tentials. This was shown by numerical simulations using the ther-
modynamic integration technique. However, our case is a priori
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much more surprising since there is not, at the beginning, any
’magic’ radii ratio.

7 Q5: how long-ranged should the interac-
tion be between the particles?

A5 : The physical parameters that we considered up to now are
rather typical of short-range interaction, namely: exponential de-
crease in (1) with a characteristic length lD = 3 nm much smaller
than the nearest-neighbor distances, which are of order 20 nm.
Then it is natural to ask the question whether the only nearest-
neighbors are important or if the farther neighbors play a role
too.

A quick answer is given considering the monodisperse case for
the BCC or FCC lattices. In these cases, one knows the analyti-
cal formula for the energy per particle as a series in the orders
of the neighbors, then it is easy to compare the energy when
only the nearest-neighbors are considered. For the same param-
eters as in the caption of the Fig.1 and φ = 0.3, the only first-
neighbors give the results: E(1)

BCC/kBT = 24.98 < E(1)
FCC/kBT = 29.79

which seems to show that the BCC crystal is more stable than
the FCC crystal. But including the second-neighbors turns round
that conclusion, as: E(2)

BCC/kBT = 30.47 > E(2)
FCC/kBT = 30.32. Tak-

ing into account all the neighbors confirms the latter conclusion:
E(∞)

BCC/kBT = 30.82 > E(∞)
FCC/kBT = 30.51. Actually, this discussion

was about the point δ = 0 ; φ = 0.3 ; (EFCC−EBCC)/kBT =−0.31
of the Fig. 1. Then, even if lD/ro � 1, one must consider more
than the only nearest-neighbors to get the correct conclusion
about stability of the crystals.

To check the relevance of this ‘long-range versus short-range’
question in the case of the coexistence of BCC and AB2 phases
of polydisperse particles, we cut the Yukawa potential (1) right
after the first nearest-neighbors (three kinds of sites are to be
considered: one for the BCC lattice, the tetrahedral site and the
octahedral site of the AB2 lattice). Then, the second- and farther
neighbors of a given particle do not interact with it any more.
The main results are conveniently visualized on the Fig. 4, after
plotting the energies per particle of the system in phase coex-
istence versus the composition of the system (characterized by:
ρBCC = 1−ρAB2 and ρAB2 as the respective volume proportions).

The conclusion is that the number of neighbors considered is
relevant in the energy profile versus the composition of the sys-
tem. In the example in the Fig. 4, the system is probably a pure
BCC crystal if the Yukawa interaction is cut at the first-neighbors,
while coexistence of BCC and AB2 phases is clear when all the
neighbors are taken into account.

8 Conclusions – what did you learn from the
method?

In the case of the fractionated crystallization, the Gibbs ensemble
Monte-Carlo method does not predict the nature of the phases at
equilibrium. However, it can provide essential help for a quantita-

† in principle, one should consider ratio of effective radii based on the energy density.
This does not change the equation (5) but the value of the limit polydispersity δ ? which
generally depends on the system volume fraction.

Fig. 4 Energies at equilibrium per particle of the system of BCC crystal
in the proportion 1−ρAB2 coexisting with a Laves AB2 crystal in the
proportion ρAB2. Equilibrium is reached after 300,000 random particle
exchanges and 50 random realizations of the Gaussian
radius-distribution with polydispersity δ = 0.15, for the system volume
fraction φ = 0.3 and total number of sites between 2500 and 3500, all
other parameters as listed in the caption of the Fig.1. The open circles
are for the total Yukawa interaction, while the red triangles are for the
Yukawa interaction truncated at the nearest-neighbors (the respective
black and red continuous line are guides for the eyes). The black (resp.
red) dashed line is the energy of the pure BCC phase considering all the
neighbors (resp. the only first-neighbors). The statistical error bars are
of order 0.1kBT . When all the neighbors are included, the system
energy reaches the minimum value for ρAB2 ' 0.42 (to be compared to
the average value 〈ρAB2〉 ' 0.48 found in the Section 6 using the partition
function). On the other hand, all the results including the only
nearest-neighbors are found to be above the energy of the pure BCC
lattice, indicating that the system should not consider the AB2 phase if
the Yukawa interaction was truncated. As a matter of fact, the difference
nearest-neighbors/all-neighbors is essentially important only for the less
tolerant crystalline structure in this case (i.e. the BCC phase).

tive description of the crystals in coexistence (such as: the respec-
tive volumes of the phases, the particle size-distributions in each
phase, etc.) as well as the fundamental mechanisms leading to
the final composition at equilibrium, within the framework of the
DLVO theory. In the two cases presented here (the FCC+BCC and
the BCC+AB2 systems), spontaneous self-assembly processes sort
out particles from a broad polydisperse population and build dif-
ferent sets of colloidal crystals with structures that are adapted to
a best use of this population. One process selects the most popu-
lar particles to build a first set of crystals (the less tolerant crystal)
and “burns” a hole in the original population of particle sizes. The
residual particle population then resembles a bi-disperse mixture,
and a second process makes use of the remaining sub-populations
on either side of the “hole” to construct other crystals (more tol-
erant). This process of sieving is probably general and leads nat-
urally to sequence of fractionated colloid crystallization governed
by the tolerance rule. On the basis of what we know about the bi-
nary nanoparticles systems11,15, we can expect still more complex
superlattices to be built spontaneously that way for still larger
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polydispersities.
This description of the mechanisms is close to the idea by

Pusey16 in a different context – idea which has been validated
much later through numerical simulations17 and theoretical
developments13 –, that suspensions of highly polydisperse hard
spheres might crystallize by splitting the broad overall distribution
into a number of narrower distributions, each of which being
accommodated within a single crystalline phase.

We shall close this presentation with three discussions about
the limitations of the numerical method.

• The method does not consider the real kinetics of the mech-
anisms, then reliability of the method for the large volume
fractions may be questionable since movements of the parti-
cles can be hindered. However, for systems of spherical par-
ticles, repulsive interactions act as lubrication between the
particles and generate ergodicity. In other words, local rear-
rangement of the particles (related to the system capability
to reach thermodynamic equilibrium) is facilitated by the re-
pulsive interactions, and more precisely by the value of the
energy at contact. This is no more the case in the opposite
situation of the attractive interactions, resulting generally in
non-equilibrium patterns18.

• In principle, the method cannot predict the phases at equi-
librium, since it supposes to have a priori information – or to
make guess – about the phases in coexistence. However, one
should note that if large unit crystal cells is being formed in
the system, no numerical kinetic method (e.g. molecular dy-
namics) can nowadays predict the phases, due to essential
computing limitations.

• a last but fundamental question is the role of the liquid phase
in coexistence with crystals. In principle, the same Gibbs
ensemble Monte-Carlo method for a system of two crystal
phases plus a liquid phase can be used if a fast-computing
free energy method is at hand for the liquid phase. The
optimized random-phase approximation (ORPA) is a good
candidate for a systematic study. This approach could help
to solve the similar problem with large polydispersities. In-
deed, in this case, the wings of the charge-distribution func-
tion are probably too wide to be incorporated in the only
Laves AB2 phase, and the system should choose the liquid
phase as a reservoir of unfitting particles (too large or too
small), expressing the high tolerance of the liquid phase.
However, experimental data for such systems with large
polydispersity are scarce, and it is not clear whether such
a system will choose intensively use of the liquid phase (i.e.
melting the phases) or if it will find another crystalline struc-
ture with a still larger unit crystal cell.
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