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Dynamics of Dissipative Self-Assembly of Particles Interacting 

through Oscillatory Forces  

M. Tagliazucchi
a,b

 and I. Szleifer
a
 
 

Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy 

and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena 

and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of 

dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, 

Brownian Dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of 

particles coated with weak acids and bases under continuous oscillations of pH. The pH of the system modulates the 

charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-

assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important 

conclusions of our study are: i) in the limit of fast oscillations, the whole dynamics (and not only the non-equilibrium 

steady-state) of a system of particles interacting through time-oscillating interparticle forces can be described by an 

effective potential that is the time average of the time-dependent potential over one oscillation period. ii) The oscillation 

period is critical to determine the order of the system. In some cases order is favored by very fast oscillations while in 

others cases small oscillation frequencies increase order. In the latter case, it is shown that slow oscillations remove kinetic 

traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady-state.   

Introduction  

Colloidal self-assembly is a topic of both fundamental 

interest and practical relevance. Colloids are unique and 

versatile tools to study important problems in self-assembly, 

such as the effect of shape and directional interactions,
1-7

 

symmetry breaking,
8
 kinetic versus thermodynamic control,

9, 10
 

the role of entropy
1, 7, 11-14

 and far-from-equilibrium self-

organization.
8, 15-21

 Further, developments in colloidal self-

assembly enable new avenues for the fabrication of 

nanoparticle-based devices for applications in electronics,
22, 23

 

batteries,
24

 photodetectors,
25

 photonics
3, 26

 and bioanalysis.
27

 

The great majority of experimental and theoretical work in the 

area of colloidal self-assembly is focused on equilibrium 

systems. However, there is a recent and widespread interest in 

self-organization far from thermodynamic equilibrium. Far-

from-equilibrium self-organization, also known as dissipative 

self-assembly,
16

 requires a continuous influx of energy into the 

system and energy dissipation by the system into its 

surroundings. While equilibrium colloidal self-assembly is 

relatively well understood, we still know very little about the 

rules that govern dissipative self-assembly as well as its 

potential advantages and limitations.
28

 Here, we build on our 

previous work on dissipative self-assembly via the oscillation of 

interparticle interactions
20

 and provide new insights about the 

dynamics of this process. 

 In dissipative self-assembly, the particles in the system 

couple to a source of energy that keeps the system far from 

equilibrium. This coupling can be either invariant in time or 

periodically modulated. Examples of systems where the 

coupling remain invariant in time are colloidal spinners driven 

by a constant torque,
19, 29

 charged particles in constant electric 

fields
8, 18

 and particles that self-propel with a constant  force.
15, 

21, 30
 On the other hand, when the coupling between the 

system and the energy source is periodically modulated, some 

external or internal variable must oscillate in time, such as the 

strength of the interactions between particles
17, 20, 31-33

  or the 

magnitude and direction of an external field.
5, 7, 16, 34-37

 In these 

cases, the system evolves in time toward a non-equilibrium 

steady-state (NESS) that is oscillatory in nature: the properties 

of the system in the NESS are equivalent at time t and at time 

t+τ (where τ is the oscillation period).  

Dissipative systems may have more than one NESS,
38

 so an 

important and open question is how to control the evolution 

of these systems toward a specific NESS. This problem is, of 

course, analog to the problem of finding the conditions that 

direct the evolution of equilibrium self-assembly toward a 

determined local minimum of the free-energy. However, 

dissipative systems involve an additional level of complexity 

Page 1 of 13 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

due to the lack of variational principles, such as the 

minimization of free energy that rules equilibrium systems.  

In the present work, we explore the dynamics of a dissipative 

system of particles interacting through oscillatory forces as 

they evolve toward a NESS. Our model dissipative system, 

introduced in our previous work,
20

 is a mixture of colloids 

under periodic pH oscillations, where half of the particles are 

coated by weak acids and the other half by weak bases. We 

analytically prove here that the whole dynamics of dissipative 

self-assembly in the limit of fast oscillations is described by an 

effective potential that is the time average of the oscillatory 

potential. We numerically confirm this result showing that two 

systems that have different oscillatory potentials, but the 

same effective potential, exhibit the same dynamics in the 

limit of fast oscillations. Finally, we examine the effect of the 

oscillation period on the dynamics and outcome of dissipative 

self-assembly and show that in some cases order is favored by 

fast oscillations, but in others slow oscillations increase the 

homogeneity of the system by allowing particles to escape 

from kinetic traps.  

Theoretical Methods 

We studied the dissipative self-assembly of particles 

interacting through oscillatory potentials in a mixture of 

colloids coated by weak acids functionalities (a-type particles) 

and colloids coated by weak basic functionalities (b-type 

particles) under continuous oscillations of the solution pH. The 

charge of a-type and b-type particles change with pH 

according to the acid-base equilibrium of the charged groups 

on their surfaces. Neglecting charge regulation effects,
39-41

 the 

charges of the particles are determined by the expressions for 

the acid base equilibria, i.e. 

( )0

1

1 10
a pH pKa
z z

− −
= −

+
         (1) 

for a-type particles and 

( )0

1

1 10
b pH pKa
z z

−
=

+
         (2) 

for b-type particles. For simplicity, we use here the same 

maximum absolute charge (z0) and pKa (pKa = 5) for both 

types of particles. Figure 1A shows a plot of the charge of the 

particles as the pH is varied from 3 to 7 and back to 3. For pH = 

3, a-type particles are almost neutral and b-type particles have 

a charge of z0. For pH = pKa = 5, a-type particles have a charge 

of -½⋅z0 and b-type particles have a charge of ½⋅z0. Finally, for 

pH = 7, a-type have a charge of –z0 and b-type particles are 

almost neutral. We oscillate the pH of the system with a period 

τ using either a triangular (Figure 1B) or a sawtooth (Figure 1C) 

pH-time program, see below. We also explore in this work the 

situation where the pH is oscillated between 3 and 5 with a 

triangular program, Figure 1D. 

 

 

 
Figure 1: A. Charge of a-type and b-type particles as a function of the solution pH 

(determined with equations (1) and (2). In this work, the pH was oscillated in time 

between pH 3 and pH 7 following a linear triangular (B) or sawtooth (C) program or 

between 3 and 5 with a triangular program (D).   

 

 We model the evolution of the system using Brownian 

Dynamics (BD) in a 2D box with periodic boundary conditions. 

The equation of motion in BD is: 

( ) ( )2 0i
B i i i

d
k T t u

dt
ξ ξ− + −∇ =
r

R r     (3) 

where ri and ui are the position and potential energy of particle 

i, respectively; ξ is the drag coefficient and Ri(t) is a Gaussian 

random force acting on particle i with components Rij(t) that 

have zero mean, 〈Rij(t)〉 = 0, and delta-function correlation, 

〈Rij(t)⋅Rij(t)’〉 =  δ(t-t’). The drag coefficient is related to the 

particle diffusion coefficient and diameter (σ) and the solvent 

viscosity (η) by, 

3Bk T

D
ξ πησ= =            (4) 
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Equation (3) is similar to the Langevine equation,
42

 but 

neglecting the inertial term as the characteristic inertial 

timescale is much smaller than the diffusional timescale. The 

first two terms in equation (3) model the friction of the solvent 

and the random collisions of its molecules with the particles, 

respectively. The last term in equation (3) models the 

conservative forces. For simplicity, we neglect the 

hydrodynamic forces between the particles and between the 

particles and the substrate.  

The interparticle potential is pairwise-additive and results 

from the combination of a screened electrostatic potential and 

a short-range repulsive potential (we neglect many body 

effects
43

). Since the ions are considered implicitly in our 

system, the interaction between particles is modeled with a 

Yukawa potential, which describes electrostatic interactions 

screened by mobile ions,  

 

0 0

( ) e D

r

jYuk i
ij

zz C
u r

z z r

λ
−

=          (5)  

 

In equation (5),  λD is the solution Debye length (we used 

λD = 1.5σ in all calculations) and C is a constant that 

determines the strength of the electrostatic potential in the 

system, given by 

 

( )

2

0

2

4

2

D

Bz e
C

σ
λ λ

κσ
=

+
           (6) 

 

where λB is the Bjerrum length. The short-range repulsions are 

modeled using the repulsive component of the Lennard-Jones 

potential, 

 

12

( )rep

iju r
r

σ =  
 

           (7) 

 

Finally, we cut-off and shift the total interparticle as: 

 

  

u
ij
(r) =

u
ij

rep
(r) + u

ij

Yuk
(r) − u

ij

rep
(r
cutoff

) + u
ij

Yuk
(r
cutoff

) 
0

 for  r < r
cut−off

 for  r ≥ r
cut−off

 (8) 

 

We use a long cut-off radius rcut-off of 8σ in order to assure 

  
u
ij

rep

(r
cutoff

) + u
ij

Yuk

(r
cutoff

) < 0.05k
B
T  for all conditions studied. 

We performed BD simulations in two dimensions with a 

home-developed parallel code that allows modifying the 

interparticle potential in each time step. In all cases, we 

simulated 2500 particles and started from a disordered system 

of particles interacting only through repulsive LJ potentials. 

The simulation time step was 10
-6

 td.  

We use dimensionless variables: lengths are normalized by 

the diameters of the colloids, σ, and times by the 

characteristic diffusion timescale, td = σ2
/D (where D is the 

particle diffusion coefficient). In the Supporting Information of 

our previous work,
20

 we discussed the conversion from 

dimensionless units to real units and showed that dissipative 

self-assembly of particles with diameters of 10 nm to 1 µm 

would require oscillation periods of microseconds to seconds.    

Results and Discussion 

Dissipative Self-Assembled Structures 

In our previous work,
20

 we performed a systematic 

investigation of the self-assembled morphologies that form 

upon pH oscillations in a system with equal number of a-type 

and b-type particles. Figure 2 shows the morphologies 

reported in our previous work and additional morphologies 

that result from changing the ratio of a-type to b-type 

particles. All these morphologies were obtained in the limit of 

very fast oscillations (τ → 0).  

The dimers are the predominant structure for a 1:1 

composition at density ρ = 0.11 part⋅σ-2
. However, under these 

conditions we also observe the formation of a few trimers 

(both a2b and ab2) as well as isolated a and b particles. 

Increasing the fraction of a-type particles to 2:1 produces a2b 

trimers (again with some a, b and ab impurities). Interestingly, 

increasing the a:b ratio beyond 2:1 does not produce colloidal 

molecules with more than two a-type particles per b-type 

particle (i.e. we do not obtain a3b, a4b, etc). We will show 

below that such colloidal molecules are unstable when the pH 

is oscillated between 3 and 7, but they can form by oscillating 

the pH between 3 and 5.  

For ρ = 0.39 part⋅σ-2 
and a:b = 1:1, we observe fibers 

formed by the head-to-tail association of dimers. For ρ = 1.0 

part⋅σ-2
, we observe crystalline lattices for a:b = 1:1 and 2:1. 

Even though these crystals have a large number of defects, it is 

possible to identify their unit cell, whose composition is equal 

to the global composition of the system. For a:b = 1:1, we 

obtain a honeycomb structure with an hexagonal unit cell 

(already reported in our previous work
20

). For a:b = 2:1, the 

system forms an open square lattice.  

Finally, for ρ = 1.56 part⋅σ-2
, the system is compressed 

beyond the density required to close pack hard disks with 

diameter σ (1.15 part⋅σ-2
). In these conditions (which are not 

experimentally achievable but are discussed here for 

completeness) we observe the formation of a square lattice 

(with a small hexagonal distortion) for a:b = 1:1, as was 

reported in our previous work.
20
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Figure 2: Morphologies of the dissipative self-assembled systems. The snapshots show 

the morphologies obtained in the limit of very fast oscillations (τ → 0, obtained using 

an effective potential, see below), C = 1000 kBT⋅σ, a triangular pH-time program (Figure 

1B) and the following densities and compositions: dimers, ρ = 0.11 part⋅σ-2
 and a:b = 

1:1; trimers, ρ = 0.11 part⋅σ-2
 and a:b = 2:1; fibers, ρ = 0.39 part⋅σ-2

 and a:b = 1:1; 

honeycomb, ρ = 1.0 part⋅σ-2
 and a:b = 1:1; open squares, ρ = 1.0 part⋅σ-2

 and a:b = 2:1; 

square, ρ = 1.56 part⋅σ-2
 and a:b = 1:1. Only part of the simulation box is shown. The 

diameter of the colloids is σ in all cases; red and blue particles represent a-type and b-

type particles, respectively.  In the cases where the system forms a periodic lattice, we 

show the unit cell of the lattice as an inset in the upper right corner of the panel. 

Analytical Analysis of the Dynamical Evolution of Particles 

Interacting through Oscillatory Potentials in the Limit of Fast 

Oscillations. 

In our previous work,
20

 we demonstrated that the non-

equilibrium steady state (NESS) of a system of particles 

interacting through oscillatory forces in the limit of very fast 

oscillations is equivalent to the equilibrium state of a system of 

particles interacting via a non-oscillatory effective potential. In 

that demonstration, we used a power series expansion of the 

Fokker-Planck equation in terms of τ, the period of the 

oscillation. We now use a different approach in order to prove 

a more general result: we show here that the effective 

potential describes the full kinetics of the non-equilibrium 

systems for very fast oscillations (not only for the NESS), i.e. 

the effective potential describes the whole dynamics of the 

system as it approaches its NESS.   

We start by writing down the Fokker-Planck equation for the 

system,
42

 

 

( , ) ˆ ( , )
p t

Lp t
t

∂
=

∂
r

r            (9) 

where p(r, t) is the probability density at time t, i.e. the 

probability to find the system at r (where r is the vector of the 

positions of all particles in the system) at time t. The Fokker-

Planck operator L̂  is defined as: 

 

( ) ( ) ( ) ( )( )ˆ , , , ,Lp t D p t p t U t= ∇ ∇ + ∇r r r r    

                (10) 

where U(r, t) is the potential energy of the system. We will 

consider the evolution of the system during the period of an 

oscillation, τ. Let us first assume that there exists a time-

independent effective potential, Ueff, that describes the 

evolution of the system. In that case, U (and therefore ˆ
effL ) 

are time-independent and thus there is a formal solution for 

equation (9), which is given by,
32

  

 

( )ˆ( , ) exp ( , )effp t L p tτ τ+ =r r         

                (11) 

Here, ˆ
effL  is the time-independent effective Fokker-Planck 

operator. Expanding the exponential as a power series of τ⋅
ˆ
effL  results in: 

 

2 21ˆ ˆ( , ) 1 ... ( , )
2!

eff effp t L L p tτ τ τ + = + + + 
 

r r   

                (12) 

Let us now focus on the system of particles interacting 

through oscillatory forces. In that case, U and L̂  depend on 

time and thus equation (11) is no longer a solution of the 

Fokker-Planck equation. However, we can divide the oscillation 

period τ in infinitesimally small time steps dt = τ/N, such that U 

and L̂  are time-independent within each time step. We then 

propagate the probability density from t to t + τ using these 

small time steps: 

 

( )( ) ( )( )
( ) ( )( )

1,

( , )

ˆ ˆexp ...exp ( , )

ˆexp / / ( , )
j N

p t

dt L t Ndt dt L t dt p t

N L t j N p t

τ

τ τ
=

+ =

⋅ + ⋅ +

= ⋅ +∏

r

r

r

  

                (13) 

Expanding the exponentials as power series yield, 

 

   

p(r , t + τ ) =

1 + τ / N( ) ⋅ L̂ t + jτ / N( ) +
1

2 !

τ / N( )2

⋅ L̂ t + jτ / N( )2

+ ...




 p(r , t )

j=1 ,N

∏
  

 

                (14) 

We expand the multiplications and group terms of same 

power in τ,  
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( )

( ) ( ) ( )

1,

2

2

2
1, , 1,

1 ˆ( , ) 1 /

ˆ ˆ ˆ/ / /1
... ( , )

2

j N

j N i j N j N

p t L t j N
N

L t j N L t i N L t j N
p t

N N N

τ τ τ

τ τ τ
τ

=

= = =


+ = + ⋅ + +



  + + +
⋅ − +        

∑

∑ ∑ ∑

r

r

 

(15) 

 

The terms of order τ2
 in eq. (15) cannot be factorized as 

the square of a summation due to the fact that L̂ (t) and L̂ (t’) 

do not commute for t ≠ t’ because U depends on t. 

We define h = j/N, k = i/N, dh = dk = 1/N and take the limit dt 

→ 0 and N → ∞,  

( )

( ) ( )

1

0

1 1

2

0

ˆ( , ) 1

ˆ ˆ ... ( , )
h

p t dhL t h

dhL t h dkL t k p t

τ τ τ

τ τ τ


+ = + + +



 
+ + +     

∫

∫ ∫

r

r

  

                (16) 

We note that 

 

( ) ( )

( ) ( ) ( )

( ) ( )( )

1

0

1

0

ˆ ,

, , ,

, , ( )eff

dhL t h p t

D p t p t U t h dh

D p t p t U

τ

τ

 
+ = 

 

  
∇ ∇ + ∇ +     

= ∇ ∇ + ∇

∫

∫

r

r r r

r r r

   

                (17)

          

where Ueff(r) is the average of the potential energy of the 

system over one oscillation period, i.e. 

 

( )
1

0

( ) ,effU U t h dhτ= +∫r r          

                (18) 

Note that since U(r,t) is a periodic function with period τ, 

Ueff(r) does not depend on t. Equation (17) suggests the 

convenience of defining the operator,  

 

( ) ( ) ( )( )ˆ , , , ( )
eff eff
L p t D p t p t U= ∇ ∇ + ∇r r r r    

                (19) 

and rewrite eq. (16) in terms of this operator: 

 

(

( ) ( )
1 1

2

0

ˆ( , ) 1

ˆ ˆ ... ( , )

eff

h

p t L

dhL t h dkL t k p t

τ τ

τ τ τ

+ = + +

 
+ + +     

∫ ∫

r

r

   

                (20) 

 

Comparison between equations (12) and (20) shows that 

these two equations agree up to first order in τ. In other 

words, the whole evolution of the system of particles 

interacting via oscillatory potentials can be described in terms 

of a system of particles interacting through an effective non-

oscillatory potential Ueff only when the terms of second order 

and greater in τ can be neglected in eq. (20). This is the limit of 

very fast oscillations, τ → 0. Note that we did not require non-

equilibrium steady-state (NESS) conditions in this derivation 

(unlike the derivation in our previous work
20

), therefore, we 

proved that the effective non-oscillatory potential can be used 

to describe the whole dynamics of the oscillatory system (and 

not only the NESS) in the limit of fast oscillations.  

 If only pairwise interactions are present, the effective 

potential is given by, 

1 1

1

2

N N
eff

eff ij

i j

U u
= =

= ∑∑            (21) 

where 
eff

iju is the effective potential between particles i and j. 

In the present example, the interparticle potential is a 

combination of a short-range LJ repulsion and a screened 

electrostatic interaction (Yukawa potential). The pH 

oscillations affect the charge of the particle and, therefore, the 

screened electrostatic potential changes in time, but the 

repulsive part of the potential is time-independent. The 

effective potential, therefore, is   

 

2

0

( ) ( ) ( )

( ) e D

eff rep Yuk

ij ij ij

r

i jrep

ij

u r u r u r

z z C
u r

z r

λ
−

= + =

⋅
+

      (22) 

 

where 
1

... ... 

t

t

dt

τ

τ

+

= ∫  and we omitted the cut-off scheme 

for simplicity. The effective potential is, hence, dictated by the 

factor
i j
z z⋅ , whose exact value depends on the shape of 

the pH-time program. The potentials in Figures 1B (linear 

triangular potential) and 1C (linear saw-tooth potential) have 

the same values of
i j
z z⋅ because the value of 

i j
z z⋅

when the pH is linearly ramped from 3 to 7 is equal to that 

when the pH linearly decreases from 7 to 3 and it does not 

depend on the rate at which the pH changes. Therefore, 

according our analytical results, the two potential programs in 

Figures 1B and 1C should produce the same dynamics and non-

equilibrium steady-state in the limit τ → 0. We show next 

simulation results that confirm this prediction. 

 

Simulation of the Dynamical Evolution of Particles Interacting 

through Oscillatory Potentials in the Limit of Fast Oscillations 

Figure 3A shows the time evolution of the average bond-

order parameter of order 2, 2ψ , as a function of the simulation 

time for the formation of fibers (a:b = 1:1, ρ = 0.39 part⋅σ-2
). 

We define the average bond-order parameter of order n as, 

 

Page 5 of 13 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

  

ψ
n
t( ) =

1

N
part

ψ
n
( j,t)

j=1

N
part

∑          (23) 

 

where Npart is the total number of particles and ψn(j,t) is the 

bond-order parameter of particle j at time t, which we define 

as,
44-46

 

 
 

Figure 3: Bond-order parameter of order 2 ( 2ψ ) as a function of simulation time for 

a:b = 1:1, ρ = 0.39 part⋅σ-2
 and C = 1000 kBT⋅σ and an oscillation period τ of (A) 0.008, 

(B) 0.08, (C) 0.8 and (D) 8 td. Values of 2ψ  close to one indicate the formation of a 

well-ordered fiber morphology. Black and red lines show the results of simulations 

where the pH was varied with the triangular program (shown in Figure 1B) and the 

sawtooth program (shown in Figure 1C), respectively. Blue lines show the result of a 

simulation using the effective potential given by equation (22) (this result is 

independent of τ and, thus, the same curve is shown in all panels). 

 

( )( ) ( )
( )

( )

1

1
exp for 

( , )       ( )
for 

0

NN j

jk

kn

n t i NN j n
j t NN j

NN j n

θ
ψ =

≥
=

<
∑  

                (24) 

where i = 1− , NN(j) is the number of nearest neighbors of 

the particle j within a distance of 1.5⋅σ and θjk is the angle 

between the vector formed by the centers of particle j and k 

and a fixed (arbitrary) axis. The order parameter ψn(j,t) has a 

maximum value of one when particle j has n neighbours 

separated by angles of 2π/n. Therefore, the fiber structure is 

well characterized by the order-parameter of order two: the 

larger 2ψ , the closer the system is to a perfect straight fiber.  

The black and red lines in Figure 3A show the time-

evolution of 
 
ψ

2
 for a simulation where the pH was oscillated 

with the triangular linear program (Figure 1B) and the 

sawtooth linear program (Figure 1C), respectively. In this 

panel, the oscillation period (τ = 0.008 td) was much smaller 

than the characteristic diffusional time-scale of the system (td). 

The blue line shows the results of a simulation performed with 

the time-independent effective potential given by equation 

(22). As we already mentioned, both the triangular and the 

sawtooth linear programs have exactly same effective 

potential. We observe that, in the limit of fast oscillations, the 

2ψ  vs time curves for the triangular program, the sawtooth 

program and the effective potential overlap, as predicted by 

our analytical results. Note that the degree of agreement of 

the 2ψ  vs time curves decreases as the frequency of the 

oscillation decreases (Figures 3B, 3C and 3D). Figure 4 shows 

snapshots of the system for the triangular and sawtooth 

potentials at a simulation time of 4 td for  τ = 0.008 td and 8 td. 

For  τ = 8 td, the morphologies produced by the triangular and 

the sawtooth potentials are very different. However, both pH-

time programs yield well-ordered fibers for τ = 0.008 td, in 

agreement with the results in Figure 3 and our analytical 

predictions.  

   

 

 
Figure 4: Simulation snapshots at a simulation time of 4 td for the same conditions of 

Figure 3.  
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Effect of the Frequency of pH Oscillations on the Dissipative Self-

Assembly of Colloidal Molecules 

The values of 2
ψ  in Figure 3 are maximal in the limit of very 

fast oscillations, τ → 0, i.e. fast oscillaLons favor the formaLon 

of well-order fibers. However, we show in this section that this 

conclusion is not general and that small oscillation frequencies 

can lead to more homogeneous mixtures of colloidal 

molecules than those obtained in the limit of very large 

frequencies.  

As we mentioned above, when the pH is oscillated 

between 3 and 7, we only observe a, b, ab and a2b particles 

(and ab2 for systems rich in b-type particles). The effective 

potential allows us to assess the relative stability of each 

molecule in the system by calculating its potential energy in 

the limit of fast oscillations. Figure 5 shows the energy gain (or 

loss) upon formation of different colloidal molecules based on 

the effective potential. The predictions show that when the pH 

is oscillated from 3 to 7, the only stable aib colloidal molecules 

are ab and a2b, in agreement with the simulation results. The 

rest of the colloidal molecules are unstable because in the 

effective potential, the a-a repulsions are stronger than the a-

b attractions.
20

 This situation changes by oscillating the pH 

from 3 to 5 (see Figure 1D), since in those conditions the 

charge of the a-type particles is (on average) smaller than that 

of the b-type particles. Therefore, a-a repulsions are weaker 

than a-b attractions and the latter are weaker than b-b 

repulsions. Figure 5 shows that when the pH is oscillated 

between 3 and 5, colloidal molecules with stoichiometries ab, 

a2b, a3b and a4b can be obtained. Colloidal molecules with 

stoichiometries a5b and a6b have U < 0, but they are unstable 

with respect to the loss of satellite particles: breaking down 

a5b particles into a4b and a particles is energetically 

favourable.  

 

 

 

 
Figure 5: Potential energy of aib colloidal molecules determined in the limit τ → 0 with 

the effective potential, when the pH was oscillated with a triangular program between 

3 and 7 (red points, pH program in Figure 1B) or between 3 and 5 (blue points, pH 

program in Figure 1D).  

We estimated the population of each colloidal molecule in 

the NESS as a function of the density ρ and composition a:b 

using the energies in Figure 5 (see details in the Supporting 

Information). The calculation was done assuming equilibrium 

statistical mechanics with the effective potentials, since in the 

fast oscillation limit we have proven that to be the proper 

description.
20

 Table 1 shows the predicted fractions, f
p
(aib), 

which we define as the number of particles in the system that 

belongs to a colloidal molecule with composition aib. We 

observe that for compositions 1:1, 2:1 and 3:1, the predicted 

stoichiometry of the predominant molecules is the same as the 

global composition of the system, while for 9:1, our 

calculations predict a mixture of isolated a particles and a4b 

colloidal molecules because a5b and a6b particles are unstable. 

 
Figure 6. Snapshots showing the colloidal molecules formed in simulations where the 

pH was oscillated between 3 and 5 (program in Figure 1D), for τ → 0, ρ = 0.11 part⋅σ-2
 

and different a:b compositions. The fractions of each type of colloidal molecule for 

each different composition are summarized in Table 2 

Figure 6 shows snapshots for simulations where the pH 

was oscillated between 3 and 5 in the limit of high frequencies, 

for ρ = 0.11 part⋅σ-2
 and different compositions a:b. In all 

cases, we observe mixtures of different colloidal molecules. 

Table 2 shows the fractions of the different colloidal molecules 

in the systems of Figure 6. The populations of colloidal 

molecules predicted using the potential energy of the 

molecules (Table 1) and those actually observed in the 

simulations (Table 2) are very different. In the simulations, we 

observe a broad distribution of stoichiometries, while 

energetic arguments predict that almost all colloidal molecules 

should have a stoichiometry equal to the global composition of 

the system. This discrepancy arises because the colloidal 

molecules form within the first 1-3 td of simulation time (we 

start from a disordered system) and, after that time, particles 

cannot be exchanged between colloidal molecules. The 

fraction of each colloidal molecule in the system is, therefore, 

dictated by its formation kinetics during the initial stage of the 

simulation. This result means that for fast pH oscillations the 

system gets trapped in a non-equilibrium steady-state other 

than the most stable one, exactly in the same way as an 
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equilibrium system can get trapped in a local (rather than the 

global) minimum of free-energy.  

 

Table 1: Fraction of particles in the system that belong to colloidal molecules of 

different stoichiometries, f
p
(aib) for ρ = 0.11 part⋅σ-2

 and different a:b compositions 

calculated from the potential energy of each molecule (see Supporting Information). 

The fractions of a5b y a6b is zero in all cases. 

a:b 
   

a b ab a2b a3b a4b 

1:1 0.00 0.03 0.87 0.10 0.00 0.00 

2:1 0.00 0.00 0.00 0.99 0.00 0.00 

3:1 0.00 0.00 0.00 0.00 1.00 0.00 

9:1 0.50 0.00 0.00 0.00 0.00 0.50 

 

 

 

Table 2: Fraction of particles in the system that belong to colloidal molecules of 

different stoichiometries, f
p
(aib) obtained from simulations for ρ = 0.11 part⋅σ-2

 and 

different a:b compositions in the limit τ→0 (see Figure 6). The fractions of a5b y a6b is 

zero in all cases. 

 

a:b 
   

a b ab a2b a3b a4b 

1:1 0.00 0.17 0.40 0.32 0.11 0.00 

2:1 0.00 0.03 0.18 0.30 0.33 0.16 

3:1 0.02 0.01 0.05 0.16 0.29 0.47 

9:1 0.47 0.00 0.03 0.01 0.00 0.47 

 

 

 

 
Figure 7: Fraction of the particles in the system that belong to aib colloidal molecules, 

f
p
(aib), as a function of the simulation time for different values of the oscillation period, 

τ and pH oscillations between 3 and 5 (pH program in Figure 1D). At the simulation 

times indicated with arrows, the period of pH oscillations was switched to τ = 0.008 td. 

Other simulation conditions: a:b = 2:1, C = 1000 kBT⋅σ and ρ = 0.11 part⋅σ-2
. 
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So far, we have shown that the effective potential allows to 

determine the conditions required to form dissipative self-

assembled colloidal molecules, but it does not provide a way 

to avoid the kinetic traps that prevent the system from 

reaching its most stable NESS. We show next that these kinetic 

traps can be partially removed by the appropriate choice of 

the pH-oscillation period. In Figure 7A we plot the time course 

of the fraction of particles that belong to a2b molecules in a 

system with a:b = 2:1 and ρ = 0.11 part⋅σ-2
 for oscillations 

periods of 0.008, 0.8 and 8 td. For τ = 0.8 and 8 td, f(a2b) 

oscillates due to the oscillations of pH, but its value averaged 

over one period in the NESS (0.43 for τ = 0.8 td and 0.57 for τ = 

8 td) is clearly larger than the value observed for very fast 

oscillations (0.30 for τ = 0.008 td). Inspection of the simulations 

shows that decreasing the oscillation period allows the 

exchange of a-type particles between colloidal molecules. 

Particle exchange occurs because a-type are almost neutral for 

pH = 3 and therefore at that pH there is no net a-b attraction. 

For very fast pH oscillations, a-type particles at pH 3 cannot 

diffuse fast enough to travel from one colloidal molecule to 

other before the pH changes. Note that electrostatic 

interactions in our system are rather strong (we used C = 1000 

kbT⋅σ in eq. (5)), therefore breaking the electrostatic bonds is 

very difficult if both a-type and b-type particles are charged. As 

the oscillation frequency decreases, the particles become able 

to escape from their original colloidal molecule, diffuse and 

attach to a different colloidal assembly. In the case of a 2:1 

mixture, this process leads to a neat formation of a2b 

molecules, which is the expected product according the 

energetics of the system, see  Table 1.  

For τ = 8 td, the fraction of a2b particles displays large 

oscillations in time. In an attempt to maximize f(a2b), we 

switched the oscillation period from τ = 0.8 or 8 td to τ = 0.008 

td when f
p
(a2b) passed through a maximum. Figure 7A shows 

that f
p
(a2b) remains stable after switching to fast oscillations 

(the switching times are shown with arrows). Figures 7B show 

the time evolution of the fraction of particles for the colloidal 

molecules different than a2b. The increase of f
p
(a2b) as the 

oscillation period increases is accompanied by a decrease in 

the fraction of the other colloidal molecules, especially free a-

type, free b-type and a4b particles, which drop to almost zero 

for τ = 8 td.  

Figure 8 shows a plot of the final fraction of a2b particles as 

a function of the period of the oscillations. We observe that 

f
p
(a2b) increases up to τ ∼ 8 td and then remains constant (our 

data is noisy for large τ, for which the pH only oscillates a few 

times during the simulation). In the critical time scale of t ∼ 8 

td, a particle can diffuse an average distance of (4Dt)
1/2

 = 5.7 σ. 

This distance agrees well with the average distance between 

colloidal molecules (estimated from the number of colloidal 

molecules and the area of the simulation box) of 5.2 σ, which 

confirms that the rate of a2b formation is limited by the ability 

of a-type particles to exchange between colloidal molecules. It 

is also interesting to note that f(a2b) saturates around 0.63. In 

order to understand why larger f(a2b) cannot obtained, we 

show in Figure 9 snapshots of the system at the end of the 

simulation (112 td) for τ = 0.008 and 8 td. Molecules of 

different stoichiometry are shown in different colors. For τ = 8 

td, the system is mainly composed by ab, a2b and a3b 

molecules. These three types of molecules are not 

homogeneously distributed, instead we observe regions rich in 

ab assemblies and other regions rich in a3b colloids. The 

presence of regions that have different local compositions, 

which form due to random fluctuations during the initial 

assembly process, is the reason that prevents complete 

conversion to a2b in the time scale of the simulation: a low 

oscillation frequency allows particles to exchange within 

colloidal molecules in a region, but it cannot eliminate longer-

range heterogeneities of local composition.  

 

 
Figure 8: Fraction of a2b colloidal molecules at the end of the simulation as a function 

of the oscillation period.   
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Figure 9: Simulation snapshots at t = 112 td for the simulation of Figure 7.  A quarter of 

the simulation box (∼ 625 particles) is shown in each panel. The particles are colored 

according to their stoichiometry: white for isolated a and b particles, blue for ab, cyan 

for a2b, red for a3b and pink for a4b. 

  

The results presented in this section show that slow pH 

oscillations can produce more ordered systems than fast 

oscillations. This result is applicable to the formation of 

colloidal molecules in systems with compositions different 

from 2:1, for example Figure 10 shows results for a system 

with a 3:1 composition. In this case, slow frequencies favor de 

formation of a3b assemblies, which is the expected 

stoichiometry considering the global composition of the 

system. Moreover, our results are consistent with work in 

literature on the self-assembly of particles interacting through 

oscillatory forces. For example, Swan et al. studied the self-

assembly of a magnetorheological fluid in the present of a 

toggling magnetic fields, whose oscillations allow the particles 

in the system to escape kinetic traps and form ordered 

structures.
34, 35

 Simulations by Jha et al.
31

 and Risbud et al.
32

  

studied the crystallization of particles whose interactions were 

turned on and off periodically and showed that there is an 

optimal and finite switching period that maximizes long-range 

order in the system. A common strategy that allows systems to 

jump over potential barrier, used in equilibrium systems, is to 

increase temperature. Periodically modulating the potential of 

the system also allows to jump over potential barriers, but it 

grants greater control over the final product than increasing 

the global temperature. A temperature jump increases the 

kinetic energy of the whole system, while changing the 

frequency of the oscillations provides for control of the length 

that a particle can diffuse and what are the initial and final 

states that the changing potentials provide. Thus, as a general 

conclusion, it is worthwhile to stress the role of the oscillation 

period as a handle to control the outcome of a dissipative self-

assembly process. This handle has no equilibrium counterpart, 

which reinforces the idea that future synthetic dissipative 

systems may exhibit abilities for dynamical response and error 

correction well beyond the potential of equilibrium self-

assembly. 
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Figure 10: Same as Figure 7 for a:b = 3:1 

 

 

 

Conclusions 

 In this work, we examined the dynamics of a dissipative 

system as it evolved toward a non-equilibrium steady-state. 

We demonstrate two important results. First, we showed using 

analytical theory and exemplified with numerical simulations 

that the whole dynamics of systems with time-oscillating 

interparticle potentials can be described, in the limit of fast 

oscillations, by an effective time-independent potential. This 

effective potential is the time average of the oscillatory 

potential. Dissipative systems may exhibit more than one non-

equilibrium steady-state, for example magnetic spinners on 

the air-water interface may arrange in different patterns, each 

one corresponding to a different steady-state.
16, 38

 It is 

unknown which of these steady-states is the most stable one 

or if it is even correct to think as one of them as being more 

stable than the others. In the particular case of particles 

interacting through fast oscillatory forces, we solved this 

problem by demonstrating the existence of an effective 

potential, which maps the non-equilibrium problem into an 

equilibrium one. This result allows applying the tools of 

equilibrium thermodynamics to the study of dissipative 

systems. For example, we used the effective potential to 

calculate the energy of colloidal molecules of different 

stoichiometries and then applied the tools of equilibrium 

statistical mechanics to calculate the fraction of each of these 

molecules in the (most stable) non-equilibrium steady-state of 

the system. 

The second important result of the present paper is related 

to the effect of the oscillation period on the formation of 

order. We observed that in some cases (i.e. formation of 

fibers), ordered structures are favored by fast oscillations, 

while in others (formation of colloidal molecules) slow 

oscillations increase the order of the system by allowing it to 

escape from kinetic traps. Previous works have shown that 

oscillating interparticle forces can assist the crystallization of 

colloids.
31, 32, 34

 Our results on colloidal molecules are related 

to these effects previously reported in the literature, with the 

difference that in previous works the colloidal crystals were an 

equilibrium product of the system (and the oscillations were 

introduced as perturbations), while in our case the colloidal 

molecules are dissipative structures that cannot be obtained in 

the absence of pH oscillations. The efficiency of trap removal 

by oscillating interparticle forces will, of course, depend on the 

details of the interparticle potential and should probably be 

analyzed on a case-per-case basis. 

We arrived to the conclusions mentioned in the previous 

paragraphs by analyzing a system of particles coated by weak 

acids and bases under pH oscillations.  This system is appealing 

to study dissipative self-assembly due to the richness of 

structures that it produces as well as its chemical relevance. 

However, our conclusion about the existence of a non-

oscillatory potential that describes the dynamics of particles 

interacting through oscillatory forces is valid for any oscillatory 

potential. We believe that this conclusion also applies to 

systems under oscillating external fields and we will analyze 

this case in the future. Our work exemplifies two interesting 
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aspects of dissipative self-assembly that are unavailable to 

equilibrium self-assembly: i) the effective potential depends on 

the how of the interparticle potential is oscillated in time (e.g. 

the shape of the pH-time program). This dependence provides 

a dynamic handle to engineer the interactions among particles 

that is unique to dissipative systems, ii) the oscillations play 

the dual role of controlling the effective potential among 

particles and of removing kinetic traps, which results in an 

unique ability of dissipative systems of avoiding kinetically 

arrested states and provides a potential avenue for self-

healing and error correction. 
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