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Millisecond single-molecule localization microscopy combined with 

convolution analysis and automated image segmentation to determine 

protein concentrations in complexly structured, functional cells, one cell at a 

time 

 

Adam J. M. Wollman, Mark C. Leake 

 

Abstract 

 

We present a single-molecule tool called the CoPro (Concentration of Proteins) method that 

uses millisecond imaging with convolution analysis, automated image segmentation and 

super-resolution localization microscopy to generate robust estimates for protein 

concentration in different compartments of single living cells, validated using realistic 

simulations of complex multiple compartment cell types. We demonstrates its utility 

experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding 

yeast cells, and use it to address the biological question of how signals are transduced in 

cells. Cells in all domains of life dynamically sense their environment through signal 

transduction mechanisms, many involving gene regulation. The glucose sensing mechanism 

of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses 

the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted 

genes in the presence of elevated extracellular glucose concentrations. We fluorescently 

labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration 

at physiological expression levels in living S. cerevisiae cells, in addition to the RNA 

polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we 

make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and 

nucleus compartments on a cell-by-cell basis under physiological conditions.  These 

estimates indicate a ~4-fold shift towards higher values in concentration of diffusive Mig1 in 

the nucleus if the external glucose concentration is raised, whereas equivalent levels in the 

cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This 

compares with Nrd1 which is not involved directly in glucose sensing, which is almost 

exclusively localized in the nucleus under high and low external glucose levels. CoPro 

facilitates time-resolved quantification of protein concentrations in single functional cells, 

and enables the distributions of concentrations across a cell population to be measured. 

This could be useful in investigating several cellular processes which are mediated by 

proteins, especially where changes in protein concentration in a single cell in response to 

changes in the extracellular chemical environment are subtle and rapid and may be smaller 

than the variability across a cell population. 
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1. Introduction 

 

A number of different methods already exist for quantifying protein copy number in cells, 

mainly involving bulk ensemble average biochemical techniques of cell lysates, including 

tag-affinity quantification and mass spectrometry,
1
 but more recently, using fluorescence 

measurements on living cells. Affinity methods (reviewed here
2
) involve tagging a protein of 

interest and quantifying it using western blots or ELISA, and have achieved zeptomolar (i.e. 

100s molecules/cell) resolution.
3
 The entire yeast proteome has been mapped using affinity 

methods.
4
 Mass spectrometry combined with chromatography can generate peptide 

spectra which can be identified using peptide databases
5
 and has been used to map the 

proteome in the malaria parasite, Plasmodium falciparum.
6
 Fluorescence detection has 

been used with flow cytometry to measure the copy numbers of >4,000 GFP tagged proteins 

in S. cervisiae.
7
 Comparing the cytometry results with western blots, proteins with >8,000 

copies/cell were precisely quantified. However, the sensitivity of detection fell off steeply 

with lower copy numbers, and at copy numbers equivalent to 2,000-4,000 molecules per 

cell this sensitivity dropped to ~50%. Fluorescence detection using microscopy methods 

have enabled more precise quantification -  for example a YFP-tagged chromosomally 

integrated protein library was used by Taniguchi et al. with live cells investigated using 

fluorescence microscopy combined with automated microfluidics to study the E. coli 

proteome.
8
 

 

In our study here, we have developed a fluorescence microscopy single-molecule tool we 

call the CoPro (Concentration of Proteins) method to generate robust estimates of protein 

concentrations inside different subcellular compartments of living cells. To characterize our 

method we used robust simulations of realistic complex cell shapes and compartments 

corresponding to typical rod-shaped prokaryotic bacteria and spherical eukaryotic yeast 

cells. We then applied our approach experimentally using E. coli bacterial cells containing 

fluorescently labelled replisome component, DnaQ, labelled protein to compare against the 

earlier method of Taniguchi et al, used for their E. coli proteome studies. Following this we 

ultimately applied the method experimentally to a more complex budding yeast cell system 

for which we could control the protein concentrations in different subcellular compartments 

by precise manipulation of the extracellular environment. The glucose sensing pathway of 

budding yeast was an excellent choice in this regard, offering a complex cellular system 

which has multiple subcellular compartments and with the protein concentrations of key 

regulators of the signal transduction response known to vary in response to extracellular 

glucose concentration, from earlier biochemical and standard epifluorescence microscopy 

studies.  

 

All cells dynamically sense their environment through signal transduction mechanisms, and 

in the majority of these mechanisms gene regulation is involved to respond to 

environmental changes (a notable exception being chemotaxis in many bacteria such as 
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E. coli which utilize a protein-only regulatory network in the cell). These gene regulatory 

mechanisms rely on cascades of protein-protein interactions which transmit signals from 

sensory elements to responsive elements within each cell. The glucose sensing mechanism 

in budding yeast, Saccharomyces cerevisiae, is a model system for the study of signal 

transduction which involves gene regulation. The multi-copy inhibitor (a protein called 

Mig1) of the GAL gene expression protein is an essential transcription factor in this 

mechanism. Mig1 is a Cys
2
-His

2
 zinc finger DNA binding protein

9
 which binds several 

glucose-repressed promoters.
10–13

 In the presence of elevated concentration levels of 

extracellular glucose it is poorly phosphorylated and predominantly located in the 

nucleus
14,15

 where it recruits a repression complex to the DNA.
16

 If extracellular glucose 

concentrations levels are depleted, Mig1 is phosphorylated by the sucrose non-fermenting 

protein (Snf1)
17–19

, resulting in a redistribution of mean localization of Mig1 into the 

cytoplasm.
14,20,21

 Thus, Mig1 concentration levels in the cell nucleus and cytoplasm serve as 

a readout of glucose signal transduction in budding yeast.  

 

Standard epifluorescence microscopy has been used previously to quantify the ratio of 

mean fluorescence pixel intensity of GFP tagged Mig1 in the cytoplasm with the nucleus in 

live budding yeast cells.
15

  Bendrioua at al. used microfluidics assays to observe changes in 

this ratio of mean intensity values in real-time in response to glucose changes. They 

observed a rapid (<1 min) response of cells to extracellular glucose concentration changes in 

a history-dependent manner dependent on cells’ previous exposure to glucose, indicative of 

cellular sensory adaption. However, using these methods they were not able to quantify the 

absolute number of Mig1 molecules in the nucleus or the cytoplasm but relied instead only 

on the fluorescence intensity as an uncalibrated readout of Mig1 concentration. Here, we 

have used our home-built single-molecule narrowfield microscope, in combination with 

automated super-resolution localization microscopy, image segmentation and convolution 

analysis, to directly quantify the concentration of Mig1 in the nucleus and cytoplasm of live 

yeast cells at high and low glucose concentrations. 

 

In narrowfield microscopy, the area of a collimated epifluorescence laser excitation field in 

the focal plane is reduced compared to conventional epifluorescence by an order of 

magnitude to have a typical width of 5-10 μm which can be concentrated to illuminate just a 

single cell, similar to Slimfield which has a comparable sized beam waist in the focal plane 

but is generated using a focused laser beam in the sample.
22

 Both narrowfield and Slimfield 

illumination generate high local excitation intensity fields of typically a few kW cm
-2

, which 

enable single fluorescent protein detection above camera readout noise at millisecond 

sampling times, which is required to track the movement of individual molecules diffusing in 

relatively low viscosity cellular environments, such the cell cytoplasm
23

. We have previously 

used millisecond imaging to quantify the concentration of bacterial replisome protein 

components in single E. coli bacterial cells.
24

 In our study here, we extend these methods to 

quantify the concentration of fluorescently labelled molecules in more complexly structured 
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yeast cells. These cells have a total volume an order of magnitude greater and have 

significantly higher level of native autofluorescence. They also contain complex subcellular 

compartments, potentially with different concentrations in different compartments. 

 

A narrowfield fluorescence image of a cell compartment containing fluorescently-labelled 

components is comprised of four principal intensity components: 1. a background signal 

from camera noise; 2. a cellular autofluorescence background from naturally fluorescent 

molecules which are native to the cell; 3. foreground spots of fluorescence of varying 

degrees of brightness corresponding to one or more fluorophores which have been 

introduced in the cell to label specific molecular components – fluorophores which are 

colocalized in space to within less than the optical resolution limit of 200-300 nm are 

detected as being part of the same ‘fluorescent spot’ (for example, a molecular complex of 

effective diameter of a few nm may be composed of N repeating subunits of the same 

protein, and if this protein subunit is labelled with a single specific fluorophore, the 

brightness of the fluorescence spot that we observe in the far-field diffraction-limited 

regime of our microscope is N times the brightness of a single fluorophore) within the 

microscope depth of field; 4. a background pool of, typically, rapidly diffusing, fluorescently-

labelled molecules that are not detected as distinct spots of fluorescence. 

 

Each of these separate intensity components must be quantified to obtain the total 

concentration of fluorescently-labelled molecules. The autofluorescence background and 

camera noise were characterized by narrowfield microscopy images of wild-type parental 

cells (i.e. cells containing no fluorescent protein labelling). The mean intensity of the 

autofluorescence was subtracted from the fluorescence signal to obtain the fluorescent 

protein foreground signal. The number of molecules in distinct ‘spots’ or ’foci’ of 

fluorescence, which have a mean effective diameter of a few hundred nm consistent with 

the measured point spread function (PSF) width of our microscope, was measured using our 

bespoke super-resolution localization microscope
25,26

 which could objectively track 

automatically detected candidate fluorescent spots over time using robust probabilistic 

criteria. The brightness of these spots can be compared against a separate calibration 

obtained for the brightness due to a single fluorophore (for example, one can measure step-

like intensity changes due to photobleaching of single fluorescent protein molecules 

obtained in separate in vitro experiments in which single fluorescent protein molecules have 

been immobilized via specific chemical conjugation to a microscope coverslip surface).  

 

2. Materials and Methods 

 

2.1 Strains and growth conditions 

 

We used a DnaQ-GFP E. coli strain, adapted from DnaQ-YPet
24

 by PCR amplification of eGFP 

with A206K mutation
27

 for monomerization, and kan I using primers with 50 nt overhangs 
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homologous to the insertion region.  E.coli strains were grown in 56 salts minimal media 

supplemented with 4% glucose and grown overnight at 37˚C. We used the MATa MIG1-GFP-

HIS3 NRD1-mCherry- hphNT1METLYS S. cerivisiae strains in the BY4741 background.
15

 Yeast 

strains were grown in YNB minimal media supplemented with 4% glucose overnight at 30 ˚C. 

 

2.2 Purification of fluorescent proteins 

 

His-tagged mCherry and GFP genes were amplified by PCR and cloned into PET vectors. 

These were transformed into BL21 PLysS E. coli and grown to saturation overnight in 2l 2YT 

media supplemented with 20 mg/mL kanamycin. Overnight cultures were induced with 

100 µg/ml IPTG and allowed to express protein for 5 hours at 20˚C. Induced culture was 

pelleted by centrifugation, resuspended in lysis buffer (10% glycerol, 50 mM Tris-HCl, 

150 mM NaCl, 10 mM imidazole, 1 mM DTT, pH 8) and lysed by sonication. Lysate was 

cleaned by centrifugation and the supernatant applied to pre-packed NTA columns (His 

Gravitrap, GE Healthcare) equilibrated with lysis buffer at 4˚C. The column was washed with 

lysis buffer before protein was eluted with lysis buffer supplemented with 500mM 

Imidazole. 1 mL fractions were collected and run on a denaturing gel. Fractions containing 

the protein were pooled and dialysed overnight in storage buffer (50% glycerol, 50 mM Tris-

HCl, 150 mM NaCl, 10 mM imidazole, pH 8). The protein was then aliquoted and flash frozen 

in liquid nitrogen to be stored at -80 ˚C. 

 

2.3 Narrowfield microscope 

 

A bespoke inverted fluorescence microscope was constructed using a Zeiss microscope body 

with a 100x TIRF 1.49 NA Olympus oil immersion objective lens and a xyz nano positioning 

stage (Nanodrive, Mad City Labs). Fluorescence excitation used 50mW Obis 488nm and 

561nm lasers. A dual pass GFP/mCherry dichroic with 25nm transmission windows centred 

on 525nm and 625nm was used underneath the objective lens turret. The beam was 

expanded 0.5x and 1x for imaging bacteria and yeast cells respectively with a series of 

lenses on selectable flipper mounts, to generate an excitation field of intensity ~6 Wcm
-2

. 

Beam intensity profiles were measured directly by raster scanning in the focal plane while 

imaging a sample of fluorescent beads. A high speed camera (iXon DV860-BI, Andor 

Technology, UK) was used to image at typically 5ms/frame (this rapid sampling speed was 

required to image diffusing molecules in the cell) with the magnification set at ~80 nm per 

pixel. The camera CCD was split between a GFP and mCherry channel using a bespoke 

colour splitter consisting of a dichroic centred at pass wavelength 560 nm and emission 

filters with 25 nm bandwidths centred at 525 nm and 594 nm. The microscope was 

controlled using our in-house bespoke LabVIEW  (National Instruments) software.  

 

2.4 In vitro microscopy 
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In vitro experiments were performed in a simple tunnel slide flow-chamber constructed 

from strips of double-sided tape creating a channel on a standard glass microscope slide and 

covered with a plasma-cleaned BK7 glass coverslip, creating a chamber 5-10 µl in volume, 

using a protocol adapted from earlier studies.
28,29

 In brief, the PSF was measured using 

20 nm diameter fluorescein beads (Invitrogen) diluted by a factor of 1,000 in PBS and one 

volume injected into the flow chamber. Beads were left to sediment onto the coverslip for 

10 min with the chamber inverted before excess beads were washed out with 10 flow-

chamber volumes of PBS. In vitro fluorescent proteins, GFP and mCherry were imaged by 

flowing one flow-chamber volume of 1 µg/ml anti-GFP or anti-DsRed antibodies 

respectively. After 5 min incubation at RT in the inverted flow-chamber excess antibody was 

washed away with 10 flow-cell volumes of PBS. One flow-cell volume of 1 µg/ml fluorescent 

protein was then injected, incubated for 5 min and washed. To focus on the coverslip 

surface in brightfield, 1,000-fold dilution of 300 nm diameter polystyrene beads (Invitrogen) 

was added to the slide, incubated and washed.  

 

2.5 In vivo microscopy 

 

Budding yeast and E. coli cells were imaged on agarose pads.
24

 In brief, gene frames (Life 

Technologies) were stuck to a glass microscope slide to form a well and 500 µl YNB or 56 

salts, for yeast or E. coli, plus 1% agarose pipetted into the well. The pad was left to dry at 

room temperature before 5 µl overnight yeast or E. coli culture was pipetted in 6-10 

droplets onto the pad. This was covered with a plasma-cleaned glass coverslip and imaged 

immediately. The overnight yeast culture was used as high (4%) glucose concentration and 

4% glucose included in agarose pad. For low glucose concentrations, the overnight culture 

was spun down, washed and resuspended in YNB with no glucose. Imaging consisted of 

finding a cell in brightfield mode, recording a stack of 10 brightfield images before taking 

stacks of 100-1,000 frames of fluorescent images for each fluorescent channel separately.  

 

2.6 Image analysis 

 

The diffusive pool fluorescence (due to particles which diffused too rapidly, and/or which 

were too dim, and/or which were too close together to be detected as a distinct fluorescent 

spot) was modelled as a 3D convolution integral of the normalized PSF, P, of our imaging 

system, over the whole cell. Figure 1 illustrates the model diagrammatically in the case of a 

simple spherical cell. Each camera detector pixel of physical area ΔA has an equivalent area 

dA in the conjugate image plane of the sample mapped in the focal plane of the microscope, 

such that dA=ΔA/M where M is the total magnification between the camera and the sample. 

The measured intensity, Iˈ, in a conjugate pixel area dA is the sum of the foreground 

fluorophore intensity I plus autofluorescence (Ia) plus detector noise (Id). I is the is the sum 

of the contributions from all of the non-autofluorescence fluorophores in the whole of the 

cell, such that: 
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( ) ( )∑
=

−−−=
elsAllCellVox

i

iiis zzyyxxPIEdAzyxI
1

000000 ,,,,, ρ     (1) 

Here Is is the characteristic integrated intensity of a single fluorophore and ρ is the 

fluorophore density in units of molecules per voxel (i.e. a pixel volume unit). E is a function 

representing the change in the laser profile excitation intensity over the cell. In a uniform 

excitation field E=1. For narrowfield microscopy the excitation intensity is uniform in z but 

has a 2D Gaussian profile in the lateral xy plane parallel to the microscope focal plane. In a 

non-saturating regime for photon emission flux of a given fluorophore, the brightness of 

that fluorophore, assuming simple single-photon excitation, is proportional to the local 

excitation intensity
24

, thus:  
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Here σxy is the Gaussian width of the excitation field in the focal plane, which we configure 

to be 3 μm and 6 μm in our microscope for the E.coli and budding yeast configurations 

respectively. In Slimfield there is a z dependence also with Gaussian sigma width which is 

~2.5 that of the σxy value, but in narrowfield it is independent of z, which made narrowfield 

a more ideal choice of illumination here for larger cells such as yeast. Thus: 
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Defining C(x0,y0,z0) as the numerical convolution integral (also containing the Gaussian 

excitation field) over the specific cell being imaged, and assuming the fluorophore density 

averaged over time is uniform in space in any given subcellular cell compartment, we can 

calculate the fluorophore density from each pixel in the image as: 

 

s
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s IzyxC

IIzyxI
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000

000

000

000 +−′
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Here, the mean value of the total background noise (Ia + Id) can be calculated from images of 

cells which do not contain any foreign fluorophores. To calculate the mean value of the 

fluorophore density in the diffusive pool of fluorophores in a given cell compartment we can 

average over all ρ estimates corresponding to all pixels inside that compartment whose 

boundaries have been determined by automated image segmentation and whose pixels are 

not associated with distinctly detected spots of fluorescence due to tracked assemblages of 

fluorophores (e.g. a molecular complex). This generates a robust estimate for fluorophore 

density in the diffusive pool which is unique not just to a specific single cell, but also 

provides a rough estimate to a specific single compartment within that cell. This rough 

estimate is useful in providing a simple preliminary and computationally non-intensive 

quantitation because it assumes no prior knowledge of subcellular structures which the cell. 
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In a more general case of multiple cellular compartments of different sizes, locations and 

shapes we can extend this model, assuming that the time-average pool concentration within 

each given intracellular compartment (for example, the nucleus, the cytosol compartment, 

and many other types of cell organelle) can be characterized by a mean value subject to 

small fluctuations across the extent of the compartment. However we do not assume that 

the mean values within different cellular compartments are necessarily equal:  

 

Thus, in the case of two such cellular compartments containing the cytoplasm and the 

nucleus we have: 
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Here, ρc and ρn refer to the mean cytoplasmic and nuclear concentrations respectively. By 

analysing all pixel data from both compartments we can then use least-squares regression 

analysis in Matlab to estimate mean values for ρc and ρn. This can be generalised to any 

number of intracellular compartments: 
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Where ρj
 
is mean concentration of the jth compartment. This has an advantage of taking 

into account the full contribution of all compartments to each observed pixel intensity in the 

image. These values can then be used to generate a modified convolution integral I' in 

Equation 4, thus allowing the pixel-by-pixel variation of ρ to be estimated. An important 

feature of this general model is that each separate compartment does not necessarily have 

to be modelled by an ideal geometrical shape (such as a sphere, for example) but can be any 

enclosed 3D volume provided its boundaries are well-defined to allow numerical integration 

in Equation 6. 

 

 

2.7 Analytical PSF 

 

The 3D PSF can be approximated as a series of 2D Fourier transforms of the pupil function at 

different  z slices
30

: 

 

∫∫ +=
yxkk
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Where kx and ky are the 2D Fourier coordinates and F(kx, ky, z) is the pupil function which 

describes the field distribution in the pupil of the objective lens, When sinθi=NA/ni, F is given 

by:
31

 

 

)),,(exp()(),,( 0 zjkAzkkF siiyx θθφθ=   (8) 

 

Otherwise, F= 0. The angles θi,s can be defined in Fourier coordinates (see Figure 2): 

 

si

yx

si
k

kk

,

22

,sin
+

=θ  (9) 

 

Here ki,s is the wavenumber, ki,s=2πni,s/λ, of the emitted light (we approximate the 

wavelength to the peak emission wavelength, λ=515 nm for GFP and 610 nm for mCherry) 

through the immersion medium (refractive index ni =1.515), specimen (refractive index ns 

=1.33) or ko is the wavenumber through a vacuum and NA is the numerical aperture of the 

objective lens (in our study here, NA=1.49).  A(θi) is the apodization function, for an emitting 

point source such as a fluorophore:
32

 

 

2

1

)(cos)(
−

= iiA θθ  (10) 

 

The phase function φ(θi, θs, z) describes optical path difference of a wavefront exiting the 

pupil compared to a reference wavefront and is the sum of a defocus term φd and an 

aberration term φa. The defocus term is approximated by:
30

 

 

)cos1( iid zn θφ −≈  (11) 

 

And the aberration term, caused by differences in the immersion and sample media can be 

derived from geometric optics as: 

 

)coscos( iissa nnd θθφ −=  (12) 

 

Where d is the distance from the front surface of the objective lens to the focal plane 

(~400 µm in our case). 

 

3. Results and Discussion 

 

3.1 Estimating the PSF 

 

Page 9 of 34 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



10 

 

To perform the convolution analysis, the PSF of the microscope was first experimentally 

estimated. Here, we measured the PSF of the our microscope using narrowfield illumination 

by acquiring experimental fluorescence images of 20 nm diameter green fluorescent beads 

(Invitrogen) immobilized to the glass coverslip surface of our microscope flow-chamber.
33

  

The beads were imaged at 100 nm intervals in z which was controlled by an automated 

piezo nanostage (Nanodrive, Mad City Labs) controlled by our own bespoke software 

(LabVIEW, National Instruments) over a z-range ±1 µm above/below the focal plane. Time-

series images of six different beads using the same imaging conditions as for live cell 

microscopy were averaged pixel-by-pixel to form the experimental PSF (Figure 3), which was 

then background-corrected by subtracting the mean local background and then normalized 

by dividing by the total summed pixel intensities of the detected foreground spot image. At 

absolute values of z beyond ~1 µm from the focal plane, the weak defocused intensity 

fluorescence signal from single beads was difficult to resolve above camera noise. However, 

by modelling the experimental PSF data obtained over the ±1 µm z-range using an analytical 

PSF formulation we could then extend the range of the PSF determination to cover the full 

extent of single yeast cells whose diameter is typically ~5 µm, but can be as high as ~10 µm 

at certain stages in the cell cycle for budding yeast cells 

 

For this analytical approximation we used a Matlab implementation
34

 of the Stokseth 

method
30

 (Figure 3), outlined in the Material and Methods section 2.7. This models the PSF 

as the Fourier transform of the pupil function which describes the field distribution in the 

pupil of the objective lens for given wavelengths of light.   

 

The analytical function and experimental data were found to be in good agreement to the 

experimental PSF, with an associated mean chi squared value of ~65 when measured on a 

pixel-by-pixel basis across each PSF image equivalent to a probability confidence interval 

P<0.001. Figure 3 shows a qualitative comparison in which we have added realistic noise to 

the analytical PSF.  

 

3.2 Fluorescent proteins in vitro 

 

To test the single-molecule detection capabilities of the narrowfield microscope and to 

measure the characteristic intensity of single fluorophores, we imaged purified GFP 

(Clontech eGFP, with the addition an A206K mutation to inhibit GFP dimerization
27

) and 

mCherry (Clontech) immobilized to the coverslip surface via antibody conjugation. 

Representative images of GFP and mCherry are shown in Figure 4a and b left panel. Rapid 

photobleaching occurred within only a few image frames so the first frame is shown. Bright 

spots were tracked over time using millisecond sampled images, analysed using our custom 

Matlab software.
25,26

 The software objectively identifies candidate bright spots by a 

combination of pixel intensity thresholding and image transformation. The threshold is set 

using the pixel intensity histogram as the full width half maximum of the peak in the 
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histogram which corresponds to background pixels. A series of erosion and dilation is 

applied to the thresholded image to remove individual bright pixels due to noise. A final 

erosion step then leaves a single pixel at each candidate spot co-ordinate. The intensity 

centroid and characteristic intensity, defined as the sum of the pixel intensities inside a 5 

pixel radius region of interest around the spot minus the local background
35

 and corrected 

for non-uniformity in the excitation field are determined by iterative Gaussian masking
36

 

which resulted in a mean localization precision of ~40 nm and ~55 nm for GFP and mCherry 

molecules respectively. Localisation precision was measured as the standard deviation of 

the spot centroid over time. Spots are accepted as real if their signal-to-noise ratio is above 

a threshold which was pre-determined from simulated data, using a realistic noise 

distribution. This threshold initially was set generously, equivalent to a level of 35% false 

positive detection probability per image frame, however additional tracking criteria for 

subsequent image frames (spots are only ultimately accepted if they constitute a track or 

trajectory, meaning: i, they last for at least 3 consecutive image frames; ii, the intensity 

centroid displacement between spots in consecutive images is 5 pixels (one spot region of 

interest) or less; iii, the width and integrated intensity of a spot in an image frame in a given 

track is within 50% of that measured in the previous image frame). These additional tracking 

acceptance criteria reduced the likelihood of false positive detection to <1%.  

 

Spots are linked into trajectories based on their proximity to neighbouring spots in 

subsequent image frames, their integrated intensity and their estimated size based on a 2D 

unconstrained Gaussian fit to their experimental PSF intensity profile. Figure 4 middle panel 

shows the intensity as a function of time of GFP and mCherry spots which were 

‘overtracked’ (i.e. where the integrated intensity continued to be measured at the intensity 

centroid to visually indicate the level of local background intensity in the absence of the 

spot), after a spot had photobleached to zero mean integrated intensity. These traces are 

overlaid using a bespoke Chung-Kennedy edge-preserving filter
37,38

 and show a step-like 

drop to mean zero intensity, indicative of a molecular signature for single fluorescent 

proteins.  Kernel density estimations (KDEs) were used to obtain the distribution of all 

integrated spot intensity measurements of GFP and mCherry images.
39

 This involves a 1D 

convolution of the spot integrated intensity data with a Gaussian kernel of unitary 

integrated area (i.e. equivalent to a total of just one data point) and an optimised 

bandwidth of ~600 counts which was determined objectively from the software, and are 

shown on the right panels of  Figure 4. This approach results in significant objectification of 

the displayed distribution in comparison to standard histogram methods.  

 

The distributions peak at ~4,400 counts and ~3,400 counts on our EMCCD detector for GFP 

and mCherry respectively which we use as best estimates for the characteristic brightness 

values. We use these estimates as opposed to mean values from the distributions which are 

biased towards marginally higher values than the peak values due to a tail on the 

distribution comprised in part from a minority of detected spots which include two or more 
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individual fluorescent protein molecules whose separation of the coverslip surface is less 

than the optical resolution limit. Step-wise photobleaching data measured from live budding 

yeast cells indicated similar levels of brightness to within ~10% consistent with earlier in 

vivo single-molecule studies of E. coli bacteria using fluorescent proteins.
24,28,29

 

 

3.3 Localisation precision 

 

Since localisation microscopy is required in the estimation of diffusive pools pixels in a given 

compartment we sought to characterize the localisation precision of our narrowfield 

illumination single-molecule microscope over a range of different fluorescent spot contrast 

values. As a model for bright fluorescent spots we captured time series of surface-

immobilised 20 nm green fluorescent beads (Invitrogen) which had been exposed to varying 

pre-bleach laser exposures. By varying the bleach times we were able to generate images of 

spots over a range of effective spot signal-to-noise ratios.  Spots were tracked as before and 

their localisation precision determined as the standard deviation in intensity centroid 

position over time. Localisation precision against the signal-to-noise ratio is plotted in Figure 

5 in blue. The data was fitted using the Thompson equation
36

 for localisation precision of 2D 

data, given by: 

( )
22

2422
2 812

Na

bs

N

as
x

π
+

+
=∆        (11) 

 

Here, s is the sigma width of the PSF (170 nm for green fluorescent beads), a is conjugate 

equivalent pixel size in the sample focal plane (80 nm), N is number of photons collected 

belonging to spot and b is the number of background photons collected. The intensity, I, 

collected from a given detected spot of fluorescence is equal to the number of photons 

emitted from the spot multiplied by a constant G which incorporates camera gain and total 

photon collection efficiency between the sample and the camera detector. The signal-to-

noise ratio was defined as the integrated spot intensity divided by the standard deviation of 

the local background of the spot (calculated from pixels which are within a square 17x17 

pixel array centred on the intensity centroid of the spot but excluding pixels that are 

contained within the central 5 pixel radius circular region of interest which comprises of the 

spot integration area), equivalent to ~8 counts for the fluorescent bead data, constant for 

each set of imaging conditions) multiplied by the area of the spot (80 pixels). The Thomson 

equation was fitted to the spot intensity data to generate the localisation precision as a 

function of signal-to-noise ratio for fluorescent nanobead data, shown in black in Figure 5 

with 90% confidence intervals as dotted lines, using an optimised collection constant of 

G=0.1 and background photon count, b=5 photons. The localisation precision of GFP and 

mCherry is also shown in Figure 5 in green and red respectively (note, since mCherry has a 

larger PSF width than the green fluorescent beads of the GFP there is a marginal deviation 

from the fit extrapolated from the green bead data).  
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3.4 Concentration measurements in E. coli 

 

As proof-of-principle we tested the CoPro method on the single cytoplasmic cellular 

compartment of model E. coli bacteria using a cell strain consisting of the replisome protein 

DnaQ fused to GFP using chromosomal integration. This was essentially identical to an 

earlier cell strain developed, but which instead used the yellow YPet fluorescent protein as 

the fluorophore tag. This cell strain’s DnaQ protein copy number per cell had previously 

been estimated using both quantitative western blots and a different convolution method 

using Slimfield illumination which used different experimentally derived PSF estimates.
24

 We 

took narrowfield fluorescence images of the DnaQ-GFP tagged cell strain and quantified the 

cellular concentration of DnaQ. 

 

Figure 6 shows images of a representative DnaQ-GFP cell and quantification of DnaQ 

concentration. A brightfield image of a cell is shown in grey in Figure 6a, with the segmented 

outline of the cell which was obtained from the raw cell fluorescence image using an 

automatically varying threshold based on the pixel intensity distribution shown overlaid in 

orange. This raw cell boundary image segmentation, in the case of E. coli cells, could be 

modelled as a ‘sausage’ shape (shown overlaid in white on the raw fluorescence image 

shown in green in Figure 6b). The segmentation threshold was configured to correspond to 

low intensity autofluorescence which was observed to be delocalized in the cytoplasm, and 

so was not restricted to the spatial distribution of GFP-tagged material in the cytoplasm 

compartment. The centroid, orientation and major and minor axis lengths of the cell area 

were used to define the unique fitted ‘sausage’ function around each  cell, which consisted 

of a rectangle capped by a half-circle at either end,
40

  which was an accurate 2D projection 

of the 3D E. coli cell shape of a cylinder capped by two hemispheres.
41

 Bright detected 

distinct spots in the fluorescence image were found using the same methods as for the in 

vitro data, and are shown overlaid in Figure 6b as white circles.  

 

The fluorescence pixels associated just with the diffusive pool are shown in Figure 6c and 

were determined by taking only pixels within the segmented cell area and removing pixels in 

a 5 pixel radius around the bright spot centroids (i.e. corresponding to the same region of 

interest area used for the integrated spot intensity determination). The number of DnaQ 

molecules in bright spots was determined by dividing the total intensity in the 5 pixel radius 

around the spot by the intensity of a single in vitro GFP and was typically <10 molecules. The 

mean autofluorescence background and camera detector noise background intensity values 

were also subtracted from all pool pixel intensity values. The convolution integral, C, shown 

as a heat map in Figure 6d, was obtained by integrating the analytical PSF over the sausage 

function which defined the cell boundaries. A map of the diffusive pool concentration was 

obtained by dividing the pool pixel intensity values by the corresponding convolution 

integral pixel values, on a pixel-by-pixel basis, and by the characteristic peak integrated 

Page 13 of 34 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



14 

 

intensity for a single molecule GFP obtained from the in vitro surface-immobilized assay. 

The pixel map for this calculation is shown in Figure 6e in units of molecules/voxel.  

 

The KDE of cell DnaQ protein concentration sampled from a population of only seven cells is 

shown in Figure 7, showing that a probability distribution for a cell population can be 

generated with this method using relatively low numbers of cells. The overall effective DnaQ 

concentration in the entire compartment was defined as the mean DnaQ protein 

concentration in the diffusive pool plus the total amount of DnaQ detected in any distinct 

fluorescent spots divided by the effective volume of the cellular compartment, and was 

used to determine the total copy number of DnaQ molecules in each individual cell by 

multiplying the estimate of the overall effective DnaQ concentration by the calculated 

volume given by the cell’s unique sausage function. The mean copy number of 

DnaQ ± standard deviation was calculated to be 350±120 molecules which agrees well with 

the copy number of DnaQ-YPet, measured previously using the YPet fluorescent protein and 

a different convolution method, of 270±160 molecules.
24

 The distribution of DnaQ 

concentration per cell is broad, reflecting cell-to-cell variation – this information is lost when 

quantifying protein concentrations in cells using traditional bulk ensemble biochemical 

assays. These variations may be caused by each cell being at a different phase in the cell 

cycle but may also reflect that each cell is an individual and, to fully understand cellular 

behaviour, this individuality must be characterized. 

 

3.5 Concentration measurements of simulated structured cells 

 

To extend our method to more complexly structured cells, we first tested it on realistic 

simulated images from different cell types containing multiple cellular compartments. 

Figure 8a shows two simulated budding yeast images. The left panel indicates a simulated 

nuclear concentration of Mig1 which is double the cytoplasmic concentration. Figure 8a 

right panel is a simulated image in which the nuclear concentration is zero with all the 

simulated Mig1 molecules localized uniformly to the cytoplasm.  The cell periphery is 

labelled in orange and the nuclear periphery in cyan. The cell and the nucleus were 

modelled as convolution integrals of spheres with radii of 32 and 15 pixels respectively 

containing uniform fluorophore concentrations. Realistic noise was added in the lower panel 

by adding normally distributed random pixels with a standard deviation ~20% peak 

cytoplasm intensity. Images were simulated over a range of nuclear concentrations from 

zero to five times a constant cytoplasmic value.  

 

Each pixel intensity value is the sum of the convolution integral of each separate 

compartment in the cell (Equation 5) so the concentration in each compartment was 

determined by solving a set of simultaneous equations for each pixel value using our 

bespoke Matlab-coded software. Equations were solved by linear least squares regression 

analysis with the only constraint that concentration cannot be negative. Figure 8b shows the 
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measured cytoplasmic concentration as determined by our CoPro algorithm on the 

simulated data against the simulated nuclear concentration, with errorbars given by the 

standard deviation over five repeated simulations. Figure 8c shows the same for the nucleus 

with an insert to show an expanded section of the data and the fit. The linear fits of Figure 

8b and 8c are associated with chi squared values equivalent to a probability confidence 

interval P<0.0001. These simulations thus imply the method is very robust in yeast cells over 

a very broad range of relative compartment concentrations. 

 

To demonstrate the generality of our method we also simulated a different cell type with 

multiple different sized components and different locations, shown without and with noise 

in Figure 9 left and middle. The cell is rod-shaped, like an E. coli bacterium, and contains 

three spherical compartments of different volumes and internal protein concentrations. 

Although not modelled on any particular system, this cell resembles, for example, 

fluorescently labelled carboxysomes in cyanobacteria. The mean concentration in each 

compartment across five repeated simulations was again calculated by solving the 

simultaneous equations from four separate convolution integrals at each pixel and is plotted 

against the simulated concentration in Figure 9. The measured concentrations all agree very 

well with the simulated concentrations, demonstrating this method is also robust in this 

example of non-spherical cells containing multiple different cellular compartments. 

 

3.6 Concentration measurements in budding yeast 

 

We then applied these methods to quantify experimentally the concentration of Mig1 

protein molecules in budding yeast cells at high and low glucose conditions, and also to 

estimate the concentration of the RNA polymerase protein Nrd1 as a control, since Nrd1 is 

not directly involved in the glucose sensing pathway. Figure 10 shows images of a 

representative dual-label Mig1-GFP:Nrd1-mCherry cell with the corresponding 

quantification of Mig1 concentration. Figure 10a shows a brightfield non-fluorescence image 

of the cell with the nuclear membrane and cell membrane boundaries overlaid in cyan and 

orange respectively. The algorithm used for image segmentation was similar to that 

employed for E. coli above, based on the fluorescence image of Mig1 (shown in Figure 10b) 

for the cell boundary and Nrd1 (shown in Figure 10c) for the nucleus, as before configuring 

threshold levels to be sensitive to delocalised cellular autofluorescence.  

 

Bright spots were tracked as before, and shown overlaid in white on Figure 10b. Due to 

much higher levels of cellular GFP fluorescence and autofluorescence, spots are harder to 

display in the image, so a zoomed-in cut-out on the figure shows a typical fluorescent spot 

with the intensity display levels adjusted appropriately. The nuclear and cytoplasmic 

concentrations were determined separately. The distinctly detected spots of fluorescence 

were removed from the fluorescence images and background correction applied. The 

concentration in the nucleus and cytoplasm were determined as for the simulated images, 
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modelling the cell and nucleus as spheres with radii determined from the segmentation. 

Figure 10d shows a spatial map of the pool concentration fluctuation obtained by dividing 

the background corrected fluorescence image by the sum of the convolution integrals in the 

cytoplasm and nucleus multiplied by their concentration value and the characteristic GFP 

intensity. Each pixel in the fluctuation map represents the percentage difference from the 

compartment mean. 

 

The KDE distribution of Mig1 concentration in the nucleus and cytoplasm at high and low 

glucose is shown in Figure 11 left and middle. In high levels of extracellular glucose 

concentration, the concentration of Mig1 is much higher (roughly by a factor of 4) in the 

nucleus than in the cytoplasm. In low extracellular glucose concentrations the concentration 

of Mig1 is more similar in the nucleus and cytoplasm but still elevated in the nucleus by 

~30%. As a control, we measured the concentration of the Nrd1 protein at high and low 

extracellular glucose concentrations. Nrd1 was found to be almost exclusively localized in 

the nucleus, with the peak in the Nrd1 concentration distribution indicating a copy number 

of ~2,000 molecules, and the distributions for Nrd1 nuclear concentration are shown in 

Figure 11 right and were shown by Student t-tests to be independent of glucose 

concentration.  

 

The mean copy number of Mig1 molecules in the nucleus and cytoplasm is shown in Table 1, 

indicating mean and standard deviation values. Using bulk ensemble average affinity 

methods, the total copy number of Mig1 in the whole cell was estimated to be ~830 

molecules/cell
4
 which agrees well with our results – the authors’ conservative assessment of 

error on this copy number estimate was ~100%, which illustrates one of the key advantages 

of our single-molecule method. The Mig1 concentration is higher in the nucleus than the 

cytoplasm at low glucose concentrations (~30%), although by much less than at high glucose 

concentrations (~400%). This suggests that some Mig1 molecules interact in the nucleus 

even at low levels of extracellular glucose concentration.  

 

 Mean number of 

Mig1 molecules per 

cell 

Standard Deviation 

(molecules per cell) 

High Glucose Cytoplasm 542 200 

High Glucose Nucleus 249 88 

Low Glucose Cytoplasm 1070 400 

Low Glucose Nucleus 141 57 

Table 1: Copy number of Mig1 molecules, rounded to nearest molecule, in the nucleus and 

cytoplasm 

 

4. Conclusions 
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The CoPro method for determining the protein concentration in live cells was first tested 

using the DnaQ protein concentration in E.coli as a previously studied system, and found to 

produce similar results to within experimental error. In applying CoPro to budding yeast 

cells we were able to quantify changes in protein concentration in cellular compartments in 

response to controlled environmental changes; here, by changing the extracellular glucose 

concentration and then using CoPro to monitor the protein concentration of the protein 

Mig1 which performs a biological role as a response regulator in the glucose sensing 

pathway in yeast. By measuring the concentration of Mig1 in both the nuclear and 

cytoplasmic compartments in each budding yeast cell, cell-by-cell, we were able to obtain 

distributions across cell populations, enabling observation of subtle concentration shifts. 

These results show promise for the investigation of future biological systems which may 

exhibit relatively small changes in concentration of protein in a particular cellular 

compartment for a given cell, which may be smaller than the variability across the whole cell 

population and thus hidden were traditional ensemble average approaches to be used in 

the assessment of protein copy numbers in cells. These distributions of protein 

concentration also render probabilistic information for the number of a specific protein type 

in a cell, and how they are distributed spatially between different regions of the cell, which 

is invaluable information that can be correlated back to stochastic models for gene 

expression activity.  

 

Importantly, the CoPro method is entirely general in regards to the shape and size of 

different cellular compartments. Although the case of budding yeast cells involves 

ostensibly spherical nuclei and cells, the algorithm only requires that the 3D volume of each 

cellular compartment is well-defined. In the case of hypothetical, asymmetrical cellular 

compartments which are difficult to model as ideal geometrical shapes, for example, the 

appropriate numerical integrations can still be performed provided sensible physical 

estimates of the compartment shapes and relative orientations can be made. These, for 

example, could be enabled using a separate imaging technique in separate experiments, 

such as transmission electron microscopy of thin sample sections. Or, utilizing confocal 

microscopy to obtained z-sections though the cell. The time resolution of typical confocal 

microscopy is not high enough to follow molecular motions inside living cells, however it can 

be used potentially to determine the complex 3D shapes of appropriate cellular 

compartments in conjunction with CoPro which then has the rapid time resolution to map 

out spatial fluctuations in protein concentration in real time on each separate image frame 

obtained from millisecond single-molecule microscopy. 

 

Although fluorescence microscopy has been used for quantitative bacterial proteomics 

previously, both from our own earlier work
24

 and those of others,
8
 here we have 

demonstrated a new method which can be applied to larger, more complexly structured 

eukaryotic cells to quantify protein concentration distributions at a subcellular level. 

Budding yeast cells have a well-defined approximately spherical structure, allowing for 
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simple convolution integrals but using numerical integration and 3D microscopy techniques 

such as light sheet microscopy, more complex eukaryotic cells could in principle be 

investigated. Although the cellular locations used here were the nucleus and cytoplasm, 

these methods could similarly be applied to other cellular organelles, including 

mitochondria or vacuoles. Our method also utilises high-speed narrowfield microscopy and 

can thus be readily combined with single particle tracking to fully quantify protein dynamics 

in living cells.  

 

In our study here we have used a bespoke narrowfield laser illumination technique which 

enables millisecond fluorescence microscopy at a single-molecule precise detection 

sensitivity level. This rapid sampling rate is comparable to the mobility time scale of single 

proteins in low viscosity cellular environments. For example, a typical fluorescently-labelled 

protein in the cell cytoplasm has an apparent diffusion coefficient equivalent to a few 

μm
2
/s, implying that it will diffuse its own point spread function width of the associated 

fluorescent ‘spot’ image after just a few milliseconds of observation. This therefore sets a 

benchmark for the maximum permitted camera exposure time for a single image frame, as 

above this level such a fluorescent spot appears significantly blurred in a typical image 

frame and so will fail to be detected as a distinct spot.  

 

Diffusion, however, is a stochastic process; therefore, some single protein molecules may 

still diffuse greater distances on some given individual image frames and so will fail to be 

detected, depending also on whether their nearest-neighbour mean separation is less than 

the optical resolution limit of ca. 200-300 nm. Molecular complexes containing more protein 

molecule subunits have a higher molecular weight and are likely to have a larger effective 

Stokes radius and thus lower diffusion coefficient, in addition to their associated fluorescent 

spots being brighter. Therefore, utilizing CoPro with rapid millisecond imaging enables 

separate experimental quantification between the effective compartment concentrations of 

proteins present in distinct molecular complexes and those present in lower stoichiometry 

states that diffuse more rapidly. However, the algorithms of the CoPro method will still work 

with less rapid imaging rates than those we use here, if these are not technically feasible on 

a given fluorescence microscope setup; the resultant analysis output will simply indicate 

fewer, or potentially no, distinctly detected fluorescent spots, but rather output an 

increased proportion of protein in the diffusive pool in a given compartment. This reduces 

some aspects of biological insight in regards to lacking the capability to infer the presence or 

not of distinct molecular complexes in the protein population, but still results in robust 

quantitative estimates for the total effective numbers of protein monomer units within a 

cell compartment. A reduced imaging rate also reduces the capacity for time-resolved 

measurements of protein concentration in living cells; instead, slow imaging generates 

steady-state information, but which still has utility in being quantitative on a cell-by-cell and 

compartment-by-compartment basis.  
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Our method here utilizes the in vitro estimate for the single-molecule brightness of GFP and 

mCherry. We measured this as being within ~10% of the equivalent in vivo brightness in 

budding yeast cells, consistent with earlier stoichiometry studies of E. coli molecular 

complexes using step-wise photobleaching analysis of fluorescent proteins.
24,28,29

 However, 

it may be possible that in some specialized cellular compartments there is a significantly 

different pH to the rest of the cell, a good example of which might be lysosomes. In such a 

case large differences in pH may be manifest as more significant difference in the brightness 

of single fluorescent proteins in that compartment compared to the rest of the cell. In this 

circumstance the CoPro method could still be utilized with the modification of a different 

equivalent brightness value for separate compartments, which could quantified using 

similar step-wise photobleaching procedures outlined here but pooling statistics into 

separate distinct compartments on the basis of automated image segmentation.  Not also 

that although we use fluorescent proteins as reporter labels the CoPro method can 

generalise to other fluorescent labels; these may ultimately be selected to have less 

sensitively to changes in local cellular pH, and indeed may also be brighter than fluorescent 

proteins and have an improved associated localisation precision due to a greater signal-to-

noise ratio as evidenced by Figure 5.  

 

Potential issues of using other fluorophores tags beyond fluorescent proteins however 

include possible homo-FRET/quenching effects. In our study here we could detect no 

significant correlation between the stoichiometry of tracked fluorescent spots (of Mig-GFP) 

and the size of the single-molecule photobleach step of the fluorescent protein label (here 

of GFP), consistent with the earlier single-molecule fluorescent protein stoichiometry 

studies alluded to previously. This is indicative of an absence of any measurable homo-FRET 

or quenching effect. The Förster radius of a fluorescent protein FRET pair is in the range 

4-5 nm, whereas the closest two florescent protein molecules can physically get to each 

other is a comparable distance due to the steric hindrance from their beta barrel structure. 

This indicates that non-radiative energy transitions due to the interaction of electrons in 

molecular orbitals, whether due to hetero- or homo-FRET, have a relatively small associated 

signal – the paucity of published single-molecule FRET studies using fluorescent protein 

FRET pairs lies in testament to this. However, hypothetical quenching  may of course be 

measureable from smaller dyes were they to be used, and so these effects may need to be 

characterized in order to minimize associated errors on stoichiometry and protein 

concentration measurements. 

 

The methods outlined here illustrate not only how light microscopy has evolved from a 

qualitative observational tool into a highly quantitative instrument,
23

 but also how bespoke 

tools from physics can be developed to characterize properties of the living component of 

soft-matter at the single-molecule length scale
42

 not just at an controlled, reductionist in 

vitro level
43

 but also to gain molecular-level insight into the physiologically relevant context 

of single functioning, living cells.
44–49

 Combining this automated CoPro method with 
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multicolour single-molecule real-time fluorescence imaging
50,51

 may also enable quantitative 

estimation of dynamic protein concentration changes of multiple interacting proteins in live 

cells, which is an appealing route towards investigating native biochemistry, one molecule at 

a time. 

 

Acknowledgements  

 

We thank Sviatlana Shashkova and Stefan Hohmann (University of Gothenburg, Sweden) for 

donation of yeast cell strains and assistance with yeast cell culturing. We thank Aisha Syeda 

and Peter McGlynn (University of York, UK) for assistance with adapting the DnaQ-YPet 

strain to DnaQ-GFP. With thank Holly Hathrell (University of York, UK) for assistance with 

characterizing the sensitivity of our spot detection algorithms. MCL is assisted by a Royal 

Society URF and research funds from the Biological Physical Sciences Institute (BPSI) of the 

University of York, UK. 

 

References 

 

1 P. Picotti, B. Bodenmiller, L. N. Mueller, B. Domon and R. Aebersold, Cell, 2009, 138, 

795–806. 

2 M. Uhlén, Biotechniques, 2008, 44, 649–54. 

3 M. Pawlak, E. Schick, M. A. Bopp, M. J. Schneider, P. Oroszlan and M. Ehrat, 

Proteomics, 2002, 2, 383–93. 

4 S. Ghaemmaghami, W.-K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. 

O’Shea and J. S. Weissman, Nature, 2003, 425, 737–41. 

5 R. Aebersold and M. Mann, Nature, 2003, 422, 198–207. 

6 L. Florens, M. P. Washburn, J. D. Raine, R. M. Anthony, M. Grainger, J. D. Haynes, J. K. 

Moch, N. Muster, J. B. Sacci, D. L. Tabb, A. A. Witney, D. Wolters, Y. Wu, M. J. 

Gardner, A. A. Holder, R. E. Sinden, J. R. Yates and D. J. Carucci, Nature, 2002, 419, 

520–6. 

7 J. R. S. Newman, S. Ghaemmaghami, J. Ihmels, D. K. Breslow, M. Noble, J. L. DeRisi 

and J. S. Weissman, Nature, 2006, 441, 840–6. 

8 Y. Taniguchi, P. J. Choi, G.-W. Li, H. Chen, M. Babu, J. Hearn, A. Emili and X. S. Xie, 

Science, 2010, 329, 533–8. 

9 M. Lundin, J. O. Nehlin and H. Ronne, Mol. Cell. Biol., 1994, 14, 1979–1985. 

10 J. O. Nehlin, M. Carlberg and H. Ronne, EMBO J., 1991, 10, 3373–7. 

Page 20 of 34Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



21 

 

11 C. J. L. Klein, L. Olsson and J. Nielsen, Microbiology, 1998, 144, 13–24. 

12 R. Ghillebert, E. Swinnen, J. Wen, L. Vandesteene, M. Ramon, K. Norga, F. Rolland and 

J. Winderickx, FEBS J., 2011, 278, 3978–90. 

13 J. R. Broach, Genetics, 2012, 192, 73–105. 

14 M. J. De Vit, J. a Waddle and M. Johnston, Mol. Biol. Cell, 1997, 8, 1603–18. 

15 L. Bendrioua, M. Smedh, J. Almquist, M. Cvijovic, M. Jirstrand, M. Goksör, C. B. Adiels 

and S. Hohmann, J. Biol. Chem., 2014, 289, 12863–75. 

16 M. A. Treitel and M. Carlson, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 3132–6. 

17 F. C. Smith, S. P. Davies, W. A. Wilson, D. Carling and D. G. Hardie, FEBS Lett., 1999, 

453, 219–223. 

18 J. Ostling, M. Carlberg and H. Ronne, Mol. Cell. Biol., 1996, 16, 753–761. 

19 J. Ostling and H. Ronne, Eur. J. Biochem., 1998, 252, 162–8. 

20 E. Frolova, Nucleic Acids Res., 1999, 27, 1350–1358. 

21 M. J. DeVit and M. Johnston, Curr. Biol., 1999, 9, 1231–41. 

22 M. Plank, G. H. Wadhams and M. C. Leake, Integr. Biol. (Camb)., 2009, 1, 602–12. 

23 A. J. M. Wollman, R. Nudd, E. G. Hedlund and M. C. Leake, Open Biol., 2015, 5, 

150019. 

24 R. Reyes-Lamothe, D. J. Sherratt and M. C. Leake, Science (80-. )., 2010, 328, 498–501. 

25 A. J. M. Wollman, H. Miller, Z. Zhou and M. C. Leake, Biochem. Soc. Trans., 2015, 43, 

139–145. 

26 H. Miller, Z. Zhaokun, A. J. M. Wollman and M. C. Leake, Methods, 2015, In press. 

27 D. Landgraf, B. Okumus, P. Chien, T. a Baker and J. Paulsson, Nat. Methods, 2012, 9, 

480–2. 

28 M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry and J. P. Armitage, 

Nature, 2006, 443, 355–8. 

29 M. C. Leake, N. P. Greene, R. M. Godun, T. Granjon, G. Buchanan, S. Chen, R. M. 

Berry, T. Palmer and B. C. Berks, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 15376–81. 

30 P. A. Stokseth, J. Opt. Soc. Am., 1969, 59, 1314. 

Page 21 of 34 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



22 

 

31 H. H. Hopkins, Proc. R. Soc. A Math. Phys. Eng. Sci., 1955, 231, 91–103. 

32 B. M. Hanser, M. G. L. Gustafsson, D. A. Agard and J. W. Sedat, Opt. Lett., 2003, 28, 

801. 

33 C.-J. Lo, M. C. Leake and R. M. Berry, Biophys. J., 2006, 90, 357–65. 

34 P. Pankajakshan, L. Blanc-Feraud, J.-C. Olivo-Marin and J. Zerubia, in 2008 5th IEEE 

International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2008, 

pp. 740–743. 

35 Q. Xue and M. C. Leake, Proc. - 2009 IEEE Int. Symp. Biomed. Imaging From Nano to 

Macro, ISBI 2009, 2009, 1158–1161. 

36 R. E. Thompson, D. R. Larson and W. W. Webb, Biophys. J., 2002, 82, 2775–83. 

37 M. C. Leake, D. Wilson, M. Gautel and R. M. Simmons, Biophys. J., 2004, 87, 1112–35. 

38 M. C. Leake, D. Wilson, B. Bullard and R. M. Simmons, FEBS Lett., 2003, 535, 55–60. 

39 M. C. Leake, Phys. Chem. Chem. Phys., 2014, 16, 12635–47. 

40 Q. Xue, N. S. Jones and M. C. Leake, 2010 7th IEEE Int. Symp. Biomed. Imaging From 

Nano to Macro, ISBI 2010 - Proc., 2010, 161–164. 

41 C.-J. Lo, M. C. Leake, T. Pilizota and R. M. Berry, Biophys. J., 2007, 93, 294–302. 

42 Q. Xue, O. Harriman and M. C. Leake, J. Phys. Conf. Ser., 2011, 286, 012001. 

43 M. C. Leake, A. Grützner, M. Krüger and W. A. Linke, J. Struct. Biol., 2006, 155, 263–

72. 

44 T. Lenn, M. C. Leake and C. W. Mullineaux, Biochem. Soc. Trans., 2008, 36, 1032–6. 

45 T. Lenn and M. C. Leake, Open Biol., 2012, 2, 120090. 

46 M. C. Leake, Commun. Integr. Biol., 2010, 3, 415–8. 

47 S.-W. Chiu and M. C. Leake, Int. J. Mol. Sci., 2011, 12, 2518–42. 

48 W. A. Linke and M. C. Leake, Phys. Med. Biol., 2004, 49, 3613–27. 

49 M. C. Leake, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2013, 368, 20120248. 

50 I. Llorente-Garcia, T. Lenn, H. Erhardt, O. L. Harriman, L.-N. Liu, A. Robson, S.-W. Chiu, 

S. Matthews, N. J. Willis, C. D. Bray, S.-H. Lee, J. Y. Shin, C. Bustamante, J. Liphardt, T. 

Friedrich, C. W. Mullineaux and M. C. Leake, Biochim. Biophys. Acta, 2014, 1837, 811–

24. 

Page 22 of 34Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



23 

 

51 A. Badrinarayanan, R. Reyes-Lamothe, S. Uphoff, M. C. Leake and D. J. Sherratt, 

Science, 2012, 338, 528–31.  

 

Page 23 of 34 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

Figure 1: Diagram illustrating convolution integral over a single cell, in this simple example, assumed to be 
spherical. The intensity at an area element, dA, in the microscope’s focal plane is the sum of the PSFs of all 

the fluorophores in the cell or the integral of the PSF multiplied by the concentration, ρ, over the cell 

volume, V. The focal plane is marked as z=0.  
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Figure 2: Schematic of light emitted by a point source collected by an objective lens. A ray of fluorescence 
emission light is traced from the source (green) at an angle θs in the sample media (i.e. water-based 

minimal media) with refractive index ns, refracted at the interface of the immersion oil to an angle  θi in the 
immersion oil media with refractive index ni.  
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Figure 3: The measured, experimental PSF is shown (upper panel) over a 2 µm range in z centred on the 
focal plane (z=0), alongside the analytical PSF (middle panel) and the analytical PSF convolved with 

localisation error and noise for qualitative comparison (lower [panel). The chi-squared value in comparing 
the analytical PSF model to the experimental over the z range -1 to +1 µm was 65 equating to a goodness 

of  fit of probability confidence P<0.001.  
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Figure 4: In vitro single-molecule fluorescent protein characterization. Surface immobilisation assay for a. 
GFP, and b. mCherry, showing typical fluorescence images (left panel, white indicating example 

autodetected spots from our bespoke localisation and tracking software); typical measured photobleach 
traces (middle panel); and probability distributions of single-molecule intensity values value (right panel) 

with peak and half width at half maximum (HWHM) error indicated.  
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Figure 5: Mean localisation precision which we measured against signal-to-noise ratio for fluorescent beads 
(blue), GFP (green) and mCherry (red) with error bars showing the standard deviation on a semilog plot, 
each datapoint sampled from a set of n=5-10 beads. The black line is the fitted Thompson model for 
localisation precision (using parameters b=5, G=0.1) with 90% confidence bounds for fit (black dotted 
lines). The mean mCherry signal is smaller than GFP by ~26%, but also its PSF width is larger by ~10% 

resulting in a slight deviation from the black fit as predicated by the Thompson et al model.36  
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Figure 6: a Brightfield image (grey) of typical single live E. coli cell, with the segmented cell outline obtained 
from the fluorescence data (as outlined in the main text) shown overlaid (orange). b GFP fluorescence image 
(green) with found spots marked (white circles), white line is unique fitted ‘sausage’ function for that cell. c 
Pool fluorescent pixels with detected distinct spots now excluded from image. d Projection image of PSF 

corresponding to the E. coli cell integrated over its cell volume.  e Protein concentration map of cell (which is 
the image of c divided by image of d pixel-by-pixel).  
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Figure 7: Example distribution of mean cellular DnaQ concentration which illustrates that even with only a 
few cells in a population (here, n=7 E. coli bacteria cells) we can reconstruct a sample probability 

distribution; mean and HWHM error indicated. The relative scale on the probability density axis is set to 
ensure normalization conditions (i.e. the area under the curve in exactly unity).  
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Figure 8: a. Simulated images of a spherical yeast cell with spherical nucleus, showing (left panel) nuclear 
concentration set to be twice the cytoplasmic concentration, and (right panel) zero concentration in the 
nucleus with all Mig1 localized in the cytoplasm. No noise (upper panel) and realistic noise added (lower 

panel) are shown. b. Measured cytoplasmic concentration for cells (n=300 cells, made up from 5 repeats at 
each of 60 different protein concentrations) with varying simulated nuclear concentration, standard 
deviation errorbars indicated. c.  Measured nuclear concentration as a function of simulated nuclear 

concentration, with (inset) a zoom-in of the simulated data and the fit.  
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Figure 9: Simulated bacterial ‘sausage’ shaped cell (region 1) with three different sized spherical organelle 
compartments and different concentrations (regions 2-4). b. mean and standard deviation concentrations of 
these different regions measured using the CoPro method plotted against the real simulated values, with the 

‘line of truth’ added (black dashed line).  
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Figure 10: a Brightfield image of cell with automated segmentation outline of nucleus (cyan) and cell outer 
boundary (orange), 2 µm scale bar indicated. b GFP fluorescence image, reporting the localization of Mig1, 
with found spots (white circles) marked and cutaway (yellow) with adjusted intensity levels to indicate the 
position of the underlying detected spot. c mCherry fluorescence image, reporting the localization of Nrd1 in 
the nucleus. d Spatial distribution map of Mig1 concentration, indicating the fluctuation from the mean 

compartment concentration value with respect to position across the cell image.  
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Figure 11: Distribution of cytoplasmic (orange) and nuclear (cyan) Mig1 protein concentrations of between 
n=25-30  cells at (a) high and (b) low glucose and distribution, and equivalent for (c) Nrd1 concentration 

(high glucose in blue and low glucose in red) with peak values ± HWHM indicated.  
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