



# Particle size distribution of workplace aerosols in manganese alloy smelters applying personal sampling strategy

| Journal:                      | Environmental Science: Processes & Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | EM-ART-08-2015-000396.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Article Type:                 | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date Submitted by the Author: | 30-Sep-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Complete List of Authors:     | Berlinger, Balazs; National Institute of Occupational Health, Department of<br>Chemical and Biological Working Environment<br>Bugge, Merete; National Institute of Occupational Health, Department of<br>Occupational Medicine and Epidemiology<br>Ulvestad, Bente; National Institute of Occupational Health, Department of<br>Occupational Medicine and Epidemiology<br>Kjuus, Helge; National Institute of Occupational Health, Department of<br>Occupational Medicine and Epidemiology<br>Kandler, Konrad; Technical University Darmstadt, Institute of Applied<br>Geosciences Darmstadt,<br>Ellingsen, Dag; National Institute of Occupational Health, Department of<br>Chemical and Biological Working Environment |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

SCHOLARONE<sup>™</sup> Manuscripts

Toxicological studies have implicated particulate exposure as possibly playing a causal role in adverse cardiovascular effects. There is an opportunity to study these effects in occupational settings, but for the better understanding more information on time-specific workplace exposure to different particulate matter fractions is needed. The present work describes the results from personal size selective aerosol samplings in two manganese alloy smelters which will be later used in the epidemiological study which was initiated to examine the prevalence of early markers of cardiovascular disease with relation to exposure to different particulate matter fractions. Particle size distribution data is also essential for the better estimation of the deposited dose in the human respiratory tract as respiratory tract deposition is highly dependent on the aerosol particle size.

# Particle size distribution of workplace aerosols in manganese alloy smelters applying personal sampling strategy

B. Berlinger<sup>1</sup>, M.D. Bugge<sup>2</sup>, B. Ulvestad<sup>2</sup>, H. Kjuus<sup>2</sup>, K. Kandler<sup>3</sup> and D. G. Ellingsen<sup>1</sup>

<sup>1</sup>Dept. of Chemical and Biological Working Environment, <sup>2</sup>Dept. of Occupational Medicine and Epidemiology, National Institute of Occupational Health, P.O. Box 8149 Dep. N-0033, Oslo, Norway <sup>3</sup>Technical University Darmstadt, Institute of Applied Geosciences Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany

Email: bbe@stami.no

#### Abstract

Air samples were collected by personal sampling with five stage Sioutas cascade impactors and respirable cyclones in parallel among tappers and crane operators in two manganese (Mn) alloy smelters in Norway to investigate PM fractions. The mass concentrations of PM collected by the impactors and the respirable cyclones were critically evaluated by comparing the results of the parallel measurements. The geometric mean (GM) mass concentrations of the respirable fraction and the <10  $\mu$ m PM fraction were 0.18 and 0.39 mg m<sup>-3</sup>, respectively. Particle size distributions were determined using the impactor data in the range from 0 to 10  $\mu$ m and by stationary measurements by a Scanning Mobility Particle Sizer in the range from 10 to 487 nm. On average 50% of the particulate mass in the Mn alloy smelters was in the range from 2.5 to 10  $\mu$ m, while the rest was distributed between the lower stages of the impactors. On average 15% of the particulate mass was found in the <0.25  $\mu$ m PM fraction. The comparisons of the different PM fraction mass concentrations related to different work tasks or different workplaces, showed in many cases statistically significant differences, however, the particle size distribution of PM in the fraction <10  $\mu$ m d<sub>ac</sub> was independent of the plant, furnace or work task.

#### Keywords

respirable fraction, particulate matter fractions, Sioutas cascade impactor, SMPS, tappers, crane operators

#### Introduction

Numerous epidemiological studies have shown associations between exposure to particulate urban air pollution and increased morbidity and mortality from cardiovascular diseases.<sup>1-6</sup> Both short-term and long-term PM<sub>2.5</sub> exposures has been associated with increased incidence of cardiovascular diseases,

but the character of the exposure-response relationship is still uncertain.<sup>7,8</sup> Toxicological studies have implicated ultrafine particles (UFP, diameter  $\leq 100$  nm) as possibly playing a causal role in the adverse cardiovascular effects.<sup>9,10</sup> Limited evidence of these relationships has emerged from occupational settings.<sup>11</sup> Interestingly, Costello *et al.* has shown lately that recent exposure, but not cumulative exposure to PM<sub>2.5</sub> can be a risk factor for incident ischemic heart disease among aluminum production workers.<sup>12</sup> More information on time-specific workplace exposure to different PM fractions (including UFPs) is therefore needed. The manganese (Mn) alloy smelter workers participating in this study are exposed to PM with Mn content. It is well known that Mn compounds can have neurological effects,<sup>13</sup> therefore Mn concentration in workplace air is strictly regulated. The current exposure limit values for inhalable and respirable inorganic Mn compounds in workplace air in Norway are 1.0 and 0.1 mg m<sup>-3</sup>, respectively.<sup>14</sup>

The health effects resulting from deposition of particulate matter (PM) in the respiratory tract depend on the dose received, the site of deposition and the body's response to the deposited particles.<sup>15</sup> One important goal of workplace aerosol measurement should therefore be to ascertain the effective dose of PM delivered to the lungs. Particle deposition models show that the respiratory tract deposition is highly dependent on the aerosol particle size.<sup>16,17</sup> For example up to 55% of 20 nm particles with density of 1 g cm<sup>-3</sup> and spherical shape can deposit in the alveolar region, while the deposition efficiency of 500 nm particles remains under 10% according to the model given by Bartley and Vincent.<sup>17</sup>

These models, however, are not applicable for a better dose estimation without the information on particle size distribution which is usually not available from conventional workplace aerosol measurements. Cascade impactors are able to provide sharp particle size classifications.<sup>18</sup> Thus, they can be useful tools when such information is required. Such equipment does have limitations in risk assessment. One of these is that the information on the collected mass of particles with different sizes is only one of the most important three metrics which might be used as relevant indicators of worker's particle exposure, others being particle number and surface area.<sup>19</sup> The evaluation of particle deposition in the human respiratory tract should also consider the hygroscopic growth of aerosol particles upon inhalation which has been previously shown by a number of authors.<sup>20-22</sup> Size dependent chemical characterization may also give valuable information if obtained at the same time.

Cascade impactors have been used for personal and stationary sampling to measure the particle size distribution in workplace aerosols. In a study personal dust exposure levels and the dust particle size distribution was measured during various agricultural operations in California by applying four-stage Sierra Marple 294 cascade impactors.<sup>23</sup> Another study characterized exposures to copper and zinc oxide using single jet personal cascade impactors with five to six stages in a nonferrous foundry and compared the results with previous findings obtained using cyclones.<sup>24</sup> Dufresne *et al.* collected breathing zone samples with an 8-stage Sierra impactor in a magnesium foundry and three aluminium smelters to assess the distribution of the PM mass and the beryllium content between the

different size fractions.<sup>25</sup> Particle size distributions of oil mists in fastener manufacturing industry were determined by using a modified Marple 8-stage cascade impactor.<sup>26</sup> The Sioutas cascade impactor equipped with quartz-fiber substrates and after-filter was used by Birch *et al.* to collect personal samples during carbon nanofiber production for the determination of elemental carbon and organic carbon.<sup>27</sup> The latter model offers a good separation with its after-filter and four stages with cut points ranging from 0.25 to 10  $\mu$ m aerodynamic diameter (d<sub>ae</sub>) and it operates at a high flow rate, which can be maintained by a lightweight personal pump.<sup>28</sup>

There are also applications of stationary cascade impactors in workplace aerosol characterisation. One example is when Vincent *et al.* used a modified Andersen sampler for the particle size measurement of aerosols in primary nickel production industry workplaces.<sup>29</sup> Berlinger *et al.* and Chang *et al.* used a stationary 11-stage Berner cascade impactor and a compact cascade impactor (Harvard CCI) with two stages and a backup filter, respectively for the physicochemical characterization of welding fumes.<sup>30,31</sup>

Exposure among employees in smelters in Norway has been well assessed both quantitatively and qualitatively, however, particle size distribution by personal sampling has not yet been investigated.<sup>32</sup> There has also been little focus on the ultrafine size fraction of PM, although high exposure levels in the smelting industry could provide a good opportunity to investigate the association between PM exposure and established cardiovascular disease. The scientific evidence of such association in occupational exposure situations is still limited.<sup>11</sup>

Because of the importance of the ultrafine particles in the possible cardiovascular effects, not only personal impactors but personal nanoparticle samplers were considered to be used to assess smelter workers' exposure to PM. Personal nanoparticle sampler (PENS) was developed in 2011 which consists of a respirable cyclone and a micro-orifice impactor with a 50% cut-off aerodynamic diameter of 4 µm and 100 nm, respectively.<sup>33</sup> Personal nanoparticle respiratory deposition (NRD) sampler was also developed in the same year.<sup>34</sup> It collects particles smaller than 300 nm similarly to their deposition in the human respiratory tract. At the end, however, personal impactors were chosen to be used at the smelters because these give information on more than only one PM size fraction.

A study in metal smelters in Norway was initiated to examine the prevalence of early markers of cardiovascular disease with relation to exposure to different PM fractions. The present work describes the results from personal aerosol samplings in two Mn alloy smelters applying Sioutas cascase impactors and respirable cyclones in parallel. The results from the epidemiological study where these exposure measurements are to be used will be published later.

#### Materials and methods

#### Plants and subjects

Air samples were collected in two Mn alloy smelters in Norway. Both plants have two smelting furnaces. Mn alloy smelter 1 is producing silicomanganese (furnace 1) and ferromanganese (furnace 2) alloys, while Mn alloy smelter 2 is producing ferromanganese only (furnace 3 and 4). Personal air samples were collected among 38 furnace workers. The main work tasks of the workers were to control the tapping process (tappers) or to operate the cranes (crane operators). Both tappers and crane operators were working between 45 and 75 minutes on the tap floor before, during and after tapping of the molten alloy which was done 3 or 4 times during an 8-hour shift. Tappers usually worked within 3-5 m from the tapping hole, but they could also sit in a pressurized cabin while following the tapping process. Crane operators performed their tasks further (5-10 m) from the tapping hole than tappers and worked mainly after the end of the tapping process. When tappers and crane operators were not working on the tap floor, they took a rest in the control area where they were not exposed to PM.

#### Air sampling

Each worker carried three air samplers. A 5-stage Sioutas cascade impactor (SKC, Eighty Four, PA, USA) ran in parallel with a respirable cyclone (JS Holdings, Stevenage, UK) collecting the respirable PM fraction (*parallel* respirable fraction) for 6 to 8 hours. Full-shift (approx. 8 hours) air samples were collected in the breathing zone of workers by a second respirable cyclone (*full-shift* respirable fraction).

Taking into account the benefits and disadvantages of the different impactor types, the Sioutas cascade impactor for personal sampling was chosen. The Sioutas cascade impactor equipped with 25-mm polytetrafluoroethylene (PTFE) substrates of 0.5  $\mu$ m pore-size (Pall Corporation, Port Washington, NY, USA) was operated at 9 L min<sup>-1</sup>. At this flow rate particles are separated and collected on the impactor stages from the top to the bottom in the following aerodynamic particle diameter ranges (in  $\mu$ m): 10–2.5, 2.5–1.0, 1.0–0.5, 0.5–0.25. Particles below the 0.25  $\mu$ m cut-point of the last stage are collected on a 2.0  $\mu$ m pore-size 37-mm PTFE after-filter (SKC, Eighty Four, PA, USA). More detailed description of the Sioutas cascade impactors have been published earlier.<sup>28,35</sup>

The respirable cyclones were operated at a flow rate of 2.2 L min<sup>-1</sup> that results in a 50% cutpoint diameter of 4.0  $\mu$ m. The 37-mm plastic cassettes in the cyclones were equipped with 5.0  $\mu$ m pore-size PVC membrane filters (Millipore Corp., Billerica, MA, USA).

The 2.2 L min<sup>-1</sup> flow required for the respirable samplers was maintained by in-house built PS103 model personal sampling pumps (National Institute of Occupational Health, Oslo, Norway). Leland Legacy model high flow personal sampling pumps (SKC, Eighty Four, PA, USA) were applied to maintain the 9 L min<sup>-1</sup> flow for the impactors. These pumps automatically cut-out at a pressure drop of approximately 500 mmH<sub>2</sub>O, and in most cases they were unable to operate through the entire 8-hour shift, stopping after 6-7 hours. Therefore the sampling with the impactors and the cyclones running in parallel was intentionally stopped and the sampling time was recorded 6-7 hours after the start of sampling. A second cyclone was used to sample the entire work-shift. The ratio between the

PM mass concentrations obtained by the two cyclones was used to adjust data from the impactor to estimate full-shift mass concentrations. In a few cases when the PM mass concentrations were not expected to reach the level which could cause the cut-out of the impactor pump, all the three samplers were let to operate in the whole work shift.

Particle size distributions of the aerosol in the smelters were in addition examined by a scanning mobility particle sizer (SMPS) instrument (model 3034, TSI Inc., Shoreview, USA) in the range from 10 to 487 nm. The SMPS instrument was placed at 3-4 meters from the furnace and run for 6–8 hours during one day in both plants.

#### Analysis

The collected aerosol particulate masses were determined gravimetrically by a six-place Sartorius Micro model MC5 balance (Sartorius AG, Göttingen, Germany) in a weighing room dedicated to low filter mass measurements, under controlled relative humidity  $(40\pm2\%)$  and temperature  $(20\pm1 \ ^{\circ}C)$  conditions. The balances were calibrated daily. The accuracy and precision of the mass determinations were assessed by weighing certified reference masses  $(19.989\pm0.030 \text{ and } 49.953\pm0.040 \text{ mg})$ . The mass detection limits (DLs) calculated as 3 times standard deviation of all field blanks were below 0.01 mg for all kind of substrates and filters used in the study. Both before and after exposure the substrates and filters were stored in the weighing room for at least two days to be acclimatized prior to the weighing procedure.

#### Calculation of the respirable PM mass concentrations from the impactor data

In order to compare the mass concentrations obtained by the respirable cyclones and the cascade impactors directly, mass concentrations of the respirable PM fraction were calculated from the impactor data. By these calculations sampling efficiencies given by the International Organization for Standard respirable convention were used and the following equations were applied:<sup>36,37</sup>

$$S_{RF_i} = \frac{SE_{LL} + 4 \times SE_{MP} + SE_{UL}}{6} \times S_i (1)$$

where  $S_{RFi}$  is the mass concentration of the respirable PM collected on the stage *i*; SE is the sampling efficiency according to ISO 7708 at the lower limit (LL), the midpoint size (MP) and the upper limit (UL) of the stage interval; S<sub>i</sub> is the mass concentration of PM collected on the stage *i*. The mass concentration of the respirable PM fraction (C<sub>RF</sub>) is calculated by summing up the mass concentrations of the respirable PM collected on all five stages.

$$C_{RF} = \sum_{i=1}^{5} S_{RF_i} (2)$$

#### Statistics

Logarithmic and arc sine transformation were applied for concentrations and proportions, respectively.<sup>38</sup> Independent sample and paired sample t-tests were performed to compare two independent job groups (e.g., tappers and crane operators) and two dependent variables (e.g., two parallel samples), respectively. Analysis of variance (ANOVA) was used when more than two groups were compared, and the least square difference was calculated in order to assess which groups differed from each other. A two-tailed *p*-value <0.05 was considered as the level of statistical significance. IBM<sup>®</sup> SPSS<sup>®</sup> statistical programme, version 21.0 (SPSS Inc, Chicago, Illinois, United States) was used for the statistical calculations.

#### Results and discussion

Mass concentrations of the different PM size fractions collected by the impactors were compared to mass concentrations of the respirable fraction collected in parallel by respirable cyclones as the first step of the evaluation. Altogether nine PM size fractions were applied in these comparisons, also those (<10  $\mu$ m, <2.5  $\mu$ m, <1.0  $\mu$ m, <0.5  $\mu$ m) which were calculated from the original five fractions collected on the four impactor stages and the after filter. Pearson's correlation coefficients between the mass concentrations of these fractions and the respirable aerosol fraction collected in parallel are summarised in Table 1. There were statistically significantly high correlations (0.61 < r < 0.88, p < 0.001, N = 37-38) between the mass concentrations of all PM size fraction calculated from the impactor data was 1.3 times higher than the respirable fraction collected in parallel by the respirable cyclones (Fig. 1). This ratio is within the expectations and suggests that both sampling devices worked according to their specifications.

#### Workplace particulate matter mass concentrations

Mass concentrations of the different PM fractions measured in the Mn alloy smelters are summarised in Table 2. The GM mass concentrations of the respirable fraction and the <10  $\mu$ m PM fraction were 0.18 and 0.39 mg m<sup>-3</sup>respectively. Johnsen *et al.* found 1.6 mg m<sup>-3</sup> GM dust mass concentrations in the Norwegian silicomanganese, ferromanganese and ferrochromium production group, although, they applied 'total dust' sampling cassette which has quite different particle collection characteristics compared to the samplers used in this study.<sup>32</sup> The mass concentrations of the *parallel* and *full-shift* respirable fractions (N = 38) correlated very well (r = 0.95, p < 0.001) in spite of the slightly different sampling times.

It was previously found that the GM concentration of respirable Mn was 28  $\mu$ g m<sup>-3</sup> in the same Mn alloy smelters which were investigated in this study.<sup>39</sup> Another study characterising workplace aerosols in the Norwegian Mn alloy production industry by electron microscopy reported that the

submicron size fraction is dominated by MnO and MnSi particles in FeMn and SiMn production, respectively.<sup>40</sup> The chemical composition of the different PM fractions in the current study will be analysed later and internationally published in detail elsewhere.

#### Particle mass and number size distributions

Mass concentration distributions of the PM in the first and second Mn alloy smelter and the average mass concentration distribution in both smelters are summarised in Table 3 together with the mass median diameters (MMAD) and geometric standard deviations (GSD). The MMAD and GSD values were calculated according to Christopher *et al.*<sup>41</sup> Values estimated under lognormal distribution assumption are given in the electronic supplement, for sake of completeness. Differential mass distribution is represented by histogram and "middle of cut-off diameters" method in Fig. 2 as it was described by Majoral *et al.*<sup>42</sup> On average 50% of the particulate mass in the Mn alloy smelters was in the range from 2.5 to 10  $\mu$ m, the rest was distributed between the lower stages of the impactors. On average 15% of the particulate mass was found in the PM fraction <0.25  $\mu$ m.

The average number and mass size distributions of the PM in the Mn alloy smelters assessed by the SMPS in the size range from 10 to 487 nm are shown in Fig. 3 and in the electronic supplement, respectively. In addition, the distribution parameters are given in table S1. The mass concentrations are not accurate as the density of the particles is not known. The distribution itself, however, is not affected by the density of the particles as long as it is not a function of particle size, which is a reasonable assumption for this size range. The particle number and mass distribution curves look more or less similar close to the different furnaces where the SMPS was running. At the same time the particle number and mass concentration levels are more different by the different furnaces.

If the particle size mass distribution in the Mn alloy smelters is compared to the particle deposition efficiency curves published by Bartley and Vincent, it can be suggested that the deposition of PM in the workers' lungs may be relatively high compared to the total mass of the fraction <10  $\mu$ m d<sub>ae</sub>, because high percentage of particles can be found in those particle mass fractions which have the highest deposition efficiencies in the alveolar region.<sup>17</sup>

#### Comparisons of different workplaces and job groups

The measured mass concentrations of the five PM fractions collected by the impactor and the respirable fraction were compared between the two Mn alloy smelters. The mass concentrations of the *parallel* respirable fraction ( $GM_{S1} = 0.14 \text{ mg m}^{-3}$ ,  $GM_{S2} = 0.22 \text{ mg m}^{-3}$ , p = 0.024), the 2.5–10 µm ( $GM_{S1} = 0.15 \text{ mg m}^{-3}$ ,  $GM_{S2} = 0.24 \text{ mg m}^{-3}$ , p = 0.035) and <10 µm ( $GM_{S1} = 0.32 \text{ mg m}^{-3}$ ,  $GM_{S2} = 0.49 \text{ mg m}^{-3}$ , p = 0.050) fractions were statistically significantly higher in Mn alloy smelter 2 compared to Mn alloy smelter 1. Otherwise the differences were not of statistical significance. The differences in the mass concentrations of the *parallel* respirable fractions might be due to the slight

#### **Environmental Science: Processes & Impacts**

differences in the duration of sampling periods in the two smeleters. The differences in the mass concentrations of the 2.5–10  $\mu$ m and <10  $\mu$ m fractions might be explained by the different practises for sweeping of the settled dust in the two smelters which might cause slight differences in the mass concentration of the coarse particles.

Workers at furnace 1 in Mn alloy smelter 1, the only furnace producing silicomanganese, are exposed to one third of the mass concentrations of  $2.5-10 \ \mu\text{m}$  (GM<sub>F1</sub> = 0.12 mg m<sup>-3</sup>, GM<sub>F3</sub> = 0.31 mg m<sup>-3</sup>, p = 0.002),  $1.0-2.5 \ \mu\text{m}$ ,  $0.25-1.0 \ \mu\text{m}$ ,  $0-0.25 \ \mu\text{m}$  (GM<sub>F1</sub> = 0.027 mg m<sup>-3</sup>, GM<sub>F3</sub> = 0.080 mg m<sup>-3</sup>, p = 0.019), <10  $\mu$ m and both respirable PM fractions compared to workers at furnace 3 in Mn alloy smelter 2 producing ferromanganese. The measured mass concentrations of the *parallel* respirable fraction at furnace 1 was half of the mass concentrations at furnace 4 (GM<sub>F1</sub> = 0.11 mg m<sup>-3</sup>, GM<sub>F4</sub> = 0.20 mg m<sup>-3</sup>, p = 0.034). The differences in workers' exposure to PM at furnace 1 and 3 might be explained by the different productions; nevertheless furnace 1 was quite similar to the other two furnaces which are also producing ferromanganese like furnace 3.

A not completely unexpected finding was that tappers are exposed to statistically significantly higher mass concentrations of the PM fractions compared to crane operators (Table 5). The 2-3 times higher mass concentrations of the different PM fractions may be due to differences in duration of work tasks and distance from the source of PM.

No statistically significant differences were found between tappers and crane operators by comparing the proportions of the five PM fractions collected by the impactor. The proportions of the PM collected by the impactors were comparable among workers exposed at different furnaces or working in different Mn alloy production plants. These findings suggest that the distribution of the particles that furnace workers are exposed to is independent of the plant, furnace or work task. On the other hand one should also take into account the uncertainty of the particle mass distribution measurements when applying cascade impactors. If the measurement uncertainty is too high, a potential difference between the distributions cannot be revealed.

### Conclusions

The GM mass concentrations of the respirable fraction and the <10  $\mu$ m PM fraction in the manganese alloy smelters were 0.18 and 0.39 mg m<sup>-3</sup>respectively. On average 50% of the particulate(<10  $\mu$ m) mass was in the range from 2.5 to 10  $\mu$ m, the rest was distributed between the lower stages of the impactors. On average 15% of the particulate mass was found in the PM fraction <0.25  $\mu$ m. The comparisons of the different PM fraction mass concentrations related to different work tasks or different workplaces, showed in many cases statistically significant differences, however, the particle size distribution of PM in the fraction <10  $\mu$ m d<sub>ae</sub> was independent of the plant, furnace or work task.

#### Acknowledgements

This study was funded by the Sickness Absence, Work and Health programme of the Norwegian Research Council under Grant 218350. The authors thank Kari Dahl, Øystein Aaslund and Waldemar Olsen for their contribution to the air sampling. Martin Harper and Taekhee Lee at the National Institute of Occupational Safety and Health, USA, are acknowledged for improving the language of this paper and for doing the calculation of the respirable PM mass concentrations from the impactor data.

#### References

- D. W. Dockery, C. A. Pope, X. P. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris and F. E. Speizer, *N Engl J Med*, 1993, **329**, 1753-1759.
- 2 C. A. Pope, D. W. Dockery and J. Schwartz, *Inhal Toxicol*, 1995, 7, 1-18.
- 3 O. Naess, P. Nafstad, G. Aamodt, B. Claussen and P. Rosland, *Am J Epidemiol*, 2007, **165**, 435-443.
- 4 H. Chen, M. S. Goldberg and P. J. Villeneuve, *Rev Environ Health*, 2008, 23, 243-297.
- R. D. Brook, S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. L. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, L. Whitsel and J. D. Kaufman, *Circulation*, 2010, **121**, 2331-2378.
- G. Cesaroni, F. Forastiere, M. Stafoggia, Z. J. Andersen, C. Badaloni, R. Beelen, B.
  Caracciolo, U. de Faire, R. Erbel, K. T. Eriksen, L. Fratiglioni, C. Galassi, R. Hampel, M.
  Heier, F. Hennig, A. Hilding, B. Hoffmann, D. Houthuijs, K. H. Jockel, M. Korek, T. Lanki,
  K. Leander, P. K. E. Magnusson, E. Migliore, C. G. Ostenson, K. Overvad, N. L. Pedersen, J.
  J. Pekkanen, J. Penell, G. Pershagen, A. Pyko, O. Raaschou-Nielsen, A. Ranzi, F. Ricceri, C.
  Sacerdote, V. Salomaa, W. Swart, A. W. Turunen, P. Vineis, G. Weinmayr, K. Wolf, K. de
  Hoogh, G. Hoek, B. Brunekreef and A. Peters, *Brit Med J*, 2014, 348, 16.
- 7 R. J. Delfino, C. Sioutas and S. Malik, *Environ Health Perspect*, 2005, **113**, 934-946.
- 8 C. A. Pope, III, R. T. Burnett, D. Krewski, M. Jerrett, Y. Shi, E. E. Calle and M. J. Thun, *Circulation*, 2009, **120**, 941-948.
- 9 W. G. Kreyling, M. Semmler and W. Moller, *J Aerosol Med*, 2004, **17**, 140-152.
- 10 G. Oberdorster, E. Oberdorster and J. Oberdorster, *Environ Health Perspect*, 2005, **113**, 823-839.
- 11 S. C. Fang, A. Cassidy and D. C. Christiani, *Int J Environ Res Public Health*, 2010, **7**, 1773-1806.
- S. Costello, D. M. Brown, E. M. Noth, L. Cantley, M. D. Slade, B. Tessier-Sherman, S. K.
   Hammond, E. A. Eisen and M. R. Cullen, *J Expo Sci Env Epid*, 2014, 24, 82-88.
- 13 D. E. McMillan, *Neurotoxicology*, 1999, **20**, 499-507.
- Regulations concerning Action and Limit Values, Norwegian Labour Inspection Authority,2014, Order No. 704-ENG

| 2        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 15       | J. C. Volkwein, A. D. Maynard, M. Harper, in Aerosol Measurement: Principles, Techniques,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4        |          | and Applications, ed. P. A. Kulkarni, P. A. Baron, K. Willeke, John Wiley, Chichester, UK,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5        |          | 3 <sup>rd</sup> edn 2011 Workplace perosol measurements n 572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7        | 16       | ICDD Human requirements model for rediclogical protection. Annals of the International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8        | 10       | ICKP Human respiratory tract model for radiological protection, Annals of the International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9        |          | Commission on Radiological Protection (ICRP), Pergamon Press, Oxford, UK, 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11       | 17       | D. L. Bartley and J. H. Vincent, Ann Occup Hyg, 2011, 55, 696-709.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12       | 18       | V. A. Marple, Aerosol Sci Technol, 2004, 38, 247-292.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13<br>14 | 19       | P. T. O'Shaughnessy, Environ Sci Process Impacts, 2013, 15, 49-62.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15       | 20       | A. Sorooshian, J. Csavina, T. Shinger, S. Dey, F. J. Brechtel, A. E. Saez and E. Betterton,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16       |          | Environ Sci Technol 2012 46 9473-9480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17<br>18 | 21       | S Weinbruch N Benker W Koch W M Ebert P A Drables N P Skaugset D G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19       | 21       | S. weinbruch, N. Benker, W. Koch W, M. Ebert, F. A. Diablos, N. F. Skaugset, D. G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20       |          | Ellingsen and Y. Thomassen, <i>J Environ Monit</i> , 2010, <b>12</b> , 448–454.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21<br>22 | 22       | M. Inerle-Hof, S. Weinbruch, M. Ebert and Y. Thomassen, J Environ Monit, 2007, 9, 301–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23       |          | 306.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24       | 23       | M. J. Nieuwenhuijsen, H. Kruize and M. B. Schenker, Am Ind Hyg Assoc J, 1998, 59, 34-38.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25<br>26 | 24       | H. J. Cohen and B. J. Powers, Am Ind Hyg Assoc J, 2000, 61, 422-430.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27       | 25       | A Dufresne C Dion S Viau Y Cloutier and G Perrault LOccup Environ Hyg 2009 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28       | 25       | 697 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29<br>30 | 26       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31       | 26       | M. R. Chen, P. J. Isai, C. C. Chang, I. S. Shin, W. J. Lee and P. C. Liao, J Hazard Mater,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32       |          | 2007, <b>146</b> , 393-398.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33<br>34 | 27       | M. E. Birch, B. K. Ku, D. E. Evans and T. A. Ruda-Eberenz, Ann Occup Hyg, 2011, 55, 1016-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 35       |          | 1036.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36       | 28       | C. Misra, M. Singh, S. Shen, C. Sioutas and P. A. Hall, J Aerosol Sci, 2002, 33, 1027-1047.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37<br>38 | 29       | J. H. Vincent, G. Ramachandran and S. M. Kerr, <i>J Environ Monit</i> , 2001, <b>3</b> , 565-574.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 39       | 30       | B Berlinger N Benker S Weinbruch B I Voy M Ebert W Koch D G Ellingsen and Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40       | 50       | <b>D.</b> Derninger, W. Denker, S. Weinbruch, D. E. Vov, W. Ebert, W. Roen, D. C. Ennigsen and T. Thomsson Angl $B_{2}^{i}$ and $C_{1}$ and $C_{2}$ and $C$ |
| 42       |          | Inomassen, Anai Bioanai Chem, 2011, <b>399</b> , 17/3-1780.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 43       | 31       | C. Chang, P. Demokritou, M. Shafer and D. Christiani, <i>Environ Sci Process Impacts</i> , 2013,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 44<br>45 |          | <b>15</b> , 214-224.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46       | 32       | H. L. Johnsen, S. M. Hetland, J. S. Benth, J. Kongerud and V. Soyseth, Ann Occup Hyg, 2008,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47       |          | <b>52</b> , 623-633.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48       | 33       | C. J.Tsai, C. N. Liu, S. M. Hung, S. C. Chen, S. N. Uang, Y. S. Cheng and Y. Zhou, Environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50       |          | Sci Technol 2012 <b>46</b> 4546-4552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51       | 34       | L C Cano T P Anthony and T M Paters Environ Sci Technol 2011 <b>45</b> 6483 6400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52<br>53 | J4<br>25 | L. G. Cona, T. K. Anthony and T. W. Feters, <i>Environ Sci Technol</i> , 2011, <b>43</b> , 0403-0490.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 54       | 35       | M. Singh, C. Misra and C. Sioutas, <i>Atmos Environ</i> , 2003, <b>37</b> , 4781-4793.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 55       | 36       | ISO 7708: Air quality - Particle size fraction definitions for health-related sampling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 56<br>57 |          | International Organization for Standardization, Geneva, Switzerland, 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 58       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 59       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 1        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 37  | W. C. Hinds, in Cascade impactor: Sampling and data analysis, ed. J. P. Lodge and T. L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        |     | Chan, American Industrial Hygiene Association, Akron, Ohio, USA, 1 <sup>st</sup> edn., 1986, Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5<br>6   |     | analysis, p. 45-77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7        | 38  | G. W. Snedecor, W. G. Cochran, Statistical methods, Iowa State University Press, Ames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8        | 50  | $U_{\text{res}} = U_{\text{res}} + 1000 \text{ g}^{\text{th}} \text{ s}^{\text{th}} = 200,200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9<br>10  | • • | Iowa, USA, 1989, 8 edn., p. 289-290.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11       | 39  | D. G. Ellingsen, S. M. Hetland and Y. Thomassen, <i>J Environ Monit</i> , 2003, <b>5</b> , 84–90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12       | 40  | K. Gjønnes, A. Skogstad, S. Hetland, D. G. Ellingsen, Y. Thomassen and S. Weinbruch, Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13       |     | Bioanal Chem, 2011, <b>399</b> , 1011–1020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15       | 41  | J. D. Christopher, M. Dey, S. Lyapustin, J. P. Mitchell, T. P. Tougas, M. Van Oort, H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16       |     | Strickland, and B. Wyka, <i>Pharm Forum</i> , 2010, <b>36</b> , 812-823.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18       | 42  | C Majoral A Le Pape P Diot and L Vecellio Aerosol Sci Technol 2006 40 672-682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19       | 72  | $\mathbf{C} = \mathbf{W} \mathbf{a}_{\mathbf{U}} \mathbf{U} \mathbf{u}_{\mathbf{U}} \mathbf{U}_{\mathbf{U}}$ |
| 20       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21<br>22 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25<br>26 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 27       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29<br>30 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 32       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33<br>34 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 35       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 36<br>27 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 37<br>38 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 39       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 41<br>42 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Table 1

Associations between the mass concentrations of the PM fractions collected in parallel by impactors and respirable cyclones in the Mn alloy smelters

|                              | Parallel        | respirable fraction |                                  |
|------------------------------|-----------------|---------------------|----------------------------------|
|                              | $N^{a}$         | $r^{b}$             | Equation of the line of best fit |
| < 10 µm                      | 37 <sup>c</sup> | 0.88*               | y = 0.04 + 2.02x                 |
| < 2.5 µm                     | 37 <sup>c</sup> | 0.85*               | y = -0.004 + 1.16x               |
| < 1.0 µm                     | 37 <sup>c</sup> | 0.77*               | y = -0.010 + 0.85x               |
| < 0.5 µm                     | 37 <sup>c</sup> | 0.73*               | y = -0.02 + 0.72x                |
| < 0.25 µm                    | 37 <sup>c</sup> | 0.61*               | y = -0.02 + 0.50x                |
| 0.25 – 0.5 µm                | 38              | 0.85*               | y = 0.003 + 0.23x                |
| 0.5 – 1.0 µm                 | 38              | 0.71*               | y = 0.009 + 0.13x                |
| 1.0 – 2.5 µm                 | 38              | 0.85*               | y = 0.005 + 0.31x                |
| 2.5 – 10 µm                  | 38              | 0.81*               | y = 0.05 + 0.84x                 |
| <sup>a</sup> Number of pair  | s               |                     |                                  |
| <sup>b</sup> Pearson's corre | lation coeff    | ficient             |                                  |

 $^{\rm c}$  One measurement of the < 0.25  $\mu m$  fraction was excluded because of its extreme high value (10 times the mass concentration of the respirable fraction)

\* p < 0.001

| 1          |
|------------|
| 2          |
| 3          |
| 4          |
| 5          |
| 5          |
| 6          |
| 7          |
| 8          |
| 0          |
| 9          |
| 10         |
| 11         |
| 12         |
| 10         |
| 13         |
| 14         |
| 15         |
| 16         |
| 17         |
| 10         |
| ١ð         |
| 19         |
| 20         |
| 21         |
| 20         |
| 22         |
| 23         |
| 24         |
| 25         |
| 20         |
| 20         |
| 27         |
| 28         |
| 20         |
| 23         |
| 30         |
| 31         |
| 32         |
| 33         |
| 24         |
| 34         |
| 35         |
| 36         |
| 37         |
| 20         |
| 38         |
| 39         |
| 40         |
| <u>4</u> 1 |
| 40         |
| 42         |
| 43         |
| 44         |
| 45         |
| 16         |
| 40         |
| 47         |
| 48         |
| 49         |
| 50         |
| 50         |
| 51         |
| 52         |
| 53         |
| 51         |
| 54         |
| 55         |
| 56         |
| 57         |
| 50         |
| 00         |
| 59         |

| Table 2                                                                                     |         |
|---------------------------------------------------------------------------------------------|---------|
| Mass concentrations (in mg m <sup>-3</sup> ) of the PM fractions measured in the Mn alloy s | melters |

|                                             |         |        |       |       | Percenti | es    |                 |                             |
|---------------------------------------------|---------|--------|-------|-------|----------|-------|-----------------|-----------------------------|
|                                             | $N^{a}$ | $AM^b$ | Min.  | Max.  | 10       | 90    | GM <sup>c</sup> | $\mathbf{GSD}^{\mathrm{d}}$ |
| Parallel respirable fraction <sup>e</sup>   | 38      | 0.219  | 0.046 | 0.654 | 0.075    | 0.469 | 0.175           | 1.98                        |
| Full-shift respirable fraction <sup>f</sup> | 38      | 0.232  | 0.042 | 0.573 | 0.075    | 0.467 | 0.181           | 2.08                        |
| $< 10 \mu m  (PM_{10})^g$                   | 37      | 0.488  | 0.116 | 1.50  | 0.170    | 1.10  | 0.390           | 1.96                        |
| < 0.25 µm                                   | 37      | 0.088  | 0.004 | 0.609 | 0.017    | 0.188 | 0.051           | 2.77                        |
| $0.25 - 0.5 \ \mu m$                        | 38      | 0.053  | 0.005 | 0.162 | 0.013    | 0.108 | 0.039           | 2.35                        |
| $0.5 - 1.0 \mu m$                           | 38      | 0.037  | 0.008 | 0.115 | 0.011    | 0.072 | 0.028           | 2.11                        |
| $1.0 - 2.5 \mu m$                           | 38      | 0.074  | 0.009 | 0.239 | 0.019    | 0.166 | 0.055           | 2.24                        |
| $2.5 - 10 \mu m$                            | 38      | 0.234  | 0.018 | 0.698 | 0.096    | 0.497 | 0.189           | 2.02                        |

<sup>a</sup> Number of measurements

<sup>b</sup> Arithmetic mean <sup>c</sup> Geometric mean <sup>d</sup> Geometric standard deviation <sup>e</sup> Respirable PM fraction sampled by the respirable cyclone which ran in parallel with impactor <sup>f</sup> Respirable PM fraction sampled by the respirable cyclone collecting full-shift sample

<sup>g</sup> Sum of all fractions

| 1   |    |
|-----|----|
| 2   |    |
| 2   |    |
| 3   |    |
| Δ   |    |
| -   |    |
| - 5 |    |
| 6   |    |
| 0   |    |
| - 7 |    |
| Q   |    |
| 0   |    |
| 9   |    |
| 4   | ^  |
|     | U  |
| 1   | 1  |
|     |    |
| 1   | 2  |
| 1   | 3  |
|     |    |
| 1   | 4  |
| 1   | 5  |
| I   | 5  |
| 1   | 6  |
| 4   | 7  |
| 1   | 1  |
| 1   | 8  |
| 4   | ō  |
| T   | Э  |
| 2   | 0  |
| -   | 1  |
| 2   | 1  |
| 2   | 2  |
| ~   | 2  |
| -2  | 3  |
| 2   | 4  |
| ~   | Ξ. |
| - 2 | 5  |
| 2   | 6  |
| ~   | 2  |
| 2   | 7  |
| 2   | 0  |
| 2   | 0  |
| 2   | 9  |
| 2   | 0  |
| 3   | 0  |
| 3   | 1  |
| ~   | ~  |
| 3   | 2  |
| 3   | 3  |
|     |    |
| -3  | 4  |
| ર   | 5  |
| 0   | 5  |
| - 3 | 6  |
| 2   | 7  |
| 3   | 1  |
| - 3 | 8  |
| 2   | ٥  |
| 3   | 9  |
| 4   | 0  |
| Л   | 1  |
| 4   | 1  |
| 4   | 2  |
| 1   | 3  |
| 4   | 3  |
| 4   | 4  |
|     | Б  |
| 4   | Э  |
| 4   | 6  |
|     | 7  |
| 4   | 1  |
| 4   | 8  |
|     | 0  |
| 4   | 9  |
| 5   | 0  |
| 2   |    |
| 5   | I  |
| 5   | 2  |
| 2   | -  |
| 5   | კ  |
| 5   | 4  |
| -   | -  |
| 5   | 5  |
| 5   | 6  |
| 2   | -  |
| 5   | 1  |
| 5   | 8  |
|     | -  |

| Table 3 |
|---------|
|---------|

PM mass fractions (in %) and mass distribution parameters in the Mn alloy smelters calculated from the deposited masses on all stages of the Sioutas cascade impactors

|                                    | $AM^{b}$ | 95% CI <sup>c</sup> | Min.   | Max.   |
|------------------------------------|----------|---------------------|--------|--------|
| Mn alloy smelter 1 (N <sup>a</sup> | = 19)    |                     |        |        |
| < 0.25 µm                          | 13.0     | 11.1 – 14.9         | 3.6    | 18.9   |
| 0.25 – 0.5 μm                      | 12.8     | 10.0 - 15.7         | 5.2    | 24.1   |
| 0.5 – 1.0 μm                       | 8.8      | 6.7 – 10.9          | 3.3    | 19.0   |
| 1.0 – 2.5 µm                       | 16.3     | 12.5 - 20.0         | 5.3    | 37.5   |
| 2.5 – 10 µm                        | 49.1     | 43.3 - 55.0         | 15.7   | 65.1   |
| MMAD <sup>d</sup>                  | 2.7 µm   | 2.2 – 3.1 µm        | 0.9 µm | 4.2 µm |
| <b>GSD</b> <sup>e</sup>            | 4.5      | 4.2 - 4.9           | 3.0    | 5.4    |
| Mn alloy smelter 2 (N =            | = 18)    |                     |        |        |
| < 0.25 µm                          | 17.3     | 11.9 - 22.6         | 2.6    | 40.8   |
| $0.25 - 0.5 \mu m$                 | 10.2     | 7.3 – 13.0          | 3.1    | 22.2   |
| 0.5 – 1.0 μm                       | 7.2      | 5.7 - 8.8           | 3.4    | 13.6   |
| 1.0 – 2.5 µm                       | 14.9     | 12.8 - 16.9         | 8.7    | 22.5   |
| 2.5 – 10 μm                        | 50.5     | 44.5 - 56.5         | 33.1   | 72.1   |
| MMAD                               | 2.6 µm   | 1.9 – 3.2 µm        | 0.5 µm | 4.8 µm |
| GSD                                | 4.4      | 3.9 - 4.9           | 3.2    | 5.6    |
| Smelter $1+2$ (N = 37)             |          |                     |        |        |
| < 0.25 µm                          | 15.1     | 12.3 - 17.8         | 2.6    | 40.8   |
| $0.25 - 0.5 \mu m$                 | 11.5     | 9.6 - 13.5          | 3.1    | 24.1   |
| 0.5 – 1.0 μm                       | 8.0      | 6.7 – 9.3           | 3.3    | 19.0   |
| 1.0 – 2.5 μm                       | 15.6     | 13.5 – 17.7         | 5.3    | 37.5   |
| 2.5 – 10 μm                        | 49.8     | 45.8 - 53.8         | 15.7   | 72.1   |
| MMAD                               | 2.6 µm   | $2.2 - 3.0 \mu m$   | 0.5 µm | 4.8 µm |
| GSD                                | 4.5      | 4.2 - 4.7           | 3.0    | 5.6    |

<sup>a</sup>Number of measurements <sup>b</sup> Arithmetic mean <sup>c</sup> Central 95% confidence interval <sup>d</sup> Mass median aerodynamic diameter <sup>e</sup> Geometric standard deviation

| *                                      | AM <sup>b</sup> | 95% CI <sup>c</sup> | Min     | Max    |
|----------------------------------------|-----------------|---------------------|---------|--------|
| Mn smelter 1 furnace 2 ( $N^a = 187$ ) | 7 1111          | <i>)5</i> // CI     | Iviiii. | mux.   |
| CMD <sup>d</sup>                       | 27 nm           | 25 – 28 nm          | 15 nm   | 81 nm  |
| GSD <sup>e</sup>                       | 1.94            | 1.90 - 1.98         | 1.57    | 3.31   |
| Mn smelter 2 furnace 1 ( $N = 101$ )   |                 |                     |         |        |
| CMD                                    | 37 nm           | 34 – 39 nm          | 18 nm   | 104 nm |
| GSD                                    | 2.16            | 2.12 - 2.20         | 1.74    | 2.72   |
| Mn smelter 2 furnace 2 $(N = 104)$     |                 |                     |         |        |
| CMD                                    | 38 nm           | 34 – 42 nm          | 18 nm   | 122 nm |
| GSD                                    | 2.16            | 2.11 - 2.21         | 1.67    | 2.99   |

| Table 4                  |                            |                                       |     |
|--------------------------|----------------------------|---------------------------------------|-----|
| Number size distribution | parameters in the Mn alloy | y smelters calculated from the SMPS d | ata |

<sup>a</sup>Number of size distribution scans

<sup>b</sup> Arithmetic mean <sup>c</sup> Central 95% confidence interval

<sup>d</sup> Count median mobility diameter

<sup>e</sup> Geometric standard deviation

# **Environmental Science: Processes & Impacts**

| 0          |  |
|------------|--|
| 2          |  |
| 3          |  |
| 1          |  |
| 4          |  |
| 5          |  |
| č          |  |
| 6          |  |
| 7          |  |
|            |  |
| Ø          |  |
| 9          |  |
| 10         |  |
| 10         |  |
| 11         |  |
| 40         |  |
| 12         |  |
| 13         |  |
| 4.4        |  |
| 14         |  |
| 15         |  |
| 10         |  |
| 10         |  |
| 17         |  |
| 10         |  |
| ١ð         |  |
| 19         |  |
| 20         |  |
| 20         |  |
| 21         |  |
| 20         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| ∠4         |  |
| 25         |  |
| 26         |  |
| 20         |  |
| 27         |  |
| 20         |  |
| 28         |  |
| 29         |  |
| 20         |  |
| 30         |  |
| 31         |  |
| 20         |  |
| 32         |  |
| 33         |  |
| 21         |  |
| 34         |  |
| 35         |  |
| 26         |  |
| 30         |  |
| 37         |  |
| 20         |  |
| 30         |  |
| 39         |  |
| 10         |  |
| 40         |  |
| 41         |  |
| 12         |  |
| 42         |  |
| 43         |  |
| ΔΔ         |  |
|            |  |
| 45         |  |
| <u></u> 16 |  |
| +0         |  |
| 47         |  |
| <u>⊿</u> 8 |  |
| 40         |  |
| 49         |  |
| 50         |  |
| 20         |  |
| 51         |  |
| 52         |  |
| 52         |  |
| 53         |  |
| 54         |  |
|            |  |
| 55         |  |
| 56         |  |
| 50         |  |
| 57         |  |
| 58         |  |
| 50         |  |

59 60

| Table | 5 |
|-------|---|
|-------|---|

Mass concentrations (in mg m<sup>-3</sup>) of the PM fractions in different job groups in the Mn alloy smelters

|                                             | Job group       | $N^{a}$ | $GM^{b}$ | $\overline{\text{GSD}^{c}}$ | <i>p</i> -value |
|---------------------------------------------|-----------------|---------|----------|-----------------------------|-----------------|
| Parallel respirable fraction <sup>d</sup>   | Tappers         | 19      | 0.276    | 1.66                        | < 0.001         |
|                                             | Crane operators | 19      | 0.110    | 1.67                        |                 |
| Full-shift respirable fraction <sup>e</sup> | Tappers         | 19      | 0.312    | 1.62                        | < 0.001         |
| · _                                         | Crane operators | 19      | 0.105    | 1.64                        |                 |
| $< 10 \mu m \left( P M_{10} \right)^{f}$    | Tappers         | 19      | 0.601    | 1.73                        | < 0.001         |
|                                             | Crane operators | 18      | 0.247    | 1.58                        |                 |
| < 0.25 µm                                   | Tappers         | 19      | 0.081    | 2.81                        | 0.003           |
|                                             | Crane operators | 18      | 0.031    | 2.14                        |                 |
| 0.25 – 0.5 μm                               | Tappers         | 19      | 0.071    | 1.68                        | < 0.001         |
|                                             | Crane operators | 19      | 0.021    | 1.93                        |                 |
| $0.5 - 1.0 \ \mu m$                         | Tappers         | 19      | 0.043    | 1.78                        | < 0.001         |
|                                             | Crane operators | 19      | 0.019    | 1.92                        |                 |
| 1.0 – 2.5 μm                                | Tappers         | 19      | 0.090    | 1.89                        | < 0.001         |
|                                             | Crane operators | 19      | 0.033    | 1.89                        |                 |
| 2.5 – 10 μm                                 | Tappers         | 19      | 0.277    | 1.75                        | < 0.001         |
|                                             | Crane operators | 19      | 0.128    | 1.86                        |                 |

<sup>a</sup> Number of measurements <sup>b</sup> Geometric mean <sup>c</sup> Geometric standard deviation <sup>d</sup> Respirable PM fraction sampled in parallel with impactor <sup>e</sup> Respirable PM fraction sampled full-shift <sup>f</sup> Sum of all fractions

# Figures

Fig. 1 The association between the mass concentrations of the respirable fraction calculated from impactor data and collected by respirable cyclones in the Mn alloy smelters



Respirable cyclone, mg m<sup>-3</sup>

Fig. 2. Differential mass distribution of particles in the Mn alloy smelters represented by histogram (straight line) and "middle of cut-off diameters" method (dotted line)



Aerodynamic diameter, µm

## Fig. 3 Particle number concentration distributions measured by SMPS in the Mn alloy smelters



Mobility diameter (d<sub>mob</sub>), nm