Environmental Science Processes & Impacts

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

Cormier et al.

Environmental Impact Statement

The increasing diversity of pharmaceuticals, personal care products, and pesticides entering urban waterways and wastewater treatment plants is causing concern because of potential downstream environmental impacts. Ideally, potentially harmful chemicals should be degraded to benign fragments as upstream as possible. However, it is often difficult to assess persistency in urban waterways. The majority of degradations studies are often conducted in "artificial" waters for standardized testing, and not real world urban- and wastewater. We therefore explored the degradation behavior of nine diverse contaminants in real world urban- and wastewater under varying conditions, at both ambient and cold temperatures, and compared them with laboratory tests. This study presents a more accurate picture of contaminant transformation processes in an urban-water environment.

5

6 7

8 9

10 11

12 13

14 15

16

17 18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment

Guillaume Cormier,^a Benoit Barbeau,^b Hans Peter H. Arp^c and Sébastien Sauvé^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risk. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered 10 secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The 15 chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17ß-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are ²⁰ stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17ßestradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and

half-lives ranging respectively from 0.0082-0.52 d⁻¹ and 1.3-85 days. The obtained degradation data ²⁵ generally followed a pseudo-first-order-kinetic model. This information can be used to model degradation prior to water treatment.

Introduction

Increasing attention has been given to pesticides, pharmaceuticals and personal care products (PPCP) in surface and groundwater.¹ ³⁰ The diversity of these substances on the market has grown continuously and methods of their removal from municipal wastewater are being studied intensively.²⁻⁴ Many PPCP and pesticides are generally found in urban surface waters, wastewater treatment plants (WWTP) as well as drinking waters ³⁵ in the ng L⁻¹ to µg L⁻¹ range.^{3, 5-15} Though it is important to develop water treatment strategies for handling these diverse compounds, it is also important to understand their fate before or in the absence of - water treatment. This is needed not only for assessing chemical fate in areas or situations with little water ⁴⁰ treatment (e.g. due to floods or pore infrastructure), but also to potentially better incorporate low-energy treatment options, such

as by extending storage time in a primary settling tank.

This journal is © The Royal Society of Chemistry [year]

The objective of this study was therefore to measure the

degradation of a range of pesticides and PPCPs in urban surface 45 waters and wastewater in the absence of secondary or tertiary treatment and calculate the contribution of biotic (biodegradation) and abiotic (hydrolysis and oxidation) processes to their disappearance in aquatic systems. Among the target compounds, we have chosen to focus on seven PPCPs: 17ß-estradiol (E2), 50 ethinylestradiol (EE2), norethindrone (NOR), caffeine (CAF), carbamazepine (CBZ), sulfamethoxazole (SMX) and diclofenac (DCF); along with the pesticide atrazine (ATZ) and its main degradation metabolite, desethylatrazine (DEA). The target compounds are fairly mobile in water, represent a range of 55 diverse structures and physico-chemical properties and are commonly emitted to wastewater.^{16, 17} In the last few years, they have all been detected in the surface river waters of eastern Canada, including some rivers adjacent to WWTPs, implying that their removal during wastewater treatment is not optimal as 60 reported by previous authors²⁻⁴: ATZ and DEA between 2.0 and 479 ng L^{-1} , $\hat{15}$, 18, 19 E2, EE2, NOR and SMX at low ng L^{-1}

ARTICLE SUBMISSION

[journal], [year], **[vol]**, 00–00 | 1

59 60

concentrations, $^{19,\ 20}$ CBZ between 0.2 and 80 ng $L^{\text{-}1,\,15,\ 18,\ 19,\ 21}$ CAF between 14 and 110 ng L^{-1} and DCF up to 50 ng L^{-1} . ²¹⁻²⁶ Studies reporting degradation rate half-lives and rate constants for these compounds have focused on activated 5 sludge,^{10, 27-30} and selected aquatic environments, such as muddy waters, river waters, marine waters or water-sediment systems (Table 1). This variety of environmental media has produced a wide range of kinetic data, making it difficult to understand the degradation behaviour of the nine target compounds in actual 10 urban surface water or raw wastewater. More data are required given that water is probably the best natural transport vector for those compounds, which in sufficient concentrations can have clear effects on aquatic organisms, wild life and human health.³¹. Toxic effects on fresh water phytoplankton populations have been 15 reported at ATZ concentrations of 1 μ g L^{-1,22} E2, EE2 and NOR can behave as endocrine disruptors to fish species at low ng L⁻¹ concentrations.²³⁻²⁵ Chronic exposure to SMX is negatively impacting many plants, algae and invertebrates in aquatic environments, inhibiting their folic acid synthesis, an essential 20 vitamin for the DNA and RNA synthesis.²⁶ Studies have reported that environmental concentrations of CBZ and DCF have limited acute toxicity on aquatic bacteria, algae, micro-crustaceans and

fish but that chronic exposition can be hazardous.² The two compounds most unique to this study are desethylatrazine (a 25 transformation product of atrazine) and norethindrone (a synthetic steroid that is less well studied than other hormones like E2 and EE2), in which scarce information could be found in the literature regarding their degradation. Regarding the other compounds, the photolysis degradation pathway in aqueous 30 environments is currently better studied and documented^{2, 6, 32-36} than other chemical and microbial degradation pathways. Therefore in this study we set out to quantify and understand the degradation behaviour of these compounds by comparing their persistency in typical urban river waters vs wastewater in absence 35 of sunlight and prior to any secondary or tertiary water treatment. Abiotic degradation (excluding photo degradation) assessed in typical urban surface waters will give more insight about the contribution of abiotic degradation (natural hydrolysis and oxidation) once the target compounds are released into the 40 environment through poor water treatment while abiotic and biological degradation measured in wastewaters will give useful

information for the management of areas and situations with limited possibility for water treatment.

Impacts Accepted Manuscript

Processes

Science:

Environmental

Table 1 Overview of literature values of degradation in comparable aqueous systems for the studied compounds

Compound	Studied system	System characteristics	t _{1/2} (days)	/2 Degradation % in ys) (time)	
ATZ ³²	Water downstream of a sugar refinery	500 ml water : 12.5 g sediments, 10 ppm sugar, 22°C, aerobic	n.a.	100 (6w)	В
ATZ ³²	Sterile buffered water	рН 7	none	n.a.	н
ATZ ³⁷	Synthetic river water, pH 6.4 (aerobic)	ATZ 500 ppb, reactor operated in continuous	none	n.a.	В
ATZ ³⁷	Synthetic river water , pH 6.4 (anaerobic)	mode	none	n.a.	В
ATZ ²²	Autoclaved estuarine and marine waters	n.a.	n.a.	persistent (128d)	С
ATZ ²²	Laboratory aqueous systems	pH 7.0, 5 mg/L fulvic acid	742	n.a.	Н
DEA ³⁸	Potable water	n.a.	n.a.	persistent (10d)	G
DEA ³⁹	Groundwater microcosm under low O ₂	DEA~20 μg/L, DO <3.0 mg/L	n.a.	persistent (45d)	G
DEA ⁴⁰	Aerobic aquifer	DEA~3 μg/L, DO~6.9 mg/L	n.a.	persistent (60d)	G
E2 ⁴¹	Digestion unit (mud)	aerobic, 21 °C	n.a.	88 (24h)	В
E2 ⁴¹	Digestion unit (mud)	anaerobic, 21 °C	7	n.a.	В
E2 ⁴¹	Bioreactor	21 °C	n.a.	92 (7h), 100 (49h)	В
E2 ³⁴ EE2 ³⁴	Aerobic river water	20 °C	n.a.	100 (1.2d) 17 (1.2d)	B B
F2 ⁴²		Initialy aerobic (potentially sl, of oxic	2-3	17 (1120)	B
FF2 ⁴²	English river waters (water column)	conditions) 20 °C	4-6	n.a.	B
E2/EE2 ⁴²		sterile	none	persistent	- Н+О
E2 ⁴³		oter ne	none	38.9 (10d)	G
FF2 ⁴³	Potable water	n.a.	n.a.	22.4 (10d)	G
F2 ⁴⁴		15 °C (winter)/28 °C (summer)	n.a.	100 (7d)/100 (5d)	B
FF2 ⁴⁴	lananese river waters	$15 ^{\circ}\text{C}$ (winter)/28 $^{\circ}\text{C}$ (summer)	>14/14	n.a.	B
E2/EE2 ⁴⁴		sterile	none	persistent (5d)	- Н+О
CBZ ⁴⁵	Aquatic microcosm of 12,000 L	unspecified T(°C) and O ₂	n.a.	not significant	Н
CBZ ⁴⁶	Stream muddy water (3 water:1	Oxic, pH 7.7, 1.4% C _{org} , 20 °C	328	n.a.	В
CBZ ⁴⁷	11 wastewaters from different	bacterial beds aged 1-40 days, oxic and	n.a.	not significant	В
CP7 ⁴⁸	Estimation Program Interface		> 265	(ireatinent)	ц
CAE ⁴⁵	Aquatic microcosm of 12 000 l	upspecified T(°C) and O	> 303	not significant	<u>п</u>
	Aquatic microcosm of 12,000 E	storilo (darknoss) at 20° C	nono	norsistant	H + O
CAE ⁴⁹	W/W/TR primary inlat	POD 67 mg/L TSS 76 mg/L pH 7 10 °C	~1	~100 (24)	
	W/W/TP outlet	BOD 3.6 mg/L TSS 7.9 mg/L nH 6.4.19 °C	~5	~100 (30) ~100 (10d)	B
	Waters unstream of 2 W/W/TP	bob 3.0 mg/L, 135 7.5 mg/L, ph 0.4, 15 C	none	not significant	B
	Water downstream of a WWTP	oxic, 23 °C	na	100 (46d)	B
	Estimation Program Interface	aqueous systems nH 7 at 25°C	30-500	100 (400) n a	н
SMX ⁴⁵	Aquatic microcosm of 12 000 l	unspecified T(°C) and O ₂	n 2	not significant	н
SMX ⁴⁹	WWTP primary inlet	BOD 67 mg/L TSS 76 mg/L nH 7 19 °C	~18	90 (25d)	B
SMX ⁴⁹	W/W/TP outlet	BOD 3.6 mg/L TSS 7.9 mg/L nH 6.4.19 °C	none	nersistent (56d)	B
SMX ⁵¹	Synthetic system (3 water: 1 sediment)	unspecified On 25 °C	1/	n a	B
SMX ³⁶	Natural waters	Sterile (initial Ω_{2} of 7.8 mg/L no air hubbling)	none	norsistent	н
SMY ³⁶		sterile (initial 02 of 7.6 http://t. no an bubbling)	none	nersistent	н
SMY ³⁶	Sediment slurry (4.7% C _{org})	natural	10.1	n a	B
51417			10.1	nersistant	н
DCF ⁵²	Liquid phases of WWTP sludges	Signification $(0.5 \text{ g} + 3.5)/L$	11.d.	persistent	гі В
	Aprobic synthetic wastowater	$a \in OD(C, \mu = 5.5^{-1.5}, 20 C (0.5 g ISS/L)$	nono	persistent (20d)	D D
	Lako surfaco watero	(10 mg activated sludge/L delonized Water)	none	persistent (200)	ы Б
		Udi Kiless	none	persistent (570)	IT T D

^{*a*} A more detailed table can be found in the ESI (Table S8)

^b Classification symbols are h = hours, d = days, w = weeks, B = biodegradation, H = hydrolysis, O = oxidation, G = general degradation, P = photolysis and C = abiotic degradation

5 Experimental

A protocol based on published studies^{34, 44, 55, 56} and the standardised OECD's 309 –Simulation Biodegradation Test⁵⁷ was created to achieve the objectives. A specific analytical technique developed earlier was used to quantify the degradation of the ¹⁰ spiked chemicals over time in water.⁵⁸ This method uses a laser diode thermal desorption atmospheric pressure chemical

ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS).

Chemicals, reagent and stock solutions

¹⁵ The characteristics and the molecular structures of the nine selected analytes used for this study are listed in **Table 2**. These standards (purity \geq 97.4%) were purchased from Sigma Aldrich (Oakville, ON, Canada).

Table 2 Studied compounds, their physical-chemical properties and the selected ions in LDTD-APCI(+)-MS/MS for the chemical analysis.

			Water		Sampled	Other	Honnielow	M	S/MS parame	eters									
Compound name and structure	MW ^a [g mol ⁻¹]	рКа	Solubility (X°C) [mg L ⁻¹]	Log K _{ow}	WWTP sludge [*] average Log K _d ¹⁶	sludge Log K _d (min- max) ¹⁶	Constant at 25°C ⁵⁹ [atm m ³ mol ⁻¹]	Precursor Ion [M+H] ⁺ (m/z)	Product Ion (m/z)	Internal standard used									
									131.9										
	215.69	1.7 ^{<i>a</i>}	34.7 (26) ⁶⁰	2.61 ⁶¹	0.95	0.7-2.1	2.36 x10 ⁻⁹	216.12	173.9	[¹³ C ₃]-ATZ									
DEA CI	187.63	1.65 ⁶²	3200 (22) ⁶³	1.51 ⁶¹	-0.1	n.a.	1.53 x10 ⁻⁹	188.1	103.9	[¹³ C ₃]-ATZ									
			(22)						145.9										
E2	272 20	10 33 ^b	3 6 (27) ⁶⁴	4 01 ⁶¹	2.0	1 2-2 9	3 64 x10 ⁻¹¹	255 18	133.1	[¹³ C-]-F2									
HO	272.33	10.55	5.0 (27)	4.01	2.0	1.2-2.5	3.64 X10	255.10	159.1	[C ₆]-ΕΖ									
EE2									133.1										
HO	296.41	10.33 ^b	11.3 (27) ⁶⁴	3.67 ⁶¹	2.35	2.3-3.7	7.94 x10 ⁻¹²	279.1	159.1	[¹³ C ₆]-E2									
NOR									109.1										
	298.43	17.59 ^b	7.04 (25) ⁶⁴	2.97 ⁶¹	1.7	n.a.	5.80 x10 ⁻¹⁰	299.205	91.1	[¹³ C ₆]-E2									
CBZ	236.28 1	236.28 13.9 ^d							192.1										
O NH,			13.9 ^{<i>d</i>}	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	13.9 ^d	17.7 ^b	2.45 [°]	1	0.1-2.5	1.08 x10 ⁻¹⁰	237.12
CAF	10/ 10	10 4 ^a	21600	0 07 ⁶¹	0.85	0 9-3 1	3 58 v10 ⁻¹¹	195 12	109.9	[¹³ C.]-CAE									
	194.19	10.4	(25) ⁶⁴	0.07	0.85	0.9-3.1	5.56 X10	195.12	137.9	[C ₃]-CAF									
SMX OSO NO	253.28	5.7 ^d	610 (37) ⁶⁴	0.89 ⁶¹	0.35	0.4-2.6	6.42 x10 ⁻¹³	254.06	107.9	[¹³ C ₆]-SMX									
			(/						156.1										
	296.16	4.15 [°]	2.37 (25) ⁶⁵	4.51 ⁶⁶	1.75	1.2-3.1	4.73 x10 ⁻¹²	296.01	215.0	DCF-d₄									
СІ ОН	-	-	<u> </u>		-	- ·	-		249.9										

*These data are from the same water, "SRC PhysProp database <u>http://www.syrres.com</u>, ^bHSDB database <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u>, "Drugbank database <u>http://www.drugbank.ca/</u> and ^dEPA http://www.epa.gov/pesticides/science/efed/policy_guidance/team_authors/endangered_species_reregistration_workgroup/esa_reporting_fate.htm.

All isotopically-labelled compounds used as internal standards ([$^{13}C_3$]-ATZ, [$^{13}C_6$]-E2, CBZ-d₁₀, [$^{13}C_3$]-CAF and [$^{13}C_6$]-SMX) were purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA) except diclofenac (DCF-d₄, 99%, solid),

¹⁰ which was obtained from CDN Isotopes (Pointe-Claire, PQ, Canada). Other chemicals used were of analytical grade and used without further purification: silver nitrate (AgNO₃), copper sulfate (CuSO₄) and methanol (MeOH) were obtained from

Environmental Science: Processes & Impacts

Fisher Scientific (Whitby, ON, Canada) and mercury chloride (HgCl₂) was obtained from BDH Chemicals (Montréal, PQ, Canada). Sodium hydroxide 1M (NaOH) was prepared by dissolution of the commercial compound in water. Formic acid ⁵ was obtained from Sigma Aldrich (Oakville, ON, Canada).

Ultrapure distilled-deionized water (dd-H₂O) was obtained by filtration on a Milli-Q apparatus (Millipore, USA).

Individual compound stock solutions were prepared in methanol at a concentration of 1000 mg L⁻¹ and kept at -20°C in amber ¹⁰ vials for a maximum of 6 months. Mixed 20 mg L⁻¹ working solutions were prepared by diluting stock solutions in MeOH and kept for a maximum of 6 months. Individual stock solutions (1000 mg L⁻¹) of silver nitrate, copper sulfate and mercury chloride were prepared by dissolution of the appropriate ¹⁵ compound in acidified dd-H₂O and stored in LDPE amber bottles at ambient temperature for the length of the project. Individual working solutions (10 mg L⁻¹) were prepared by dilution in dd-H₂O.

20 Urban river water and wastewater characterisation

Sample collection

The urban surface water was sampled from the urban/industrial stretches of the Milles-Iles River, entering the Ste-Rose drinking ²⁵ water treatment plant intake (Laval, QC) during March 2012. The wastewater samples were selected to be representative of wastewater that has undergone no or very limited treatment, and therefore we collected wastewater from municipal outflow of a primary sludge tank (PST) located in the vicinity of Quebec City, ³⁰ QC, and sampled twice; in February and June 2012. Water samples were collected in 4-L amber glass bottles previously

samples were collected in 4-L amber glass bottles previously washed and rinsed with ultrapure water and autoclaved at 121°C. Collected water was stored at 4°C at most 2 hours after sample.

35 Urban river water and wastewater characteristics

Water characterisation were done within 48 hours after sample collection. Parameters were evaluated according to the test objectives. Solution pH was measured with a VWR SB20 pH-meter, bacterial count with an Olympus BX51 fluorescence ⁴⁰ microscope, and DOC & TOC with a Sievers 5310 TOC Laboratory Analyser. Hach methods 10205 & 10208 were used for NH₄ & N_{tot} as well as an Ultrospec 3100 pro UV-Vis spectrophotometer at 630 nm. Turbidity was measured with a Hach 2100N Series Laboratory Turbidimeter. TSS, COD, ⁴⁵ conductivity and alkalinity were respectively measured following APHA 2005 standard methods 2540D, 5220D, 2510B & 2310B.

Finally, lipids were measured by repeated Soxhlet extraction with hexane and sugars by colorimetry.⁶⁷ Results are presented in **Table 3.**

0	Table 3	Characterisation	of water samples
~		characterioation	or mater bailipres

Water type tested	Initial water characteristics				
	рН	7.42-7.46			
Lirbon river	bacterial presence [nb L^{-1}]	negligible			
(surface) water	TOC [mg L ⁻¹]	7.44			
(ourrace) mater	Turbidity [NTU]	0.20-1.36			
	Alkalinity [mg CaCO ₃ L ⁻¹]	33			
	рН	7.41-7.52			
	viable bacteria [nb L ⁻¹]	7.12 x10 ¹⁰			
	total bacteria [nb L ⁻¹]	9.41 x10 ¹⁰			
	DOC [mg L ⁻¹]	14.2			
	TOC [mg L^{-1}]	18.7			
Raw wastewater	NH_4 -N [mg L ⁻¹]	5-25			
tank outlet)	COD [mg O ₂ L ⁻¹]	170-278			
	TSS [mg L^{-1}]	90-127			
	Lipids [mg L ⁻¹]	0.05-0.16			
	Carbohydrates [mg L ⁻¹]	13-47			
	Q (m ³ h ⁻¹)	8			

Laboratory bench-scale degradation experiments

Procedures common to all experiments

Degradation experiments corresponded to the measurement of the target compound stability over time in oxic conditions. The ⁵⁵ length of the adaptation period, i.e. the lag phase, was also measured. Abiotic degradation was tested in urban river water and raw wastewater (in which microbial activity was inhibited) by waiting for spontaneous hydrolysis/oxidation with no chemical additives (other than biocide for the wastewater). ⁶⁰ Experiments were carried out in 30-mL large neck (untreated) amber vials provided by Fisher Scientific (Whitby, ON, Canada). All kinetic degradation assays were initiated within 48 hours after sample collection, run in duplicates and incubated in controlled temperature chambers, as specified in the summary of the ⁶⁵ experiments in **Table 4**.

 Table 4 Assessed parameters of the degradation kinetic experiments.

Water type tested	/ater type Test Sterilizatior tested duration method [days]		Water temp. [°C]	Degradation pathway evaluated	
Urban river (surface) water	469	Filtration 0.45 μm	4 ± 0.5 ambient (21 ± 2)	abiotic degradation	
Raw wastewater	Biocide Vs. water 72 No water Sterilizatio (raw) ^a		4 ± 0.5 21.5 ± 0.5	abiotic degradation ^a vs biological degradation	

^{*a*} A series treated with biocides was tested in parallel where biological activity was inhibited with $[Cu^{2+}]$ 9.5 mg L⁻¹, $[Ag^+]$ 16 mg L⁻¹, [SMX] 10 mg L⁻¹ and acidified with formic acid

Impacts Accepted Manuscri

oð

Environmental Science: Processes

58

59 60 Temperatures (Table 4) were selected based on average data for surface waters and WWTP in the Quebec City area and reflected seasonal variations. Maintenance of oxic conditions was achieved by bubbling air through each bottle 60 mins per day for the ⁵ duration of the degradation assays. A correction factor was used to correct the quantified concentrations of the target compounds, to prevent them being biased to high due to long term water evaporation. Volatilization was not an issue for the studied compounds, due to their low Henry's law constant (**Table 2**), ¹⁰ which warrants their classification as being non-volatile from water. More information about the maintenance of oxic conditions is available in the ESI.

All kinetic experiments were launched by spiking the compounds 15 together into tested waters to a nominal concentration of 400 µg L^{-1} with a mix working stock solution in MeOH. This nominal concentration, which is higher than typically observed concentrations in such water samples,^{3, 5-15, 68}, was chosen to facilitate analytical quantification at multiple time-steps down to 20 trace environmental levels, and to avoid time consuming solidphase extraction procedures. If we assume the mechanism of degradation kinetics is consistent at all concentrations, starting from an elevated concentration should not influence the observed rate constant. Also, this avoided the concentration of the studied 25 compounds already present in the studied waters from contributing to concentration measurements at the initial time steps. The proportion of MeOH in the tested waters was always between 1 and 2 %, which should not cause any bactericide or bacteriostatic effects.⁶⁹ Aliquots were then collected at specific 30 time intervals from the water bottles and the studied compounds were analysed by LDTD-APCI-MS/MS. The first quantification of the degradation experiment was always done at least 5 hours after having spiked the compounds in the studied waters to ensure sorption equilibrium was obtained, based on a previous 35 investigation on sorption kinetics for these compounds in water samples,¹⁶ as described below.

Urban river water

Abiotic degradation of the target compounds

⁴⁰ The investigations of the urban river water were carried out to estimate the abiotic degradation in urban river waters (**Table 4**). For this, microbial activity was inhibited by filtration. Filtrations were done under suction with 0.45-μm nitrocellulose membrane manufactured by Millipore (Billerica, MA). Although this ⁴⁵ method may not have completely sterilized the studied system, it does increased the microbial lag time (the end of which would be evident in the experimental results if microbial degradation occurs quicker than abiotic degradation) and also avoids adding chemicals that may influence the degradation rate.

Raw wastewater

Abiotic degradation of the target compounds

Unlike in urban river waters, filtration was not considered an appropriate way to minimize microbial activity for the abiotic ⁵⁵ degradation experiments, as doing so was found to dramatically lower the TSS content and other properties; therefore, it was done through addition of biocides. Copper sulfate and silver nitrate were added to concentrations substantially higher than their typically recognized microbiological lethal thresholds^{70, 71} (**Table**

60 4). The metals were used together because their combination is known to have synergic effects in inactivation of bacteria.⁷² Wastewaters used here were acidified to pH ≈4.5 with formic acid to maintain the bioavailability of the biocide metals. This will have an effect on DOC values of some compounds since 65 sorption is more important at neutral forms; SMX (pKa of 5.7) will be neutral at pH 4.5 and ionic at pH 7, DCF (pKa 4.15) will be a mixture of charged and ionic at pH 4.5). Thus, unlike the urban river experiments, the chemical composition of the water phase was slightly altered. Sodium azide, an effective biocide ⁷⁰ widely used in similar experiments⁷³ could not be used because of its capacity to chemically transform atrazine (ATZ).⁷⁴ Autoclaving, another widely used method,⁵⁶ was not chosen because three autoclaving cycles would have had to be realized within three days in order to properly sterilize such a complex 75 aqueous system and it would likely have add a significant change on the chemical composition. Furthermore, the efficacy of autoclaving could not even be guaranteed given the importance of TSS presence.75

80 Biological degradation of the target compounds

A series of samples of raw wastewater was run in parallel with the series of wastewater with biocides (above). A comparison of the results of both series will give the impact of biodegradation, since both abiotic and biological degradation can contribute simultaneously to the disappearance of the target compounds. Only SMX, whose 50% minimum inhibitory concentrations against pathogenic bacteria in aquatic environments were reported⁷⁶ between 2 μg L⁻¹ and 256 mg L⁻¹, was evaluated in a separate series of bottles to prevent its potential toxic effect.

⁹⁰ The composition of the wastewater was the source of biomass to recreate real conditions. No nutrient solutions were used to maintain biological life inside the bottles. To ensure the microbial community was not substantially depleted over the course of the degradation experiments (e.g. due to lack of nutrients), viable

⁹⁵ bacterium in the wastewater was measured in a parallel set of vials. Initially, the parallel wastewater sample had 2.09 x 10¹⁰ viable bacterium. After 38 days, the wastewater incubated at 4°C had 2.99 x 10⁹ viable bacterium and the wastewater incubated at 21.5°C had 6.94 x 10⁹ viable bacterium. Thus, we conclude that ¹⁰⁰ the bacteria was not substantially depleted to alter the experiments. Further degradation, when observed, kept occurring after 90 days. Water samples were kept at ambient pH to recreate real-world conditions.

105 Sorption considerations

115

The possibility of sorption contributing to the disappearance of the target compounds was evaluated before launching the degradation experiments. The solid-water distribution coefficient (K_d, L·kg⁻¹) quantifies the affinity for compounds to be sorbed to ¹¹⁰ particles rather than be dissolved in the aqueous phase.⁷⁷ The K_d is defined as the ratio of contaminant concentration in the solid phase (C_s, $\mu g \ kg_{dw} \ suspended \ sediment^{-1}$) to the contaminant concentration in the aqueous phase (C_w, $\mu g \ L^{-1}$) in a system that has reached equilibrium.⁷⁸

$$X_d = \frac{c_s}{c_w} \tag{1}$$

1

Morissette¹⁶ measured the sorption of the 9 studied compounds in sludge systems coming from the wastewater used in the present study and reported minor sorption for the more polar contaminants (i.e. ATZ, DEA, CBZ, CAF and SMX, Table 2), 5 while the others sorbed more significantly and reached equilibrium 5 minutes after spiking, when placed on an orbital shaker. The compound with the highest K_d value is EE2, which we previously measured to have a log K_d of 2.35 for sewage sludge, and which the highest literature values is 3.7. With the ¹⁰ wastewater in this study having a TSS of 127 mg L⁻¹, this would imply that the percentage of EE2 sorbed to particles at equilibrium would be between 2.8% and 38.9%, respectively. However, considering that the highest TOC in our wastewater was, $0.0187 g_{OC} L^{-1}$, which is significantly lower than Morissette 15 et al's 23.8 g_{oc} L⁻¹, it is likely that the sorption of EE2 in our system is < 2.8% (as sorption to sediments generally decreases with decreasing OC content⁷⁹). Thus sorption is not considered an issue in our experimental system. As a further step to ensure this, we set the initial time of the experiments as 5h after spiking 20 (T₀=5h), as sorption kinetics are often most evident in the first hours, and degradation kinetics are typically observed on the scale of days to months.¹⁶

Analytical methods

Sample preparation

²⁵ Aliquots of 500 μL were collected at specific time intervals from the water bottles of the bench-scale experiments and diluted into a 2 mL amber vial containing 100 μg L⁻¹ of all six IS in 500 μL of MeOH. A small volume of this solution was spotted (3-5 μL depending on the water tested) into Lazwell 96-well metal plate ³⁰ cavities, which was left for 15 min in a forced air oven at 35°C to dry before quantification of the residual concentration. The proportion of MeOH and the volume spotted in the cavities were chosen after preliminary tests carried out to maximize sensitivity and minimize analytical variability.

Chemical Analysis

The compounds were analysed by LDTD-APCI(+)-MS/MS, using a previously published method.⁵⁸ This technique involves a high-throughput sample introduction method reducing total ⁴⁰ analysis time to less than 15 s per sample. During operation, an infrared (IR) laser diode is focused on the back of the well, and the dried sample is then thermally desorbed, vaporizing itself into the gas phase. With a carrier gas, the uncharged analytes move along the transfer tube into the APCI area. The tube inserted into ⁴⁵ the well prevents sample losses. The analytes are ionized by the APCI when they reach its corona needle, just before being

transferred into the MS inlet, where they are fragmented and quantified in positive mode. The LDTD (Laser set at 980 nm and 20 W, Laser power of 0.30 a.u., capillary temperature of 50°C, ⁵⁰ carrier gas flow of 3.0 L min⁻¹, ion sweep gas at 0.3 a.u.) and

MS/MS parameters were optimized previously⁵⁸. Selected ions

used for quantification are presented in **Table 2**. An exhaustive description of the analytical method (LDTD and MS/MS parameters) is presented in Table S2, S3 and S4.

Method Validation

Replicability values (before rejection of outliers) ranged from 3.8 % (ATZ) to 20.7 % (DCF). It was calculated with the experimental relative standard deviation (RSD) of a series of 5 measurements for each compound on the same sample of raw wastewater, and the acceptance threshold was fixed at 15% of RSD after the exclusion of outliers when meeting exclusion criteria. With six out of nine target compounds having values below the fixed threshold (<15%), results were deemed 65 acceptable. Recovery values in the raw wastewater ranged from 81.9 to 114% except for SMX at 125%.

$$\mathscr{H}_{recovery} = \frac{C_{spiked} - C_{environmental}}{C_{expexted}} \times 100$$
(2)

The spiking concentration of 200 µg L⁻¹ corresponded to a value between LOQs and the initial experimental concentrations for all 70 compounds. Replicability and recovery results are summarized in Table S5. The resulting LOD in the raw wastewater ranged from 0.4 (CBZ) to 10.0 µg L⁻¹ (CAF) and the LOQ ranged from 1.3 (CBZ) to 33.3 µg L⁻¹ (CAF); all values are summarized in Table S6. Both LOD and LOQ were calculated based on the signal-to-75 noise ratio.⁸⁰

Rate constants and half-life calculation

The measured degradation of the nine target compounds in urban river water and wastewater was modelled using a pseudo-first order kinetics equation, where the time based pseudo-first-order ⁸⁰ constants (*k*) is reported in days⁻¹, as presented in Eq. (3):⁸¹

$$Ln \, \frac{c_0}{c_t} = kt \tag{3}$$

where t is the length of the degradation experiment in days, C_t is the residual concentration of target compound at time t and C_0 its initial concentration. Half-lifes $t_{1/2}$ were calculated using Eq. (4):

$$t_{1/2} = \frac{0.693}{k} \tag{4}$$

Previous authors^{2, 6, 34, 36, 46, 49, 51, 55, 82} have successfully used the same model for those compounds in comparable environments. Concentrations considered to be part of the lag phase were not used for the calculation of the degradation constants.

Results and Discussion

Preliminary tests

Figure 1. Method optimization figures. A. A comparison of compound losses due to sorption on internal bottle surfaces after 14 days of incubation at 4 °C for an initial concentration of \approx 400 µg L⁻¹ in distilled water where ASG = amber silanized glass bottle, AGB = amber glass bottle & HDPE = HDPE bottles B. Response ratio (Area peak_{analyte}/Area peak_{internal sta}) of the 9 target compounds at 400 µg L⁻¹ ± SD (n=5) in raw wastewater and in acidified (with formic acid) wastewater spiked with 150 µM of CuSO₄ and AgNO₃.

Compound sorption on the bottle surfaces

To optimize the experiments, we investigated which types of bottles sorbed the target analysts the least after 14 days of exposure, comparing amber glass bottles with and without ¹⁰ salinization, as well as HDPE bottles.⁸³ Results of this comparison are presented in **Figure 1A** (a more exhaustive presentation of the results is presented in Figure S1). In general, there was no vial which consistently sorbed less than the others. We therefore chose the untreated amber glass, because of its ¹⁵ capacity to block photo degradation, insignificant surface adsorption and no glass pre-treatment with silanizing agents is required. Hence, no correction was made for surface sorption artifacts.

20 Effects of biocides on the chemical analysis

The effect of the addition of copper sulfate and silver nitrate on the chemical analysis was measured by comparing the response ratio of the 9 target compounds in raw wastewater and in acidified raw wastewater with biocides (**Figure 1B**). Results 25 showed that the biocides interfere with the chemical analysis of some compounds, increasing the signal of DEA, EE2, NOR, and decrease the signal strength of DCF. A calibration curve per condition was hence measured for each method before each quantification to ensure the integrity of the analysis. More details 30 is available in the ESI (Figures S2-S3).

Laboratory bench-scale degradation experiments

Observed lag phases (Lp), pseudo first order disappearance rate constants (k) & half-lives $(t_{1/2})$ when observed in raw wastewater ³⁵ are presented in **Table 5** (the results in urban river water can be found in the ESI, Table S7). The residual compound percentage measured over time in urban river water and raw wastewater are presented in **Figures 2-3**. Reported degradation studies of the target compounds in comparable water systems are presented in

- ⁴⁰ **Table 1** and a more detailed overview can be found in the ESI (Table S8). Our measured results show that some compounds where persistent over the study period in all water samples, whereas other compounds readily degraded. Below we first present the appropriateness of using a first order model, followed by the negative for the measurement of the m
- ⁴⁵ by the results for the more persistent compounds, followed by the less persistent compounds.

First order kinetic validity

We calculated the degradation rate constants when significant ⁵⁰ degradation was observed. The 20 obtained rate constants from the linear regression analysis all followed the pseudo-first-order kinetic model, with 16 coefficients of determination (R²) over 0.90 among which 14 were over 0.95. This was deemed satisfactory. The four lower R², between 0.85 and .90, are ⁵⁵ attributed to high analytical variability rather than noncompliance of the kinetic model.

& Impacts Accepted Manuscript

Environmental Science: Processes

Table 5 Lag phases (Lp), pseudo first order disappearance rate constants (*k*) & half-lives $(t_{1/2}) \pm$ standard deviation of duplicate incubations for the degradation experiments in raw wastewater. Refer to Table S7 in the ESI for an exhaustive presentation of the results.

	Water type tested		Raw wastewater (PST outlet)							
Compound	Characteristics of the incubation	4°C with biocides	4°C			21.5°C with biocides	21.5°C			
	Lp [days]		2	≤ Lp <	8	2 ≤ Lp < 43	no	n signific	ant	
E2	<i>k</i> [days ⁻¹]	b	0.018	±	0.004	,	0.52	±	0.01	
	t _{1/2} [days]		40	±	9	a	1.30	±	0.03	
	Lp [days]						26 ≤ Lp < 66			
EE2	<i>k</i> [days ⁻¹]	b		b		b	0.036	±	0.003	
	t _{1/2} [days]						19	±	2	
	Lp [days]		8.5	≤ Lp <	21.5		0 ≤ Lp < 8.5			
NOR	<i>k</i> [days ⁻¹]	С	0.022	±	0.002	С	0.11	±	0.00	
	t _{1/2} [days]		32	±	4		6	±	0	
	Lp [days]		0	0 ≤ Lp <8.5			0 ≤ Lp <8.5			
CAF	<i>k</i> [days ⁻¹]	а	0.011	±	0.003	а	0.037	±	0.004	
	t _{1/2} [days]		65	±	20		19	±	2	
	Lp [days]		21.	21.5 ≤ Lp < 71			0 ≤ Lp < 8.5			
SMX	<i>k</i> [days ⁻¹]	а	0.0082	±	0.0008	а	0.035	±	0.003	
	t _{1/2} [days]		85	±	8		20	±	2	

No significant disappearance observed after ^a130, ^b72 or ^c66 days (experiment length).

^d data excluded due to poor reproductibility.

Figure 2. Residual ATZ, DEA, E2, EE2, NOR, CBZ, CAF and SMX (%) over time (days) in a 0.45 μm filtered urban river (surface water) measured over time at 4 °C (filled squares) and 21.5 °C (open squares), with an initial spiked concentration of 400 μg L⁻¹. Error bars represent relative standard deviation of duplicates measurements. Only degradation of E2 was considered significant, for which a theoretical pseudo first-order kinetic model is plotted (dashed s line), using the calibrated constant presented in Table 5. Results of DCF are presented in the ESI to ease the graphical representation and due to poorer analytical precision (Figure S4).

Figure 3. Residual ATZ, DEA, E2, EE2, NOR, CBZ, CAF and SMX (%) over time (days) in a raw wastewater (primary settling tank outlet) with an initial spiked concentration of 400 μg L¹ in the presence of biocides at pH 4.5 (triangles) and in raw wastewater at pH 7.5 (circles), measured over time at 4 °C (filled symbols) and 21.5 °C (open symbols). In cases where degradation was considered significant, a theoretical pseudo first-order kinetic model is s plotted (dashed line), using the calibrated constant presented in Table 5. Error bars represent relative standard deviation of duplicates measurements. Results of DCF are presented in the ESI to ease the graphical representation and due to poorer analytical precision (Figure S4).

Persistent Compounds

 Atrazine, desethylatrazine, carbamazepine and diclofenac were ¹⁰ stable in all aqueous systems, with no significant decrease over 365 days (urban river waters) and 71 days (wastewaters) (**Table S7**, **Figures 2-3 and S7**). They are therefore considered persistent compounds.

15 Atrazine (ATZ) & desethylatrazine (DEA)

Our results suggest that the abiotic degradation of atrazine is either extremely slow or non-significant in natural aqueous

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

- Results were similar for atrazine in the wastewaters with and without biocide (Table S7 and Figure 3) Its persistence in such dirty waters after 71 days leads us to conclude that typical 10 microbial populations in PST outlet waters with an initial high number of bacteria $(10^{10} L^{-1})$ are not sufficient to induce disappearance at temperatures representing seasonal variations. With low aqueous photolysis values reported in natural conditions^{22, 33} (Table S8) and physicochemical properties 15 disfavouring sorption onto suspended particulates as can be seen in Table 2, we can fairly assume that atrazine will persist in similar aqueous systems. Among the compounds included in this study, atrazine is probably the most studied. However, only a few studies have reported degradation in aquatic environments, such 20 as one study downstream from a sugar refinery (10 ppm sugar) that showed complete degrataion.³² Short half-lives for ATZ have mainly been reported for sludge, sediments or soils (Table S8) which contain significantly higher local bacterial densities relative to the distribution observed in aqueous systems.⁸⁴ 25 Extensive biodegradation studies have been done in pure bacterial cultures and bioreactors. Reported values vary largely, and range from partial to complete elimination in minutes, hours, days and weeks (Table S8).⁸⁵ Our results are comparable to a previous study³⁷ in aerobic synthetic river waters at pH=6.4 where 30 biodegradation was not observed at an initial ATZ concentration of 500 μ g L⁻¹. Nonetheless, the study³² reporting a complete biodegradation of ATZ in an aerobic water located downstream from a sugar refinery (10 ppm sugar) suggests that biodegradation is highly dependent on the composition of the Desethylatrazine (DEA) is the main metabolite of ATZ from
- systems. These results correspond with reported literature where 60 suspended particles (Table 2), its concentration in water could no loss of atrazine was measured in an autoclaved estuarine water only be slightly decreased by sorption. Our results are consistent after 128 days;²² the same authors reported a hydrolysis half-life with previous studies, where neither hydrolysis nor of 742 days in a water sample containing 5 mg L⁻¹ of fulvic acid biodegradation of CBZ was significant in an aquatic s at pH=7. Hydrolysis of ATZ was also not considered significant microcosm⁴⁵, in different types of wastewaters⁴⁷ and in oxic in a sterile buffered water at pH=7 (Table 1).³²
 - 65 muddy waters (Table 1).⁴⁶ The hydrolysis half-life of CBZ was estimated to be more than a year in aqueous systems at 25°C at pHs between 5 and 9.48

Diclofenac (DCF)

70 DCF did not show any signs of abiotic or biological degradation, neither in the controls nor in the studied water samples. This agrees with previous observations that DCF removal by biodegradation in a full-scale activated sludge plant is low⁸⁹ and that no degradation was observed in activated sludge over 28 ⁷⁵ days² as well as in sterile and raw liquid phases of wastewater sludge⁵² (Table 1). Photo-degradation has been reported to be extremely effective on DCF with a reported disappearance to a concentration below 129 μ g L⁻¹ in pure water initially spiked at 1 mg L⁻¹ after a few minutes of UV irradiation.⁹⁰ A 90% removal 80 through natural irradiation was also observed in the surface water of a Swiss lake spiked at 100 ng L^{-1.54} The authors also reported that chemical and biological degradation should not be significant in such surface waters. . Thus, exposure to sunlight is likely the only way to assist the disappearance of DCF in surface waters or 85 in any wastewater receiving natural or artificial UV light.

Our study highlights that ATZ, DEA, CBZ and DCF will persist as they transit through water systems that are isolated from sunlight.

Degradable compounds

Compound lag phases

- The microbial adaptation period, i.e. the lag phase, corresponds to the time required for the bacteria to produce the specific 95 degradation enzymes necessary for their growth and consumption of their surrounding medium. A lag phase is often observed in biodegradation experiments, because the aqueous systems tested needs to adapt to the disturbances caused by the addition of the tested chemicals. According to the OECD standardised method
- 100 309⁵⁷ used, a system is not considered viable in terms of active bacterium if the lag phase exceeds 60 days and no biodegradation is observed until 90 days, in which case the studied system has biologically depleted and a renewal is necessary to continue the studies.
- 105 16 out of the 18 observed degradation in raw wastewater were preceded by a lag phase (Table S7), varying from 0.5 to 71 days, showing that the studied raw wastewaters were biologically viable during all the duration of the biodegradation experiments. No lag phases exceeding 60 days were observed in the 110 wastewater samples without biocide (confirming that the biocide
- was sufficient in inhibiting microbial activity, as expected⁵⁷). Not surprisingly, within the same systems for the degradable compounds, lag phases were shorter at higher temperatures. Bacterial growth is more efficient at 20°C than at 5°C.91 It has 115 been demonstrated that systems with lower nitrogen and phosphorus concentrations exhibit longer microbial adaptation to newly exposed chemicals,⁹² which is an additional reason why lag times in the urban river samples may have been longer.

microbial degradation and is considered similarly toxic.⁸⁶ DEA behaved like its precursor ATZ in our studied system, in that it did not degrade (Table S7, Figures 2-3), which is comparable to

35 studied system (Table 1).

- 40 previous studies that used different types of water and short test periods³⁸⁻⁴⁰ (Table 1). The environmental fate of DEA in aqueous systems is poorly documented and sometimes contradictory. Some results have shown that it can sometimes be present in surface waters at concentrations above that of atrazine, as noted ⁴⁵ in the St-Lawrence River¹⁹, which could mean that DEA is more persistent than ATZ in aqueous systems. This issue is under debate, as others suggested that ATZ is more persistent than DEA
 - in environmental water samples.87
- 50 Carbamazepine (CBZ)

We observed little to no disappearance of CBZ in all water samples tested (Table S7, Figures 2-3), suggesting that both chemical and biological degradation are limited. CBZ's low capacity to degrade by photolysis⁸⁸ indicates that it can persist in 55 surface waters of urban rivers and wastewater. Based on results of tests made to measure the capacity of the compound to biologically degrade in bioreactors and activated sludge processes, CBZ has been categorized as not readily biodegradable.³⁰ Since CBZ has a relatively low affinity for

Environmental Science: Processes & Impacts Accepted Manuscript

Waiting 48 hours after water collection to start the kinetic experiments may have also slowed bacterial growth, as the microorganisms would have been in an enzymatic sleeping mode, hence requiring more time to re-establish themselves.⁹¹ Finally, ⁵ spiking compounds at concentrations higher than environmentally pertinent concentrations could have also extended the adaptation period, as a larger portion of bacteria would need to be present to observably degrade the target compounds.⁹³

10 Estradiol (E2), ethinylestradiol (EE2) and norethindrone (NOR) The three tested hormones showed no significant disappearance in wastewater effluents treated with biocide (Table 5, Figure 3) at the temperatures tested for 72 days (E2 and EE2) and 66 days (NOR). No significant degradation in 0.45 µm filtered river 15 surface waters was noted for E2 at 4°C for 72 days (Table S7. Figure 2) and NOR at both temperature tested for 156 days. These results tend to suggest that E2, EE2 and NOR are not readily amenable to abiotic degradation. However, significant degradation of E2 was noted in the same urban river water at 20 ambient temperatures, contradicting our results of the control samples of wastewater effluents (with biocides) and previously reported values (Table 1).^{34, 42, 44} This may be due to the reestablishment of bacteria in the surface water samples after 0.45 um filtration. The results may hence be attributed to microbial 25 degradation but should be interpreted carefully. In one previous study⁴³, a diminution of 38.9% of the initial E2 concentration (not given) in raw potable water was noted after 10 days, which suggests that E2 does not need a high number of microbial populations to be biodegraded (Table 1). Results in wastewaters 30 were conclusive, with microorganisms being able to degrade these 3 compounds within less than two months (Table 5, Figure 3). The half-life of E2 averaged 40 days at 4°C and 1.2 days at 21.5°C, which was consistent with reported data⁴¹ (Table 1). We observed that EE2 was more persistent under cold conditions 35 since no degradation was noted at 4°C, while the half-lives of NOR averaged 20 days at 4°C and 7.2 days at ambient temperatures. Although no biodegradation data were previously reported in wastewater systems for EE2 (a synthetic hormone), it is known to be more persistent than E2 (a naturally-occurring ⁴⁰ hormone)³⁴ as observed here. No degradation data in aqueous systems was previously reported for NOR but its biodegradation was observed by Morissette in sludge of the same wastewater.¹⁶

Conclusions

- 85 In our experimental setup, the contaminants ATZ, DEA, CBZ & DCF were persistent. Hence, abiotic degradation is not expected to be significant for the losses observed for these compounds in typical surface river waters and in wastewater streams isolated from sunlight. The results also suggest that biodegradation was 90 not significant for these 4 compounds in wastewaters. Unlike CBZ & DCF that have significant reported photolysis rates in aqueous systems,^{2, 35, 56} the reported rates of photolysis of atrazine are extremely slow^{32, 33} and it is most likely that only biologically rich aqueous systems could significantly degrade atrazine. No 95 degradation was observed in control samples for EE2, NOR, CAF and SMX, suggesting that abiotic degradation (i.e. hydrolysis at
 - the ambient pH and natural oxidation) is not significant. However, E2 showed important losses related to chemical

Caffeine (CAF) 45 Caffeine was persistent in river waters after 365 days and in wastewater treated with biocide after 130 days (Table 5 and Figures 2-3), suggesting that chemical processes are not expected to significantly contribute to the loss of CAF in environmental aqueous systems. These conclusions concur with a previous study 50 that suggested that CAF can be used as an anthropogenic marker in surface waters because of its persistency in aqueous systems,⁶ as that study measured no loss related to chemical processes in lake waters at 20°C. A previous study reported that typical concentrations of microorganisms in surface waters are not 55 expected to be sufficient to induce rapid biodegradation (few hours or days) of caffeine, based on measurements in rivers upstream and down-stream of 3 WWTPs at 23°C (Table 1).50 However, significant losses were measured in the wastewater sample, with estimated biodegradation half-lives ranging from 12 60 days at 4°C to 7.9 days at 21.5°C. This suggests that microorganisms can degrade CAF when biological conditions are appropriate. A previous study that reported complete biodegradation values of CAF at 19 °C in 3 and 10 days in a WWTP's affluent and effluent respectively⁴⁹ support this

Sulfamethoxazole (SMX)

65 observation (Table 1).

Results (Table 5 and Figures 2-3) suggest that abiotic degradation does not contribute to the loss of SMX in aqueous 70 systems, with no concentration decrease observed in urban river waters after 365 days and in wastewaters treated with biocides at 4°C and 21.5°C after 130 days. These results match with previous studies where no hydrolysis was reported in typical aquatic microcosms⁴⁵, natural waters³⁶ and sediment slurries³⁶ (Table 1). 75 Our results indicate that biodegradation contribution is important in wastewaters, with an average half-life of 85 days at 4°C and 20 days at 21.5 °C (Table 5, Figure 3), which is consistent with the literature^{36, 49, 51} (**Table 1**). It was elsewhere reported that >90% of SMX was degraded after ≈25 days in a WWTP equalization 80 tank, which is a system richer in nutrients than our wastewater samples, while no degradation was noted in the WWTP effluent after 56 days, a system that is expected to be cleaner than our wastewaters.49

processes in surface river water systems at 21°C, contradicting 100 previous studies. This may indicate that microbial contamination occurred throughout our time series, especially since it has been reported that biodegradation of E2 can occur in potable water, a system poor in bacterial population. Biological degradation occurred at different levels for E2, EE2, NOR, CAF and SMX in ¹⁰⁵ wastewaters with k ranging 0.0082-0.52 d⁻¹ and half-lives of 1.3-85 days, E2 degrading the fastest at 21.5°C and SMX the slowest under colder conditions (4°C). The current results must still be interpreted carefully since half-lives and degradation rate constants are highly dependent on environmental conditions and 110 because there are not enough reported degradation data of the studied compound in environmental aqueous systems. Further studies would be required to adequately characterize the degradation rates that could occur under field conditions for such compounds in real systems. Even if as many precautions as 115 possible have been considered, bench-scale simulation tests never

2
3
4
5
5
6
7
8
õ
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
<u>∽</u> 1
22
23
24
25
20
26
27
28
20
29
30
31
32
33
33
34
35
36
27
57
38
39
40
11
41
42
43
44
45
40
46
47
48
10
43 50
50
51
52
52
55
54
55
56
57
57
58
59

17. R. Salgado, R. Marques, J. P. Noronha, J. T. Mexia, G. perfectly recreate environmental compartments because of the Carvalho, A. Oehmen and M. A. M. Reis, Environmental multitude of uncontrolled factors. Nonetheless, the data offer a Pollution, 2011, 159, 2359-2367. general picture of the importance of degradation processes in 18. L. Viglino, K. Aboulfadl, A. D. Mahvelat, M. Prevost and S. urban and wastewater streams isolated from sunlight. Sauvé, Journal of Environmental Monitoring, 2008, 10. 70 19 A. Garcia-Ac, P. A. Segura, L. Viglino, A. Fürtös, C. Gagnon, M. Prévost and S. Sauvé, Journal of Chromatography A, 2009, 5 Acknowledgements 1216.8518-8527. L. Viglino, K. Aboulfadl, M. Prévost and S. Sauvé, Talanta, 20. We thank John Meunier Inc., Veolia Water, the Natural Sciences 2008, 76, 1088-1096. and Engineering Research Council of Canada and the Canadian C. D. Metcalfe, X.-S. Miao, B. G. Koenig and J. Struger, 21. Foundation for Innovation (equipment) for their financial support. Environmental Toxicology and Chemistry, 2003, 22, 2881-2889 We are also grateful for the logistical support from Peter K. R. Solomon, D. B. Baker, R. P. Richards, K. R. Dixon, S. J. 22 10 Vanrolleghem's research group at Université Laval. HPH Arp Klaine, T. W. La Point, R. J. Kendall, C. P. Weisskopf, J. M. acknowledges financial support from the Norwegian Research Giddings, J. P. Giesy, L. W. Hall and W. M. Williams, Council (Leiv Eiriksson mobility programme 225077/F11 and Environmental Toxicology and Chemistry, 1996, 15, 31-76. I. J. Kang, H. Yokota, Y. Oshima, Y. Tsuruda, T. Yamaguchi, 23. FANTOM 231736/F20), and the NGI sabbatical fund (12116). M. Maeda, N. Imada, H. Tadokoro and T. Honjo, Chemosphere, 2002, 47, 71-80. 85 Notes and references 24 T. Heberer, Toxicology Letters, 2002, 131, 5-17. 25. T. J. Runnalls, L. Margiotta-Casaluci, S. Kugathas and J. P. 15 ^a Department of Chemistry, Université de Montréal, C.P. 6128, Sumpter, Human and Ecological Risk Assessment: An Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7. Fax: +1-514-International Journal, 2010, 16, 1318-1338. 343-2468; Tel: +1-514-343-6749; E-mail:sebastien.sauve@umontreal.ca 90 26. M. Crane, C. Watts and T. Boucard, Science of the Total ^b NSERC Industrial Chair on Drinking Water, Department of Civil, Environment, 2006, 367, 23-41. Mining and Geological Engineering, Polytechnique Montréal, C.P. 6079, 27. S.-F. Yang, C.-F. Lin, A. Yu-Chen Lin and P.-K. Andy Hong, 20 Succursale Centre-Ville, Montréal, QC, Canada H3C 3A7. Tel: +1-514-Water Research, 2011, 45, 3389-3397. 340-5918; E-mail:benoit.barbeau@polymtl.ca 28 P. Drillia, S. N. Dokianakis, M. S. Fountoulakis, M. Kornaros, ^cNorwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, 95 K. Stamatelatou and G. Lyberatos, Journal of Hazardous N-0806 Oslo, Norway. Materials, 2005, 122, 259-265. 29. S. Weber, P. Leuschner, P. Kämpfer, W. Dott and J. 25 * Electronic Supplementary Information (ESI) available: [The tables S1-Hollender, Appl Microbiol Biotechnol, 2005, 67, 106-112. S8 and figures S1-S4 mentioned above, as well as further explanations of 30. M. Bernhard, J. Müller and T. P. Knepper, Water Research, the laboratory bench-scale experiments and the analytical method]. See 2006. 40. 3419-3428. 100 DOI: 10.1039/b00000x/ 31. S. M. Dickerson and A. C. Gore, Reviews in Endocrine and Metabolic Disorders, 2007, 8, 143-159. ‡ Room temperature for experiments in urban river waters 32. S. Canard, Devenir de l'atrazine dans l'environnement: Étude 30 bibliographique, ENVT: Toulouse, 2003. R. Hirsch, T. Ternes, K. Haberer and K.-L. Kratz, Science of 1. 105 33. National Registration Authority for Agricultural and the Total Environment, 1999, 225, 109-118. Veterinary Chemicals, The NRA Review of Atrazine: Review 2. Y. Zhang, S.-U. Geißen and C. Gal, Chemosphere, 2008, 73, Summary, NRA: Canberra, 1997. 1151-1161. M. D. Jürgens, K. I. E. Holthaus, A. C. Johnson, J. J. L. Smith, 35 3. T. A. Ternes, Water Research, 1998, 32, 3245-3260. 34. M. Hetheridge and R. J. Williams, Environmental Toxicology G.-G. Ying, R. S. Kookana and Y.-J. Ru, Environment 4. and Chemistry, 2002, 21, 480-488. International, 2002, 28, 545-551. 110 R. Andreozzi, R. Marotta, G. Pinto and A. Pollio, Water 35. 5. T. A. Ternes, M. Stumpf, J. Mueller, K. Haberer, R. D. Wilken Research, 2002, 36, 2869-2877. and M. Servos, Science of the Total Environment, 1999, 225, 36. H.-T. Lai and J.-H. Hou, Aquaculture, 2008, 283, 50-55. 81-90 D. Dries, B. De Corte, J. Liessens, W. Steurbaut, W. I. J. Buerge, T. Poiger, M. D. Müller and H.-R. Buser, 37. 6. Dejonckhere and W. Verstraete, Biotechnology letters, 1987, 115 Environmental Science & Technology, 2003, 37, 691-700. 9 811-816 7. H. Singer, S. Jaus, I. Hanke, A. Lück, J. Hollender and A. C. 38. K. Aboulfadl, C. De Potter, M. Prévost and S. Sauvé, Alder, Environmental Pollution, 2010, 158, 3054-3064. Chemistry Central Journal, 2010, 4, 1-8. 45 8 D. W. Kolpin, E. M. Thurman and S. M. Linhart, Archives of 39. S. K. Papiernik and R. F. Spalding, Journal of agricultural Environmental Contamination and Toxicology, 1998, 35, 385and food chemistry, 1998, 46, 749-754. 390 120 40. S. K. Widmer and R. F. Spalding, Journal of Environmental 9. A. C. Johnson, A. Belfroid and A. Di Corcia, Science of the Quality, 1995, 24, 445-453. Total Environment, 2000, 256, 163-173. 41. H. B. Lee and D. Liu, Water, Air, & Soil Pollution, 2002, 134, J. Radjenović, M. Petrović and D. Barceló, Water Research, 50 10. 351-366. 2009, 43, 831-841. 125 42. R. J. Williams, M. D. Jürgens and A. C. Johnson, Water M. Esperanza, M. T. Suidan, R. Marfil-Vega, C. Gonzalez, G. 11. Research, 1999, 33, 1663-1671. A. Sorial, P. McCauley and R. Brenner, Chemosphere, 2007, 43. M. D. Jürgens, Williams, R. J. and Johnson, A. C, Fate and 66. 1535-1544. behaviour potential of steroid estrogens in rivers: a scoping H. M. Kuch and K. Ballschmiter, Environmental Science & 55 12. study, Institute of Hydrology, 1999. Technology, 2001, 35, 3201-3206. 130 44. S. Matsuoka, M. Kikuchi, S. Kimura, Y. Kurokawa and S. i. R. Loos, J. Wollgast, T. Huber and G. Hanke, Analytical and 13. Kawai, Journal of Health Science, 2005, 51, 178-184. bioanalytical chemistry, 2007, 387, 1469-1478. 45. M. W. Lam, C. J. Young, R. A. Brain, D. J. Johnson, M. A. S. Rodriguez-Mozaz, M. J. López de Alda and D. Barceló, 14. Hanson, C. J. Wilson, S. M. Richards, K. R. Solomon and S. Journal of Chromatography A, 2004, 1045, 85-92. 60 A. Mabury, Environmental Toxicology and Chemistry, 2004, 15. P. A. Segura, S. L. MacLeod, P. Lemoine, S. Sauvé and C. Gagnon, Chemosphere, 2011, 84, 1085-1094. 135 23 1431-1440 D. Löffler, J. Römbke, M. Meller and T. A. Ternes, 46. 16. M. F. Morissette, S. V. Duy, H. P. H. Arp and S. Sauvé, Environmental Science & Technology, 2005, 39, 5209-5218. Environmental Science: Processes & Impacts, 2015, 17, 674-682. 65

Journal Name, [year], [vol], oo-oo | 14

Impacts Accepted Manuscrip

õ

Environmental Science: Processes

Environmental Science: Processes & Impacts Accepted Manuscript

1
2
3
4
5
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
20
30
31
32
33
34
35
36
07
31
38
39
40
41
42
12
40
44
45
46
47
48
10
+3 50
50
51
52
53
54
55
55
00
5/
58
59

60

47. M. Clara, B. Strenn and N. Kreuzinger, Water Research, 2004, 38, 947-954. 48. United States Environmental Protection Agency, Estimation 75 Programs Interface Suite[™] for Microsoft[®] Windows, v 4.11, 77. United States Environmental Protection Agency, Washington, 5 DC, USA., 2015. 49. S. Pérez, P. Eichhorn and D. S. Aga, Environmental 78. Toxicology and Chemistry, 2005, 24, 1361-1367. P. M. Bradley, L. B. Barber, D. W. Kolpin, P. B. McMahon 50. and F. H. Chapelle, Environmental Toxicology and Chemistry, 10 2007, 26, 1116-1121. B. Xu, D. Mao, Y. Luo and L. Xu, Bioresource Technology, 51. 2011, 102, 7069-7076. 85 K. Kimura, H. Hara and Y. Watanabe, Environmental science 52. & technology, 2007, 41, 3708-3714. 15 J. B. Quintana, S. Weiss and T. Reemtsma, Water Research, 53. 2005, 39, 2654-2664. 83. 54. H.-R. Buser, T. Poiger and M. D. Müller, Environmental 90 science & technology, 1998, 32, 3449-3456. 20 55. G.-G. Ying and R. S. Kookana, Environmental Science & 84. Technology, 2003, 37, 1256-1260. M. J. Benotti and B. J. Brownawell, Environmental Pollution, 56. 85. 2009, 157, 994-1002. OECD, OECD Guidelines for the Testing of Chemicals / 57. 86 Section 3: Degradation and Accumulation Test No. 309: 25 Aerobic Mineralisation in Surface Water - Simulation 87. Biodegradation Test, OECD Publishing, 2004. M. Boisvert, P. B. Fayad and S. Sauvé, Analytica Chimica 58. 100 Acta, 2012, 754, 75-82. 88. 30 59. W. M. Meylan and P. H. Howard, Environmental Toxicology and Chemistry, 1991, 10, 1283-1293. 89 60. T. M. Ward and J. B. Weber, Journal of Agricultural and Food Chemistry, 1968, 16, 959-961. 105 61. C. Hansch, A. Leo, D. Hoekman and S. R. Heller, Exploring 90 Qsar, American Chemical Society: Washington, DC, 1995. 35 62 K. C. Pugh, Toxicity and physical properties of atrazine and its degradation products: a literature survey, Report 91 TVA/NFERC--94/1, Tennessee Valley Authority, Muscle 110 Shoals, AL (United States), 1994. E. M. Thurman, M. T. Meyer, M. S. Mills, L. R. Zimmerman, 92. 40 63. C. A. Perry and D. A. Goolsby, Environmental Science & Technology, 1994, 28, 2267-2277. 93. S. H. Yalkowsky, Handbook of Aqueous Solubility Data, CRC 64. 115 Press. 2003. 45 65. A. Fini, M. Laus, I. Orienti and V. Zecchi, Journal of Pharmaceutical Sciences, 1986, 75, 23-25. 66. J. W. McFarland, A. Avdeef, C. M. Berger and O. A. Raevsky, Journal of Chemical Information and Computer Sciences, 2001. 41. 1355-1359. 50 67. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. t. Rebers and F. Smith, Analytical Chemistry, 1956, 28, 350-356. 68. M. J. Benotti, R. A. Trenholm, B. J. Vanderford, J. C. Holady, B. D. Stanford and S. A. Snyder, Environmental Science & Technology, 2008, 43, 597-603. 55 69. T. Wadhwani, K. Desai, D. Patel, D. Lawani, P. Bahalev, P. Joshi and V. Kothari, The Internet Journal of Microbiology, 2009, 7. 70. C. A. Flemming and J. T. Trevors, Water, Air, and Soil Pollution, 1989, 44, 143-158. 60 71. O. Choi, K. K. Deng, N.-J. Kim, L. Ross Jr, R. Y. Surampalli and Z. Hu, Water Research, 2008, 42, 3066-3074.

- 72. Y.-S. E. Lin, R. D. Vidic, J. E. Stout and V. L. Yu, *Water Research*, 1996, **30**, 1905-1913.
- M. Rutkowska, K. Krasowska, A. Heimowska, I. Steinka and H. Janik, *Polymer Degradation and Stability*, 2002, 76, 233-239.
 - K. S. Ro, K. H. Chung and J. W. Robinson, Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology, 1995, 30, 321-332.
- 70 75. R. J. Coté, in *Current Protocols in Cell Biology*, John Wiley & Sons, Inc., 2001, DOI: 10.1002/0471143030.cb0104s01, ch. Sterilization and Filtration.

- A. Al-Ahmad, F. D. Daschner and K. Kümmerer, Archives of environmental contamination and toxicology, 1999, 37, 158-163.
- United States Environmental Protection Agency, Understanding Variation in Partition Coefficient, Kd, Values, Report EPA 402-R-99-004A, 1999.
- J. Martín, D. Camacho-Muñoz, J. Santos, I. Aparicio and E. Alonso, *Journal of hazardous materials*, 2012, 239, 40-47.
- A. Delle Site, Journal of Physical and Chemical Reference Data, 2001, 30, 187-439.
- P. Konieczka and J. Namiesnik, *Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach*, CRC Press, 2009.
- 81. N. S. Battersby, *Chemosphere*, 1990, **21**, 1243-1284.
- T. W. Jones, W. M. Kemp, J. C. Stevenson and J. C. Means, Journal of Environmental Quality, 1982, 11, 632-638.
 - B. Vanderford, D. Mawhinney, R. Trenholm, J. Zeigler-Holady and S. Snyder, *Analytical and Bioanalytical Chemistry*, 2011, 399, 2227-2234.
- 4. C. Ding and J. He, *Appl Microbiol Biotechnol*, 2010, **87**, 925-941.
- P. K. Ghosh and L. Philip, *Global NEST Journal*, 2006, 8, 159-178.
- M. Graymore, F. Stagnitti and G. Allinson, *Environment* international, 2001, 26, 483-495.
- E. M. Thurman, D. A. Goolsby, M. T. Meyer, M. S. Mills, M. L. Pomes and D. W. Kolpin, *Environmental science & technology*, 1992, 26, 2440-2447.
- C. Tixier, H. P. Singer, S. Oellers and S. R. Müller, Environmental Science & Technology, 2003, 37, 1061-1068.
- R. Salgado, R. Marques, J. P. Noronha, G. Carvalho, A. Oehmen and M. A. M. Reis, *Environ Sci Pollut Res*, 2012, 19, 1818-1827.
- R. Salgado, V. Pereira, G. Carvalho, R. Soeiro, V. Gaffney, C. Almeida, V. V. Cardoso, E. Ferreira, M. Benoliel and T. Ternes, *Journal of hazardous materials*, 2013, 244, 516-527.
- A. Meyer, J. Deiana and A. Bernard, *Cours de Microbiologie* Générale: avec problèmes et exercices corrigés, Doin Editions, 2004.
- D. L. Lewis, H. P. Kollig and R. E. Hodson, *Applied and Environmental Microbiology*, 1986, 51, 598-603.
- J. C. Spain and P. A. Van Veld, *Applied and Environmental Microbiology*, 1983, 45, 428-435.