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Environmental Impact Statement  

 

In modern cities the need for monitoring of environmental influences on peoples’ wellbeing and 

behaviour has become crucial. Noise is undoubtedly a very important environmental parameter that 

has an immediate impact on populations residing in urban environments. Technological advances in 

wireless sensor networks have made possible the creation of low cost noise monitoring networks 

that can provide alternatives to traditional, expensive noise monitoring applications. The resulting 

information can be used to inform the public and assist the decision making of urban planners, 

hence it is important that there is no compromise on its quality. This paper presents a method for 

assessing stability of such networks in order to ensure high measurement quality to facilitate 

decision making based on accurate data. 
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A Statistical Method for Assessing Network Stability Using the 

Chow Test 

Kostas Sotirakopoulos, Richard Barham, Ben Piper, Luca Nencini 
 

A statistical method is proposed for the assessment of stability in noise monitoring 

networks. The technique makes use of a variation of the Chow Test applied between 

multiple measurement nodes placed at different locations and its novelty lies in the way 

it utilises a simple statistical test based on Linear Regression to uncover complex issues 

that can be difficult to expose otherwise. Measurements collected by a noise monitoring 

network deployed in the center of Pisa are used to demonstrate the capabilities and 

limitations of the test. It is shown that even in urban environments, where great 

soundscape variations are exhibited, accurate and robust results can be produced 

regardless of the proximity of the compared sensors as long as they are located in 

acoustically similar environments. Also it is shown that variations of the same method 

can be applied for self-testing on data collected by single stations. Finally it is presented 

that the versatility of the test makes it suitable for detection of various types of issues 

that can occur in real life network implementations; from slow drifts away from 

calibration, to severe, abrupt failures and noise floor shifts. 
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Introduction 
As societies turn from traditional structures to modern 

centralized organization models, big cities become 

home to a continuously growing number of people. 

Over the past decades, huge populations migrated 

from rural to urban environments and this trend only 

becomes more profound with time. It is a fact that 

already 70% of EU’s population resides in urban areas 

while studies predict an increase in worldwide cities’ 

demographics from 29% in 1950 to a remarkable 65% 

by 2040 [1]. From Japan to Mexico one can find 

examples of Mega Cities housing tens of millions and 

given the demographic predictions it is only a matter of 

time before their number multiplies. As a result, the 

issue of improving and preserving life quality in such 

environments becomes of great importance. Modern 

technologies and monitoring networks in particular can 

assist communities in continuously monitoring and 

sharing information related to a city’s environment and  

efficiency; hence taking a step forward to transforming 

big cities into Smart Cities. 

Noise monitoring networks is a concept that has been 

developed over the last years making use of 

technological advances in sound measuring 

instrumentation. Various approaches have been 

adapted so far; from dynamic grids using smart phones 

[2] to the creation of more sophisticated stationary 

monitoring stations.  The results of such studies show 

that smart phones, although convenient as measuring 

devices, for a number of reasons are not suitable for 

delivering trustworthy measurements [3] [4]. On the 

other hand the development of components such as 

MEMS (Micro-Electro-Mechanical-Systems) 

microphones and their integration into monitoring 

stations capable of being installed in large numbers due 

to their low manufacturing cost has proved to be a very 

promising perspective [5]. At the National Physical 

Laboratory in the U.K. research has focused on the 

development of improved quality yet cheap MEMS 

microphones which will fit such purposes and their 

capabilities have been explored on various applications 

[6] [7] [8] [9] [10]. 

While significant effort has been put into achieving low 

cost implementations of monitoring systems there is 

still an additional cost involved with the installation of 

grids consisting of multiple measurement stations.  

That is expenses related to the maintenance and 

quality control of the deployed network making it clear 

that the development of automated methods for 

evaluating network stability and thus measurement 

quality is crucial.  A great deal of work has been done 

on the identification of anomalies in data collected by 

distributed networks; V. Chandola et al [11] and Y. 

Zhang et al [12] provide comprehensive surveys on 

existing techniques ranging from statistical to rule 

based and machine learning methods.  

Some approaches make use of the concept of 

combining multiple criteria in order to identify different 

types of anomalies. S. Dauwe et al [13] demonstrate 

how the weighted sum of four, or even more, tests 

including laboratory measurements, comparisons of 

sound events between various time intervals as well as 

more complicated models based on the simulation of 

the human auditory system, can provide a single index 

for network integrity evaluation.  

Other anomaly detection systems rely on the 

comparison of sensor measurements to closely 

positioned monitoring stations to derive calibration 

functions for each measurement node [14] [15] . 

However such approaches often require dense 

networks which in real life applications might prove 

expensive to implement. Similar techniques employ 
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Data Fusion Models for networks organized into 

clusters in order to detect faults on individual sensors 

and calculate the calibration coefficients for each 

sensor [16].   

A common anomaly observed in data collected by low 

cost sensor networks is slow deviation from calibration 

which in some cases happens over months or even 

years of exposure. It is exactly this slow nature of its 

occurrence that makes it rather difficult to detect 

leading to long periods of faulty data collection.  In this 

paper we present a method which utilises a linear 

regression based statistical test applied on statistical 

noise levels in order to address this issue. This method 

falls in the greater category of techniques comparing 

routine measurements between multiple nodes, while 

it can perform well without requiring oversampling of 

the soundscape. It is also shown that this technique can 

be used to detect other much more severe anomalies 

like system failures.  Examples are demonstrated on 

experimental data collected by a noise monitoring 

network deployed in the city of Pisa in Italy.   

Concept 
The method discussed is an alternative approach to 

error detection (that doesn’t aim to completely replace 

traditional calibration), and the presented research is 

to test this alternative concept. The underlying idea 

behind the technique stems from the fundamental 

property of linearity and time invariance (LTI), which 

any piece of measurement instrumentation must 

exhibit under normal working conditions. This implies 

that over time the general image of data collected by 

any stable sensor must be distributed around a straight 

line, with some variance due to environmental 

characteristics which of course change with time and 

season. Unfortunately, low cost networks exposed to a 

number of destructive factors that can lead to physical 

sensor degradation, like varying weather conditions 

and exposure to public, might not behave like true LTI 

systems.  

Physical fatigue or system failures cause deviation from 

normal operation which in collected data shows as 

deviation from the straight line around which ‘normal’ 

data exist. Depending on the severity of the damage in 

the system the magnitude of such deviations varies. 

Abrupt, severe faults will show as discontinuities while 

slow drifts from calibration will most probably appear 

as downward or upward trends in the system’s 

response. In both cases such behaviours could be 

exposed by comparison with other sensors in the same 

network given that it is highly improbable for multiple 

sensors to exhibit identical faulty behaviour at the 

exact same time. 

Figure 1 presents an example of daily averaged noise 

time series collected between September 2013 and 

February 2015 by two monitoring stations in the city of 

Pisa, in Italy. These monitoring stations normally 

measured one second, broadband Leq levels.  However 

since drifts from calibration usually evolve during long 

time periods it was considered that daily averages 

would reduce the variance in the data and at the same 

time provide a good enough resolution in order to 

observe such phenomena. Focusing on obvious events, 

a two weeks long system failure during August 2014 is 

observed for the sensor placed at Piazza Omobono 

while a clear drift is seen for the same sensor from 

approximately November 2014 until the end of the 

presented dataset. Closer inspection will reveal that 

this drift may actually begin about a year earlier, at a 

much slower rate though. However it is masked by its 

soft nature and the variance in the data. At this point it 

should be noted that the drift mentioned has most 

probably occurred due to physical degradation of the 

microphone caused by insufficient water proofing of 

the specific unit. On the contrary, no such trend is seen 

in the data collected at Piazza Vettovaglie. Finally, the 

observed dip occurring at both time series between 

June and September 2014 (ignoring the system failure 

during August for Piazza Omobono) might be mistaken 

for an anomaly if they are examined separately. 

Nevertheless, a comparison between multiple sensors 

suggests that this is a seasonal feature which appears 

during the summer when the population density of the 

city decreases. 
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From the simple examination described above it 

becomes clear that the combined information sourced 

by multiple sensors in a measurement network can 

provide useful knowledge about the network’s stability. 

In particular, if the variance in the data is reduced then 

linear regression can be a useful tool in revealing 

anomalies. 

The two questions rising from the above thought are: 

1. Is there an indicator that presents adequately 

low variance? 

2. Which would be a reasonable way of 

comparing regressions in order to expose 

deviations from normal operation? 

Simple routine measurements provide the answer to 

the first question. No matter how variant the 

soundscape of a city might be, locally the median will 

exhibit less variation with time. These level variations 

are further reduced during the late night (3:00 am - 

7:00 am). Figure 2 presents these night time L50 levels 

measured at Piazza Vettovaglie and Piazza Omobono. It 

is obvious that the variance in the L50 data is much 

smaller when compared to the Leq data shown in 

Figure 1 for the same time period, making the existing 

trends much more pronounced. For this reason in the 

analysis presented in the following sections L50 night 

time refers to L50 calculated over the time interval 

mentioned above. If required, further reduction of the 

variance could be achieved by exclusion of 

measurements held over the weekends when the 

acoustic environment becomes quieter mostly due to 

lower traffic noise levels. Additionally, it is considered 

that since most of the noise energy measured in urban 

environments is concentrated at lower frequencies 

appropriate filtering can aid towards making possible 

deviations from normal operation more easily 

detectable.  

The Chow Test 
Gregory Chow, a Chinese American economist, in 1960 

suggested a statistical method for analysing a set of the 

same variables obtained in different time periods in 

order to evaluate their similarity and decide whether 

they can be pooled together [17]. The technique was 

named The Chow Test, and it is well-known in 

economics and econometrics where it is mostly used to 

check for structural breaks in time series. Over time, 

significant research has been done on variations and 

the method has found use in various applications [18] 

[19] [20] [21] [22] [23].  

The purpose of the test is to conclude on the 

significance of the difference between coefficients of 

two regression lines applied on two data sets. Originally 

the method would test observations taken from within 

the same population at different time periods to 

examine if the relationship between dependent and 

independent variables changes with time. However this 

can be generalised and applied to situations where the 

data come from different populations. 

In order to perform the test on two samples consisting 

of � and � observations respectively, one must start 

with the null hypothesis, ��, that the coefficients of the 

two regressions are equal. Regression is applied on 

each data set separately and the sum of squared 

residuals (SSR) is computed. Then the data are 

combined sequentially to form a � + � long set of 

observations and a regression line is fitted on it while 

the sum of squared residuals is computed again.  In his 

work, Chow proved that the ratio of the difference 

between the combined and individual SSR over the sum 

of the individual SSR scaled for the corresponding 

degrees of freedom will follow an F distribution under 

the null hypothesis. In the original paper it is 

demonstrated that when one of the two samples has 

less observations than estimated regression 

coefficients then a different F-ratio must be computed 

than when both samples have sizes greater than the 

estimated regression weights. Here we are only 

interested in the latter case. 

The application of the test as described above is 

demonstrated in the following steps: 

1. Fit a regression line on the first set of � 

observations and compute ���� 
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2. Fit a regression line on the second set of � 

observations and compute ���	 

 

3. Apply  linear regression on the combined set of 

� + � observations and compute ���
 

 

4. The test of the null hypothesis that the second 

set of data follows the same trend as the first is 

given by  

 

� = 	
(���
 − (���� + ���	)) �⁄

(���� + ���	) (� + � − �)⁄
																(1) 

 

where � is the number of regression 

coefficients. This ratio follows an F distribution 

with � + � − 2� degrees of freedom. 

Practical Implementation of the Test 

for Identification of Errors in Noise 

Measurement Networks  
The Chow test, as described so far, is almost 

guaranteed to lead to rejection of the null hypothesis 

when applied on time series of noise data collected at 

different locations in a city. This is due to the fact that 

the test is meant to examine equality between sets of 

regression coefficients. However when linear 

regression is applied there are two coefficients to be 

estimated; the slope and the offset of the regression 

line. In urban environments sound levels can vary quite 

significantly from one place to the other. This in turns 

means that, as seen in Figure 2, it is very likely to 

observe significant differences between noise levels 

recorded at different locations. Hence, the only way to 

apply the test in its original form between different 

monitoring systems would be to include redundant 

(duplicate) sensors at each location and run 

comparisons between measurement and reference 

units. Nevertheless, something like this would increase 

the cost of the application significantly. 

In order to overcome this issue an intermediate step 

should be added before combining data sets coming 

from different locations. That is scaling of one of the 

two sets in order to minimize discontinuities in the 

combined data. To achieve that, the difference 

between the level at the last point of the regression 

line fitted on the first data set and the level of the first 

point of the fitted line on the second data set is 

computed and used as a scaling factor. This effectively 

eliminates any discontinuities between the regression 

lines and turns the focus of the test on their slopes.  An 

example of combined L50 data before and after scaling 

is demonstrated in Figure 3. The data were collected 

between 20 June and 20 July 2014 at Piazza 

Gambacorti and Piazza Vettovaglie. For the whole 

measurement period no particular errors were 

detected for any of the two nodes, as seen in Figure 

4.The critical value above which the null hypothesis is 

rejected is �����(2,58) = 1.65 at � = 0.2 level of 

significance. The reason for selecting � = 0.2  as level	

of	significance	was	because	it	proved	to	provide	an	

acceptable	threshold	for	the	trade-off	between	Type	

1	and	Type	2	errors	as	discussed	in	[24]. 

When no scaling was applied the � score was 

� = 52.39		 indicating, incorrectly, a statistically 

significant error in the system. After scaling however 

the  � score was computed equal to � = 0.12  showing 

a good agreement between the two data sets. Note 

that the downward trend in the tested data is due to 

decreasing noise levels during the first months of the 

summer which return back to normal by the end of 

September. The test however is not affected by such 

seasonal characteristics. 

The procedure described above is necessary when 

samples from different locations are compared. 

However there is one occasion when scaling will have a 

destructive effect on the validity of the results. 

Consider a sensor that operates normally until time ;� 

when it starts drifting from calibration and continues 

drifting until some time ;	when it stabilizes again.  

Using the Chow Test for multiple sensors after ;	 will 

not detect any anomaly as it will simply correct for the 

level difference between sensors and as long as the 

slope of the compared time series is similar then it will 

give a good agreement between regression lines. Such 

errors are very unlikely to happen since it is rather 
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uncommon for a sensor to break down for some period 

and then stabilize, unless of course it reaches noise 

floor in which case application of the test would not be 

required to identify the error. However, there is still a 

way to spot such anomalies. Under the assumption that 

there is some annual periodicity in noise levels 

collected locally (unless of course major changes take 

place) one could skip the scaling step and apply the 

original version of the test on data collected over same 

periods but different years at only one location. This 

way possible faults like the one described in this 

paragraph will appear as offset differences between 

the individual regression lines and will give high � 

ratios just like in the example depicted in Figure 3.1. 

Such a test, however, should be used with caution as 

seasonal characteristics can interfere with the validity 

of the results.  

Application of the Method  

In this section a demonstration of the application of the 

test on various data sets collected during ‘Sensable 

Pisa’ project are demonstrated and discussed. The 

measurement equipment used consisted of a data 

acquisition board with some processing capabilities, a 

commercial ¼ - inch condenser low cost microphone 

while the data transmission to the remote server 

where data were being stored was achieved using 

ZigBee protocol.  The approximate noise floor of the 

units was 30dBA. More information about the 

measurement devices can be found here [25] while a 

map of the area and exact locations of the monitoring 

stations is provided in Figure 5. The approximate 

distances between locations are presented in Table 1. 

Table 1: Distances (in meters) between nodes. 

Largo Ciro Menoti – Piazza Omobono 150 

Largo Ciro Menoti – Piazza Garibalti 150 

Largo Ciro Menoti – Piazza Vettovaglie 140 

Largo Ciro Menoti – Piazza Gambacorti 450 

Largo Ciro Menoti  –  Via Pietro Gori 570 

Piazza Omobono – Piazza Garibalti 130 

Piazza Omobono - Piazza Vettovaglie 90 

Piazza Omobono - Piazza Gambacorti 380 

Piazza Omobono - Via Pietro Gori 530 

Piazza Garibalti - Piazza Vettovaglie 40 

Piazza Garibalti - Piazza Gambacorti 300 

Piazza Garibalti - Via Pietro Gori 430 

Piazza Vettovaglie - Piazza Gambacorti 320 

Piazza Vettovaglie- Via Pietro Gori 455 

Piazza Gambacorti – Via Pietro Gori 175 

 

Case 1: Proximity between measurement 

nodes 

Assuming uniformity of the sound environment 

between near-by locations, noise readings collected by 

monitoring stations located at close proximity should 

demonstrate relatively high correlations. This should 

always result in good agreement of the regression lines 

when no system faults occur. However, in urban 

environments the acoustic characteristics of the 

soundscape can vary significantly from one location to 

the other, even over relatively short distances. The 

above makes the application of the method on multiple 

nodes positioned at various distances and the 

comparison of the results an interesting assessment for 

the robustness of the test when used in urban areas.  

To demonstrate this, a comparison between night time 

L50 levels measured at Piazza Garibalti , Piazza 

Vettovaglie, Largo Ciro Menoti and Piazza Gambacorti 

in the center of the city was applied. As seen in Table 1 

all distances, apart from Piazza Garibalti - Piazza 

Vettovaglie which is only 40 m, can be considered 

reasonably long for urban environments.  

In Figure 6 a drift is seen in the levels measured at Ciro 

Menotti starting approximately on 12 October 2014 

and continuing for about two months until the end of 

the deployment. However no such trend is met in the 

data collected at the other three locations. During the 

deployment period no major alteration in the 
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surrounding environment that could have caused this 

drift was reported. Moreover the slope of the drift 

indicates that it could not be caused by a sudden 

termination of operation of a nearby noise source such 

as an air conditioning unit or a night pub in the area 

since this would most probably cause a much more 

rapid and permanent decrease in the observed levels. 

On the contrary what is seen is a gradual decrease that 

lasts several weeks indicating that something else must 

have happened, possibly an error in the measurement 

system. The test was run between 29 September and 6 

November 2014 to check whether this feature could be 

identified by all nodes. Figure 7 presents comparisons 

between fitted lines on individual and combined data 

for each test.The critical value was computed to be 

�����(2,74) = 1.64 at a level of significance of � = 0.2 

while the F-scores are shown in Table 2. 

Table 2:  F-scores for all six tests. 

Piazza Garibalti - Piazza Vettovaglie 0.45 

Piazza Garibalti - Piazza Gambacorti 0.05 

Piazza Vettovaglie - Piazza Gambacorti 0.09 

Largo Ciro Menoti – Piazza Garibalti 1.84 

Largo Ciro Menoti – Piazza Vettovaglie 3.90 

Largo Ciro Menoti – Piazza Gambacorti 1.80 

 

The results suggest that the drift in Largo Ciro Menoti ‘s 

data  was identified even between sensors placed 450 

meters apart in the heart of the city. In addition, there 

was no rejection of the null hypothesis for the rest of 

the nodes regardless of the distance between them. 

This is attributed to the fact that the technique relies 

on the examination of the relation between the 

individual and combined regressions’ SSR rather than 

point to point correlations between signals. As a result 

the method does not require high network density to 

ensure robust operation and produce accurate 

outcomes.  

Case 2: Dissimilar variance between 

measurements 

Comparisons between signals exhibiting similar 

variance like the ones demonstrated so far seem to 

provide accurate estimates on the existence, or non-

existence, of stability issues in a monitoring network. 

What happens though when one signal exhibits much 

greater variance than the others? To answer this 

question we examined measurements coming from 

four locations presenting varying noise level patterns. 

In Figure 8 the increased variance in the measurements 

collected at Via Pietro Gori compared to the variance at 

all three other measurement positions is obvious.   

The test was run from 22 January to 10 November 

2014. In order to avoid interference of outliers with the 

outputs of the test extreme values were eliminated by 

setting a lower threshold at 42 dB and an upper limit as 

a function of the median of each dataset. The critical 

value was computed to be �����(2,273)  = 1.61 at a 

level of significance � = 0.2 and the results are 

summarized in Table 3. 

Table 3:  F-scores for the comparison between three public squares and one main 

street in the center of Pisa. The test was run from 22 January until 10 November 2014. 

Piazza Garibalti – Piazza Omobono 2.63 

Via Pietro Gori – Piazza Omobono 0.44 

Via Pietro Gori – Piazza Garibalti 0.98 

Piazza Vettovaglie - Piazza Omobono 1.91 

Piazza Vettovaglie - Piazza Garibalti 0.03 

Piazza Vettovaglie - Via Pietro Gori 0.75 

 

According to the obtained F-ratios the sensors at Piazza 

Garibalti and Piazza Vettovaglie succeeded in 

identifying the drift. Nevertheless the second row of 

Table 3 suggests that the comparison between Via 

Pietro Gori and Piazza Omobono did not give any 

statistically significant indication of a fault in one of the 

sensors. This is due to increased variance in Via Pietro 

Gori’s data caused by variability in human activity 

between different days of the week. Figure 8, shows 

that noise levels decrease significantly every Saturday 

and Sunday.  This generates high sum of squared 

residuals when linear regression is applied on Via Pietro 

Gori’s observations which do not increase significantly 

by the soft slope in Piazza Omobono’s measurements 

when the two data sets are combined. The ‘masking’ is 

presented in Figure 9. 

A work around would be the exclusion of all weekends 

from the data set. Doing so would certainly decrease 

the variance and could possibly make the data more 
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suitable for long period comparisons. However there 

are other features that cannot be wiped out as easily 

and would impose errors in short term comparisons. 

These are seasonal characteristics, like the summer 

level dip discussed before, which is much more 

pronounced in noisier environments. However such 

features tend to exhibit similar behaviours at similar 

positions. Thus it is suggested that measurement 

locations are classified into soundscape categories and 

comparisons are made only between similar (but not 

necessarily near-by) locations. Over the last decade 

extensive research has taken place on soundscape 

classification [26] [27], [28], [29], [30] while various 

Sound Stabilization Time based methods can assist in 

this task as presented in [31], [32], [33]. 

Case 3: Abrupt changes in noise levels 

Until now the detection of drifts within periods of one 

month or greater have been demonstrated. The 

principle of the proposed method however makes it 

suitable for detection of more severe anomalies which 

lead to abrupt changes in the measured noise levels. 

Such an example is presented in Figure 10.1 where a 

broken cable caused two weeks of faulty 

measurements for the Piazza Omobono station.  

For this test an interval of thirteen days, from 31 July to 

12 August 2014, was selected including only one day of 

faulty data. However missing measurements from 

Largo Ciro Menotti resulted in linear regressions 

applied on only six observations when this node was 

involved in the tests. The critical value for tests against 

Ciro Menoti was �����(2,8) = 	1.89 at � = 0.2 level of 

significance while the rejection threshold was 

�����(2,22) = 	1.72	for the remaining comparison at 

the same level of significance. In both comparisons the 

technique managed to detect the error; the results are 

shown in Table 4. 

 
Table 4: Results of tests checking for abrupt faults in data collected between 31 July 

and 12 August 2014. 

Ciro Menotti - Piazza Garibalti 0.12 

Ciro Menotti – Piazza Omobono 1.92 

Piazza Garibalti – Piazza Omobono 1.84 

 

 As the number of samples included in the test 

decreases, so do the degrees of freedom for the F test. 

This results in higher critical values and hence more 

lenient thresholds, assuming that the selected level of 

significance remains constant.  However, the fewer the 

included samples are, the more susceptible the line 

fitting will be to extreme values; which makes it 

possible for the method to identify abrupt changes in 

the data when short time intervals are selected. Of 

course the sensitivity can be adjusted accordingly, by 

altering the level of significance, so that the test is 

tuned to identify such faults while effects caused by 

normal day to day variance in the measurements are 

minimized.  

Case 4: Application of the Test on Data 

Coming from the Same Node 

As discussed if no data scaling is applied the original 

form of the test can identify offset differences between 

data coming from one monitoring station but different 

time periods assuming that the soundscape is not 

expected to present significant level variations 

between them  (e.g. same months but different years). 

An example of this application is demonstrated in 

Figure 11. 

For a combined sample size of 45 the critical value was 

computed to be equal to  �����(2,41) = 	1.67 while the 

F score was 3.28 identifying correctly the 

approximately 2 dB drift which occurred during one 

year.  

 It must be noted though, that for this form of the test 

periods when seasonal effects cause very pronounced 

slopes in the time series, such as level dips during the 

summer months, should be excluded as they might 

result in wrong conclusions. 

Case 5: A Useful Variation  

Extracting the median night time SPL is a good way of 

reducing variance and making the data more suitable 

for application of the described method in order to test 

for calibration drifts or failures. Nonetheless, a 

variation of the test could aid in the exposure of other 

kinds of errors like noise floor level changes. This could 

be achieved by application of the proposed technique 

on L95 levels.  
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For the biggest part of the deployment L50 readings 

from Via Pietro Gori do not seem to present any 

particular issues apart from the first few weeks and 

maybe some isolated cases as seen in Figure 8. Figure 

12, however, shows that the night time L95 levels 

demonstrate a major noise floor ‘jump’ from 35 dB(A) 

to about 39 dB(A). Examination of the measurement 

node after the deployment period was over showed 

that this noise floor increase occurred due to grounding 

issues of the unit. Application of the single node 

version of the test between periods 29 December to 2 

February 2014 and 1 June to 30 June 2014 succeeded 

to identify this error achieving an F score of 4.54 when 

the critical value was �����(2,60) = 	1.65 at � = 0.2. It 

is worth noting that in this case the selection of the 

time intervals for the comparison was not limited by 

any seasonal restraint because the noise floor levels 

are minimally affected by environmental 

characteristics.  

Conclusions 
Application of the described implementation of the 

Chow Test on noise levels measured at different 

locations can prove a very useful tool in the 

identification of stability issues in a noise monitoring 

network. It was demonstrated that high network 

density is not a prerequisite for this method to perform 

well as long as variance in the data is controlled. 

Routine measurements like night time median (L50) 

levels can significantly reduce the data variance while it 

is believed that filtering and exclusion of weekend 

measurements could further aid towards this direction, 

if required. Obviously, the more monitoring stations 

exist the more accurate the stability assessment will be, 

however experimental results suggest that the 

proposed method is more susceptible to variance 

differences than low temporal correlations, hence the 

existence of great numbers of measurement units is 

not considered crucial.  

Variations in the soundscapes’ characteristics 

depending on population density and traffic can have 

an effect on the validity of the results especially when 

the existence of soft drifts is examined. For this reason 

classification of the different soundscapes and 

comparison between nodes found in similar noise 

environments instead of oversampling is proposed. In 

order to further improve accuracy the test can be 

tuned to the characteristics of each environment by 

adjusting the level of significance and choosing 

appropriate testing intervals. By doing so one could 

adjust the sensitivity and implement variations of the 

proposed method for the detection of other types of 

anomalies, such as abrupt failures, which happen in 

very short time intervals. 

Apart from testing between nodes the discussed 

technique can be applied on signals coming from 

individual monitoring stations under the assumption 

that the noise environment locally does not change 

significantly with time.  However, seasonal features can 

lead to wrong conclusions when only self-testing is 

used. Thus it is suggested to avoid the application of 

this form of the test during periods that exhibit 

seasonal peculiarities and when self-testing is used 

always to cross check the results with those obtained 

by the comparison between multiple nodes. 

Finally, the method is suitable for application on other 

parameters, statistical- and otherwise. An example of 

the test run on L95 levels showed that the same 

technique can be used to expose noise floor shifts. In a 

similar way the proposed technique can be expanded 

and applied on the response of any group of linearly 

behaving elements to help detect faults which might 

not be easily identified otherwise. It has been 

demonstrated that night time L50 exhibits less variance 

than Leq and provides more suitable time series for the 

application of the test in order to identify slow drifts 

from calibration or abrupt changes in the response of 

the system. However, statistical levels only present a 

portion of the true behaviour of the sound 

environment. Examining only the median might lead to 

incapability to identify errors related to the upper or 

lower end of the level range at a given location. Hence 

it is recommended that other parameters such as Leq or 

L10 and L90 are also examined using suitable methods 

and the results of all tests are combined in order to 

cover all possible failure scenarios. 
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Figure 1: Daily averaged broadband Leq levels measured at Piazza Vettovaglie and Piazza Omobono in Pisa. 
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Figure 2: Night time L50 levels measured at Piazza Vettovaglie and Piazza Omobono in Pisa. 
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Figure 3.1: Combined L50 data and their regression lines before scaling. 

Figure 3.2: Combined L50 data and their individual regression lines after scaling is applied. 
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Figure 4: Night time L50 levels for the whole duration of the deployment. 

 
Figure 5: Map showing the location of the measurement points in the centre of Pisa. 
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Figure 6: Night time L50 measurements at four different locations in Pisa. 
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Figure 7: Comparison of fitted lines between individual and combined data sets. 
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Figure 8: Time series of night time L50 measurements at four different locations in Pisa. 
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Figure 9:  Night time L50 levels measured at Via Pietro Gori and Piazza Omobono between 22 January and 10 November 

2014 and their fitted lines. The much greater variance of Via Pietro Gori’s measurements masks the deviation from normal 

operation at Piazza Omobon 
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Figure 10.1: Night time L50 levels measured at Ciro Menoti, Piazza Garibalti and Piazza Omobono 

Figure 10.2-4: Comparison between individual and combined linear regressions on data collected from 31 July to 12 August 

2014 
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Figure 11.1: Night time L50 measured at Piazza Omobono. 

Figure 11.2: Comparison of the individual and combined regressions applied on the time intervals 22 September to 23 

October 2013 and 22 September to 24 October 2014. 
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Figure 12.1: Night time L95 measurement at Via Pietro Gori. 

Figure 12.2: Comparison between individual and combined data regression lines for the time periods 29 December 2013 to 

2 February 2014 and 1 June to 30 June 2014. 
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