Oxygen profiling of the unsaturated zone using direct push drilling

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Environmental Science: Processes & Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>EM-ART-06-2015-000270.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>23-Jul-2015</td>
</tr>
</tbody>
</table>
A method based on direct push drilling for oxygen profiling of the unsaturated zone was introduced and demonstrated in the vadose zone of a surface spreading aquifer recharge system.
Environmental Impact:

Oxygen plays a major role in natural and engineered biological and chemical processes. Nevertheless, there is no satisfactory method for evaluating oxygen profiles as a function of depth in the vadose zone. In this study, we introduce a fast and reliable approach for oxygen depth profiling based on direct push drilling. Oxygen – depth profile was obtained for the first time from a 30 m vadose zone of a water recharge facility with a resolution of less than 1 m. This technique can be used to complement direct push drillings and can be applied to water saturated layers as well as to dry soils.
Oxygen profiling of the unsaturated zone using direct push drilling

A. Sopilniak, a T. Elad, a R. Elkayam, b and O. Lev*a

A methodology for oxygen profile measurement in the unsaturated zone is developed based on a direct push drilling using sampling liners equipped with homemade silicone septa. The oxygen measurement is carried out by puncturing the septum with a commercial retractable optode needle fitted with a fluorescent tip. Metrological characteristics and method validation were carried out under laboratory conditions using different levels of oxygen and various water contents. The relative standard deviations under dry and water saturated soil conditions were less than 0.3% and 5% for 0.5 mg/L of oxygen and less than 2% and 3% for 9 mg/L. Field demonstrations in a calcareous – sandstone soil aquifer treatment system with a layered clayey, marl and sandstone lithology of widely different water contents provided down to 30 m deep profiles of the dissolved oxygen level with less than 1.5 m spatial resolution. A single sensor was used for over 50 field measurements, though recalibration was required after approximately 30 measurements due to the deterioration of the fluorescent tip.

1. Introduction

The importance of dioxygen concentration in natural ecosystems as well as in engineered biological reactors cannot be overestimated. Changes in oxygen tension result in microbial population change with different carbon fixation and mineralization pathways, rather than a mere change of process kinetics. Therefore, oxygen is the most sought-after chemical profile in heterogeneous ecosystems as well as in unstirred technological reactors.

Oxygen profiling in aqueous stratified streams, lakes and marine systems can be considered as a solved problem, though further improvements will always be sought. Oxygen profiling in soils poses a different challenge and is much needed since the subsurface is often heterogeneous, and oxygen tension varies in time and space. The required spatial resolution of such measurements depends on the system and goes from the sub-mm scale for biofilms and biomats to a few centimeters in streambeds and can be of several decameters in unsaturated zone studies of marine and oceanic sediments. Soil gas measurements over contaminated sites containing non-aqueous phases can extend over even larger scale up to many meters of soil. Several techniques were developed to measure oxygen profiles over the different length scales using oxygen microelectrodes mounted on micro-translational stages for the sub-cm scale, fluorescent optical films or an array of optodes for the lower resolution range, and lander-type oxygen meters can be used to sample cores in the meter scale. Vertically nested sampling probes are used for low resolution soil gas profiling. However, these techniques have only limited usefulness for oxygen profiling in the unsaturated zone. Molecular oxygen diffusion is over two orders of magnitude larger in the gas phase, and natural convection is also much faster. Currently, the most useful method for oxygen profiling of the unsaturated zone is to install several stationary water samplers or oxygen/redox sensors at different depths. Though these techniques provide time dependent information, they have limited spatial resolution, especially for deep locations, since a dedicated probe/sampler should be installed at each depth, and the sampling probes are not easily retrieved at the end of the measurement period. Soil gas sampling techniques are impractical in moist or fine grained soil. We had to face the challenge of oxygen profiling during our studies of processes in the Shafdan effluent recharge systems, which will be described in more detail in the experimental section. Briefly, the Shafdan system comprises a mechanical – biological domestic wastewater treatment followed by water recharge by surface spreading. The effluent infiltrates through some 30-40 m of the vadose zone to the aquifer and is reclaimed for irrigation a few hundred meters downstream. The most important parameter needed for gleaning the mechanism of such cleanup is still absent. The oxygen profile of the entire unsaturated zone of a water recharge facility has never been obtained, and only the upper few meters could be explored by stationary oxygen and redox probes. Our own attempts to sample soil – gas were unsuccessful since the lithology involves layered clayey soil that is sometimes moist or even water saturated and does not allow gas sampling. We therefore developed an oxygen profiling approach based on direct push rigs using liners...
equipped with small rubber septa. The septa prevent oxygen contamination or release, and still oxygen concentration can be determined soon after the liner withdrawal from the subsurface by puncturing the septum with an optical sensor enclosed in a protective metallic sleeve. Direct push rigs, often nicknamed after their inventing company, Geoprobe™, produce boreholes by pushing a cylindrical liner into the subsurface. The liner filled with soil can then be pulled upwards. The equipment can be used to obtain continuous property profiles in unconsolidated soil materials and can be used to sample specific target locations by combining cone and push–pull drillings. Several auxiliary geotechnical sensors were developed for direct push drilling, which allow obtaining continuous profiles of the lithostatic and hydrostatic pressures, electrical resistivity, seismic properties and even optical imaging. However, devices for oxygen profiling have never been introduced, though the direct push rig equipped with a stainless steel screen permanent samplers is often used to obtain time dependent oxygen and redox data from specific depths.

2. Material and Methods

2.1 Oxygen determination

Commercial liners equipped with 1.5 mm in diameter homemade septa were used to pull out soil cores, and the oxygen concentration was determined within one minute after the liner was withdrawn from the ground. Several 2-mm diameter holes were drilled in each liner (Fig 1a). It was found preferable to drill the holes in opposite sides of the liner in order to minimize interferences in case of detachment of a septum due to shear forces during the direct push drilling. Paper cylinders covered by Teflon bands were placed inside the liners to hold the viscous rubber in place, and then the holes were filled with silicone rubber (Elastosil E43, from PyroScience™) (Fig 1b and c). The septa were left to dry for at least 24 hours. 2 mm septa were found optimal, since smaller septa were too rigid and detached from the liner when the optode was inserted, and larger septa were too loose and often detached from the liner during the direct push drilling. Careful cleaning of the inner section of the liner by pushing a cylinder rapped with a cloth through the liner is essential to obtain a smooth inner surface and prevent peel off of the septa during drilling in coarse-grained soils. All in all, even with the optimized septa about 5% failure was encountered in our field tests.

Oxygen was measured using a commercial optode from PyroScience™ (OXR430), a retractable needle-type oxygen sensor, with a metallic shell of 1.1 mm in diameter and optical fiber of 430 µm of diameter (Fig. 2a). Optical oxygen sensing is based on red light excitation (610-630 nm) of fluorescent oxygen indicators and lifetime detection in the near infrared at 760-790 nm. Oxygen molecules quench the red signal and the concentration of oxygen is determined by Stern–Vollmer equation. The sensor was calibrated by ambient and 0% oxygen levels (oxygen was depleted by using 3 % wt Na₂SO₃). The specified absolute error of OXR430 is constant, 0.01 mg/L at 1% as well as at 20% O₂, corresponding to 9 and 0.5 mg/L of dissolved oxygen at 20 ºC and atmospheric pressure.

2.1.1 Measurement procedure

Once in the field, the septa allow performing hermetically sealed measurements of oxygen in soil. The septa are punctured using the optode metallic shell and the fiber is inserted into the soil core (Fig 2b). The signal is allowed to stabilize for a few seconds before taking stationary readings.
2.2 Method testing

The sensing method was tested in the laboratory on a simulation system consisting of a 20-cm PVC liner blocked by inlet and outlet caps at its two ends and equipped with metal valves for gas inlets – two at the top for different gases and one at the bottom. A schematic depiction of the simulation setup is shown in Figure 3a. Several 2 mm septa were fixed along the liner’s wall, and a sensor spot (OXSP5, PyroScience™) and a spot adapter (SPADBAS, PyroScience™) were glued to the liner’s inner and outer wall respectively, which served as an unbiased fixed reference. Three cases were tested.

First, to simulate dry soil (0% saturation), the liner was filled with dry sand (>90% sandy soil), and then flushed with air and nitrogen at different ratios in order to obtain a range of oxygen concentrations. The sand was shaken after the flow of air and nitrogen was stopped in order to ensure uniform oxygen distribution inside the liner.

Secondly, to simulate measurements in saturated soil (100% saturation, corresponding to 26 %wt water), the liner was first filled with tap water. Sand was then added, keeping the upper part of the column full of water and free of sand. Nitrogen was bubbled into the top of the water column until the desired oxygen concentration was reached, and then the soil filled section of the column was flushed with the water, leaving only a few mm of a water head above the soil surface. Reference oxygen measurement, unbiased by the septa was established by measuring the oxygen concentration in the top of the water column by the OXR430 sensor.

Thirdly, to simulate measurements in semi-saturated soil (50% saturation, corresponding to 13 %wt water), the liner was filled with tap water and sand as before. The water was let to drain, and then different concentrations of air and nitrogen mix were made to flow through the liner. In each test concentration, a reference measurement was carried out by the stationary spot sensor, and compared to three test measurements using the OXR430 retractable needle-type minisensor and the three septa as described above.

2.3 Oxygen penetration through the soil core

Under field operation the sampled soil core may be contaminated with atmospheric oxygen from the two ends of the liner. The process of liner retrieval exposes the liner to air through the top and bottom ends of the liner. Moreover, the bottom side of the liner may be contaminated by oxygen from the beginning of the pull-up process until the time that it is capped, and the septum is punctured by the optode. In addition the soil at the top side of the liner is exposed to the atmosphere also during the time period between the removal of the previous liner from the ground and the pull out of the current liner, which affects the upper part of the soil in the liner itself. Oxygen contamination through the septa was ruled out by mathematical simulations showing negligible penetration of oxygen through the RTV septum. A full description is provided in the ESI).

The period of penetration of oxygen to the top side can be shortened by insertion of a cork in the lower side of the liner. The cork slides up along the liner as it is filled by the soil, keeps the upper part of the liner plugged and prevents oxygen contamination during the pull up-process. However, this solves only part of the problem, since the soil is still exposed to oxygen during the time interval between the extraction of the previous liner and the time the cork starts to slide up along the next liner. The oxygen penetration depth should be shorter than the distance between the septum and the nearest end of the liner. Oxygen penetration tests were carried out with dry sand to represent the worst case of fastest oxygen penetration conditions.

Fig. 3 (a) A schematic description of the oxygen measurement test system. (b-d) Test versus reference stationary oxygen measurements in dry (b), 50% V/V water content (c), and saturated (d) sand. Correlation was 0.995, 0.999 and 0.997 respectfully. Dotted lines represent the 1:1 line. Bars represent standard error of three different test measurements through three different septa. Bars are often smaller than the symbols.
Sand has high porosity30,31 and dry conditions leave the soil voids available for fast oxygen penetration. To this end, we fixed an oxygen sensor spot in the middle of a 1.5 m liner and filled the liner with dry sand and then thoroughly flushed the sand with nitrogen. Then, we removed the inlet cover, letting ambient air diffuse freely into the liner and recorded the oxygen level as a function of time at a fixed spot. Liners filled with soil to different levels above the oxygen sensor were used to measure the time for oxygen penetration to different depths. Data collection began with nitrogen flushing.

2.4 Field Research Area

Field studies were carried out in the Shafdan water recharge lagoons. The Shafdan wastewater treatment plant treats 130 Mm3 of predominantly domestic wastewater per year and serves a population of 2 million people in the Tel Aviv Metropolitan Area. The process includes conventional mechanical – biological treatment and surface spreading effluent recharge. The infiltration lagoons are flooded for one day by the Shafdan effluent, and the lagoons are then allowed to dry for 2-3 days. The water infiltrates through a 30-40 m of unsaturated zone and then flows horizontally in the saturated zone for 6-36 months before being reclaimed for irrigation. The Shafdan recharge area is located in the coastal aquifer which supplies 20% of Israel’s potable water. The coastal aquifer, a Pliocene-Pleistocene phreatic aquifer located along the Mediterranean Sea coast is predominantly calcareous sandstone interlaced by intercalations of clay, silt and loam layers. It overlies impermeable shales of the Saqiye group at a depth of 100-150 m below ground level.

Core soil collection was performed in a percolation lagoon 24 and 48 hours after the field flooding ended. The sampling was done by direct Push VTR 9700 machinery from AMS TechnologiesTM. The rig pushes PVC liners of 3.8 cm in diameter and 1.5 m long. The core is then retrieved full of soil to the surface. Sampling was done down to 30 meters below the ground.

2.5 Water content determination

Soil water content was determined by a standard method of Loss on Ignition (LOI), in which soil samples are weighed before and after heat treatment at 105 °C for at least 24 hr32. Volumetric water content is derived from additional measurements of soil density done while the soil is still within the liner33.

3. Results and Discussion

3.1 Validation of the oxygen analysis

Validation of the oxygen determination methodology was carried out using the constructed setup shown in Figure 3a by comparing oxygen sensing through the rubber septa with the signal of the stationary optode. Data were collected for dry, under-saturated (50% V/V) and saturated (100% V/V) coarse sandy soil to closely represent the coastal region of research area. Sands with different water contents were equilibrated with different ratios of air and nitrogen to represent a wide range of oxygen concentrations. Immediately after gas flow was stopped, the system was hermetically sealed. Then the three septa were punctured and oxygen levels were measured inside the sand using our optode. Reference measurement with a stationary optode was taken before applying our measurement methodology and after.

Figures 3b-3d depict the fits of the measured oxygen levels by our methodology and the response of a stationary optode that was not biased by the septa for three water contents. Each test was carried out three times using a different septum for each measurement. In all cases, a good fit was obtained between the unbiased stationary reading and the proposed method. The relative standard deviation, a measure of precision, was less than 5%, and it was practically independent of the oxygen level and the water content. The absolute bias of the test was always lower than 0.2 mg/L of oxygen.

The curves in Figures 3b-d depict the measurements through the septa and by the reference stationary optode. The linear 1:1 correlation coefficients were found to be 0.995, 0.999 and 0.997 for 0%, 50% and 100% water saturation content, respectively. The relative standard deviation was less than 3% over the entire oxygen range. The relative bias (i.e. maximal difference between a measurement through a septum and the stationary optode) increased to 5% at low oxygen concentrations (0.5 mg/L) in the under-saturated as well as in the saturated conditions.

3.1 Oxygen Penetration Depth

Oxygen penetration depth evaluation was conducted using dry soil as described in the experimental section. First, the response time of the sensor itself was evaluated as a function of the water content. The dynamic response of the sensor from its penetration through the septum to the stabilization of the response is depicted in Figure S34 in the supplementary material. Although the response time was larger in dry sand than in the 50% wetted soil, the sensor stabilized within a few seconds in both cases. Thus, the sensor response rate, which is of the order of seconds, does not bias the determination of the much slower oxygen penetration rate into the soil.

The time required for oxygen to penetrate a specific depth was measured for several different liners, as described in the experimental section. A 1.5 m liner was filled with sand and flushed with nitrogen until the oxygen level dropped to 0 at a stationary sensor located at the middle of the liner. The liner was then sealed hermetically and left to stand for 24 hr to assure zero oxygen leakage. The upper cap of the liner was then removed and oxygen was continuously monitored. This process was done for 7 different lengths between the sensor and the upper edge,
ranging from 10 to 75 cm. Measurements were carried out at 25±1°C and 695±2 Torr. Figure 4 depicts the response of the sensor at seven different levels below the upper edge of the soil in the liner after the cap was removed from the liner. In all cases the readings were initially 0 mg/L until an oxygen breakthrough was reached and the oxygen signal rose exponentially. As expected, longer paths induced longer breakthrough periods. The oxygen levels were monitored up to 1 mg/L of oxygen. Equations 1-3 describe the theoretical oxygen concentration (C) as a function of time (t) from the beginning of the exposure of the soil to oxygen and the distance (x) between the top of the soil and the sensor, C(x, t).

\[C(x,t) = C_0 \cdot \text{erfc} \left(\frac{x}{2 \sqrt{D_0 \cdot \Phi^2 \cdot \frac{\varepsilon_g}{1 + B \cdot \theta_v} \cdot t}} \right) \]

Equation (1) is a one-dimensional solution of the Fickian diffusion equation modified for soil porosity and water content \(^{34,35}\). Equation (2) gives the tortuosity according to the Three-Porosity-Model \(^{36,37}\). The notations are defined in Table 1. Under dry conditions, the porosity \(\varepsilon_g\) approaches the soil total porosity \(\Phi\) and the volumetric water content \(\theta_v\) equals zero, thus equation (1) turns into:

\[C(x,t) = C_0 \cdot \text{erfc} \left(\frac{x}{2 \sqrt{D_0 \cdot \Phi \cdot t}} \right) \]

The parameters used for generating the theoretical curves were all either based on literature values (e.g. \(D_0\), \(C_0\), \(B\)) or on experimental values obtained by independent measurements of our set-up (\(\Phi\), \(\varepsilon_g\), \(\theta_v\)). The fit shown in Figure 4 between theory and practice is remarkable and it is achieved without using any adjustable parameter. In fact, when we used the porosity as an adjustable parameter to receive a best fit between theory and practice we obtained 0.369± 5% instead of the 0.3640± 5% which was determined by gravimetry \(^{38}\) for dry sandy soil. These values are well within the estimated errors.

Figure 4 depicts the breakthrough curves for 0%, 5%, 10%, 25%, 50%, 70%, 90% and 100% volumetric water saturation. Higher water content slows oxygen penetration into the soil, and thus dry conditions are the worst case scenario for ambient oxygen contamination. For example, taking 20 minutes as a reasonable time for completing a field test, i.e. the time of exposure of the edge of the soil to ambient oxygen, and using a threshold oxygen level of 0.1 mg/L (as minimum method detection limit) gives penetration depths of 35, 31, 29, 25, 19, 15, 12, and 10 cm after 20 minutes for 0, 5, 10, 25, 50, 70, 90 and 100% volumetric water saturation, respectively. For the case of the percolation lagoons of the Shafdan, the average volumetric water content is ca. 10%, and thus the distance from the closest septum to the bottom and top

Table 1 Definitions of the notations and their experimental* or literature values under the laboratory test conditions

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Definition and units</th>
<th>Values</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(x,t)</td>
<td>Oxygen concentration as a function of distance and time</td>
<td>Calculated</td>
<td></td>
</tr>
<tr>
<td>(C_0)</td>
<td>Concentration of oxygen in equilibrium with atmospheric oxygen (mg/L)</td>
<td>8.0 ± 0.1 (mg/L)</td>
<td>Battino R. et al. (^{39})</td>
</tr>
<tr>
<td>(X)</td>
<td>Distance from the liner edge (cm)</td>
<td>10(\leq x \leq 75) cm</td>
<td>This study</td>
</tr>
<tr>
<td>(t)</td>
<td>Time (sec)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>Bunsen’s coefficient of solubility</td>
<td>6.42*10(^{-3})</td>
<td>Weiss R. F. (^{40})</td>
</tr>
<tr>
<td>(\theta_v)</td>
<td>Volumetric water content</td>
<td>0%<(\theta_v)<36%</td>
<td>This study</td>
</tr>
<tr>
<td>(D_0)</td>
<td>Oxygen diffusion coefficient (cm(^2)/sec)</td>
<td>0.23±0.01 (cm(^2)/sec)</td>
<td>Astrath N. et al. (^{41})</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>Soil total porosity</td>
<td>0.36±0.02</td>
<td>This study</td>
</tr>
<tr>
<td>(\varepsilon_g)</td>
<td>Air-filled porosity</td>
<td>0<(\varepsilon_g)<(\Phi)</td>
<td>This study</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Tortuosity</td>
<td>For 0% to 50% saturation (1<\tau<3)</td>
<td>Calculated by eq. 2</td>
</tr>
</tbody>
</table>

\(^{\dagger}\) Initial conditions of \(C(x, t=0) = 0\); Boundary conditions: \(C(x=0, t) = 0\); \(C(x=\infty, t) = C_0\)

\(^{\ddagger}\) Recorded every second

* All measurements were carried out at 695±2 Torr, 25±1°C and relative humidity of 47.5±0.5%
edges of the liners were set to 30 cm, calculated for 20 minutes of oxygen exposure.

The retractable needle-type optode combined with the Geoprobe™ liner modification with installed septa shows a response time within seconds for soil – oxygen measurements. This result is faster than many other methods relying on optical arrays and films \(^{7,8,13,17}\) and is suitable for in field direct measurements, unlike methods based on diffusion cells \(^{10,12,42}\), which are better for longer time scales (hours to days). The methodology described in this study has increased the vertical resolution and reachable depth for dissolved oxygen measurements and other oxygen sensitive water quality parameters, for which miniature sensing devices exist.

3.2 Field Results

3.2.1 Water content and lithology

The lithology at the site is described in Figure 5a. The calcareous sandstone lithology is interrupted by clayey layers of lower hydraulic permeability \(^{31}\) at around -8.5, -12.5, -16, and -22 m. The water content profile was carried out at two consecutive days. The results are expressed as %Wt/Wt and %V/V and presented in the same figure (Fig. 5b, 5d). The water content profile was conducted at a resolution of 75 cm, though it is expressed as a continuous line. The water content profile which was conducted 24 hours after flooding shows peak water contents at the top soil and above -9 and -12.5 m and around -16 m corresponding to the hydraulic clayey barriers at these points. The water content results agree well with our visual field observations of water saturation. The day-to-day changes of the water contents are larger at the upper half of the profile and show depletion of the high water content in the top soil due to water infiltration, and accumulation of water above the -9 m clayey barrier. At deeper locations a downwards progress of the high water content layer from -15 to -16 m can be observed.

3.2.2 Oxygen profile as a function of depth

Oxygen profiles were evaluated in the field, 24 and 48 hrs after the beginning of flooding session and the observed profiles are depicted in Figure 5c and 5e.

In both cases, two distinguished zones can be observed: oxygenated (aerobic) zone, located from the surface to ca. 10-12 m, and an anaerobic zone from ca. 10 m downward. The data points were reported only if two measurements through two different septa gave identical results within less than 0.1 mg/L. This was achievable despite the heterogeneity of the soil and the variability of the oxygen concentration.

On day 1 we witnessed a steep decline of oxygen concentration from near saturation, 8.1 mg O\(_2\)/L at the surface, corresponding to ambient temperature of 26 ±2°C and 760 Torr, to 3.9 mg/L at ca -1.5 m. A slight O\(_2\) increase is then observed between -1.5 and -2.5 m followed by a plateau at 4.3 mg/L down to -7 m. A sharp decrease of oxygen level is then observed between -7 and -10 m, at the end of which oxygen drops to zero.

On the second day, atmospheric oxygen penetrated from the surface and the oxygen level in the region -1.5 to -5 m exhibited a gentle decrease from 6.1 to 5.5 mg/L. This level is substantially higher than the level of 4.3 mg/L on day 1. Oxygen was depleted on day 2 only at -12 m and the oxygen decrease was less steep compared to day 1. On both days the level of oxygen below -12 m was 0 except for two points, -30 m on the first day and -15 m on day 2. In the first case the retrieval of the liner to the surface took more than 40 minutes and in the second case the delay time between the retrieval of the last liner (for depth -28.5-30) was also excessive (above 50 minutes), thus in both cases oxygen diffusion likely reached the septa before the
Fig. 5 Field results from Yavne 2 percolation lagoon: (a) Lithology profile of the percolation lagoon up till 30 m. The soil consists mostly of sand and calcareous sandstones with interlayers of clayey soil at -8.5, -12.5, -16 and -22 m. (b) Water content as a function of soil depth depicted as % Wt/Wt and % V/V of Day 1 – 24 hours after flooding. (c) Oxygen profile as a function of depth taken on Day 1. (d) Water content as a function of soil depth depicted as % Wt/Wt and % V/V on Day 2 – 48 hours after flooding. (e) Oxygen profile as a function of depth taken on Day 2.

Explanation of the complex oxygen profiles. In order to understand the oxygen profile in the upper 7 m of the subsoil we have to recall some key points. First, the water is introduced into the upper 7 m rather quickly during the flooding phase when the lagoon is still full of water. During this phase oxygen penetration into the subsoil is slow, since oxygen can be carried downwards only by the convection of the water phase.

Second, the top soil is rich with organics and biofilms and a natural gradient of organic matter and bacteria is developed from the top soil downwards due to sieving and adsorption mechanisms. Thus, the initial drop in oxygen in the first 1.5 m can be explained by a fast biodegradation due to the high concentrations of organic matter and the abundance of bacteria in the top soil. It is also possible that some of the observed attributes of the oxygen profile stem from the high heterogeneity of the soil.

The small rise in oxygen which is observed between ca. 1.5 and -2.5 m is attributed to the decreased amount of bacteria in the deeper layers which slows oxygen consumption and to high oxygen penetration during the drying phase. The plateau at -2.5 to -7 m results from a
balance between oxygen penetration in the gas phase and oxygen demand for biodegradation, with water seepage downward playing an additional minor role. In the bottom section from -7 to ca. -10 m, there is a steep decrease in oxygen. This is largely attributed to the accumulation of saturated layer in and above the clayey layer (Figure 5a). The hydraulic barrier decreases the void fraction, the gas phase is decreased accordingly and oxygen flux downwards being sustained only by water convection and dissolved gas diffusion. Since biodegradation continues due to the large level of organic matter, the oxygen level steeply drops to zero.

The main features of the oxygen profile on the second day are similar to those obtained on day 1 with some differences that can be attributed to the water convection downwards during the passing day and to oxygen penetration from the surface through the increasing void fraction which was still largely occupied by water on day 1. Thus, the decrease of oxygen level between 0 and -1.5 m is attributed to oxygen penetration from the atmosphere during the additional 24 hours of drying.

The moderate decline in oxygen level on day 2 compared to the plateau of day 1 is due to the increased path-length required for oxygen penetration from the surface. The sharp decline of oxygen level (between -7 and -10 m) is less steep on day 2 due to oxygen containing water seepage to the layer of saturated water that accumulated above the clayey barrier. Water convection from the clayey layer downward is also responsible for the expansion of the aerobic zone on day two (extending down to -12 m).

4. Conclusions

A new approach for measuring oxygen was devised, validated under laboratory tests and demonstrated under complex conditions by field studies. The used direct push-pull drilling technique can be complemented by relatively simple auxiliaries that allow oxygen profile measurement in the field. The field tests which were carried out on two consecutive days showed consistency with the physical parameters of the researched unsaturated zone. The limitations of the proposed approach were also underscored in this study. Oxygen profiling is limited to approximately 30 m by the length of time that it takes to pull up the filled liners. Despite this limitation we believe that the process can be extended to the measurements of other ambient air sensitive parameters such as redox potential, hydrogen sulfide, reduced sulphur species, ammonia and nitrogen for which miniature electrochemical and optical sensors have already been developed.

Acknowledgments

The authors acknowledge the help of Mekorot Ltd and the financial help of the scientific infrastructure program of the Ministry of Science and the financial help of the National Water Authority. AS thankfully acknowledge a Teva Ltd doctoral scholarship.

References

38 C. Dirksen, Soil Physics Measurements, Catena Verlag GMBH, Reiskirchen, Germany, 1st edn., 1999.