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Environmental impact statement 

Many of anthropogenic chemicals of environmental concern are chiral compounds. Tracing their 

alteration in the environment is of high importance for the assessment of enantiomer-specific 

environmental toxicity.  The enantiomeric enrichment is often used to identify the sources and 

effects of microbial degradation on chiral chemicals in the environment. Recently, it was 

demonstrated that the Rayleigh equation is valid to describe the enantioselective behavior 

and  the enantiomeric  enrichment factor (ƐER) can be used as an identifying tool for a specific 

enzymatic reaction. Application of Rayleigh equation for assessing the transformations of chiral 

compounds in real environmental systems requires the knowledge of ƐER, which is specific for 

each compound. The present study demonstrates that quantitative structure-activity relationship 

model (QSAR) describes well the dependence of ƐER on molecular structure and can be used for 

the evaluation of ƐER for unstudied chiral compounds belonging to a well-studied homologous 

series. 
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ABSTRACT   

It was recently demonstrated that under environmentally relevant conditions the Rayleigh equation is 

valid to describe the enantiometric enrichment - conversion relationship, yielding a proportional 

constant called the enantiometric enrichment factor, ƐER.  In the present study we demonstrate a 

quantitative structure-activity relationship model (QSAR) that describes well the dependence of ƐER 

on molecular structure. The enantiomeric enrichment factor can be predicted by the linear Hansch 

model, which correlates biological activity with physicochemical properties. Enantioselective 
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hydrolysis of sixteen derivatives of 2-(phenoxy)propionate (PPMs) have been analyzed during 

enzymatic degradation by lipases from Pseudomonas fluorescens (PFL), Pseudomonas cepacia 

(PCL), and Candida rugosa (CRL). In all cases the QSAR relationships were significant with R2 

values of 0.90-0.93, and showed high predictive abilities with internal and external validations 

providing Q2
LOO values of 0.85 - 0.87 and Q2

Ext values of 0.8-0.91. Moreover, it is demonstrated that 

this model enables differentiation between enzymes with different binding site shapes. The 

enantioselectivity of PFL and PCL was dictated by the electronic properties, whereas the 

enantioselectivity of CRL was determined by lipophilicity and steric factors. The predictive ability of 

the QSAR model demonstrated in the present study may serve as a helpful tool in environmental 

studies, assisting in source tracking of unstudied chiral compounds belonging to a well-studied 

homologous series.    

 

INTRODUCTION 

 Enantioselective degradation of micropollutant stereoisomers (as chiral pesticides and drugs) in 

polluted aquifers received growing research attention in recent years,1 demonstrating that shifts in the 

enantiomeric enrichment of micropollutants in effluents and contaminated streams can be used for 

source tracking2 and elucidation of the degradation mechanisms.3, 4  In compound-specific isotope 

analysis the Rayleigh equation is used to describe the relation between changes in isotopic 

composition vs. contaminant concentration during the degradation process. The isotope enrichment 

factor, ε, derived from the Rayleigh equation may serve as a parameter for the specific reaction 

pathway5 and as an assessment for source tracking6, since it does not depend on the conversion.  

Recently,7,8,9,10  it was established that the Rayleigh equation is also effective in  describing the 
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enantioselective behavior by deriving the enantiomeric enrichment factor (ƐER), which can be used as 

an identifying tool for a specific enzymatic reaction (eq 1). 

�� ���
���

= ��� × ��	�   (1) 

ERt and ER0 represent the initial and conversion-dependent enantiomeric enrichments (ER=[R]/[S]), f 

is the residual fraction (Ct/C0), and ƐER represents the enantiomeric enrichment factor. 

      Taking the correlation between the enantiomeric enrichment and the kinetic degradation a step 

forward, reveals an interesting phenomenon: the enantiomeric enrichment factor derived from 

enzymatic degradation reactions is in correlation to the molecular structure. Therefore the Rayleigh 

equation can be used for prediction of the enzymatic kinetics and enantioselective enrichments of 

molecules belonging to homologous series, by linear free energy relationships (LFER). The ability of 

modeling the fate of enantioselective degradation and biodegradation, as a whole, can save the need 

of multiple lab work to predict biodegradation of chemicals in natural systems. To this end, The 

United States Environmental Protection Agency (USEPA) is investing considerable effort in research 

aimed at reliable structure-activity relationships (SAR) and models are needed to understand the 

mechanisms of biodegradation, to classify chemicals according to relative biodegradability, and to 

develop reliable biodegradation estimation methods for new chemicals.11,12,13  

      LFER have served a fundamental role in physical organic chemistry by providing a quantitative 

correlation between structure and reactivity.14,15  Presently, extended forms of LFERs, namely, 

quantitative structure activity relationships (QSARs), are commonly used for formulating 

mathematical relationships which describe the structural dependence of biological activities.16,17,18 

These predictive models are derived based on the correlation between experimental data and 

biological features and can lead to identify the bioavailability, toxicity and biological activities of 

compounds as the dependent variables.19,20 In the last decade, these methods have been applied to 
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chemical catalysis with respect to catalyst activity and selectivity,21 developing  quantitative structure 

enantioselective relationship models (QSER) for asymmetric chemical22,23 and enzymatic24 reactions. 

These models can predict the outcome of asymmetric reactions,25 describe  the enantioselective 

mechanism26 and design improved catalysts.27 

 In this work, the multiple linear regression (MLR) method was applied to build the QSAR based on 

the Linear Hansch model.28  In the classical Hansch approach29, substituent constants like the Hansch 

lipophilicity parameter30 (π), Hammett’s electronic parameter (σ) and Taft’s steric parameter (Es) are 

employed as structural descriptors for the variation in the test set and are correlated with the 

dependent variable C, the concentrations of the compound producing the biological response being 

measured (eq 2).  

log 1/� = �� + ��� + �� + �     (2)  

   In 196531 Hansch et al. applied the steric parameter Es, to reactions occurring on enzymes, 

governing equation 3 by using 1/kM=kf/kr (kM is the Michaelis–Menten saturation constant, kf and kr 

are the  enzyme-substrate complexation and dissociation rate constants, respectively).   

log ���� = ��� + � � + �!�� + �"     (3) 

In a previous article7 we have defined the enantiomeric enrichment factor in equation 1 by  equation 

4. 

��� = #�
�$

       (4) 

 kc is the observed overall first order rate constant of both enantiomers, and � is the difference 

between the individual first order rate constants of each enantiomer undergoing the enzymatic 

degradation. Replacing kf/kr in equation 3 by ƐER, leads to equation 5 which was used for building our 

QSAR model.  
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log ��� = ��� + � � + �!��� + �"      (5) 

   In order to build the model, series of structural analogs that adhere to the same binding/degradation 

mechanism, are to be analyzed for obtaining the enantiomeric enrichment data series. Herein, we 

analyzed the enantioselective hydrolysis of sixteen derivatives of 2-(phenoxy)propionate 

(PPMs)  (Figure 1, Table 1),  some of them are common herbicides32 that are ubiquitous water 

contaminants.33,34 The enantioselective degradation has been carried out with three lipase enzymes 

from three species:  Pseudomonas fluorescens (PFL), Pseudomonas cepacia (PCL) and Candida 

rugosa (CRL). 

 

Figure 1. Structure of PPMs.  R1, R2, R3 and R4 represent different substituents on PPM as described 

in Table 1; chiral center is denoted by an asterisk (*). 

 

MATERIALS AND METHODS   

   Materials and reagents are described in the Supplementary Information, SI.  

All the studied enzymatic reactions were carried out at 21±2ºC. The kinetic tracking of the 

transformations was carried out in parallel separate vials, and the whole content of each vial was used 

for a single analysis. Detailed reaction and extraction procedures can be found in the SI. 

Enantiomeric enrichment analysis 
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The chiral reactants 1-4, 8-11 and 13-16 (Table 1) were analyzed by GC-SMB-QQQ-MS (a 

combined instrument comprised of GC, Agilent 7890A, Aviv Analytical supermolecular beam ion 

source35 and Agilent 7000A triple quadruple mass spectrometer), equipped with a chiral column (β-

cyclodextrin, 13105Rt-bDEXsm, 30 m x 250 µm x 0.25 µm; Restek). Compounds 5-7 and 12  (Table 

1)  where analyzed by HPLC-UV (Finnigan TSP 4000 series) equipped with a chiral column 

(Cellulose-Tris-(3,5-dimethylphenyl)-carbamate, Reprosil Chiral-OM, 5 µm x 250 mm x 4.6 mm ID, 

Dr. Maisch (Germany)).  Detailed analytical method is presented in the SI.  

Statistical procedures 

Multiple linear regression (MLR) analyses and statistical analysis were performed using SPSS 8.0 

and Microsoft Excel 2010 software. Detailed model development and statistical validation for the 

significance confirmation of the QSAR model is provided in the SI.  

 

RESULTS AND DISCUSSION  

Enantioslective enzymatic degradation analysis 

The kinetic tracking of all the CPPMs, detailed in Table 1, gave first order kinetic fits with overall 

rate constants in the range of 0.009-1.002 hr-1 (detailed in Table S1 in the SI). The enantioselective 

degradation of all compounds followed the Rayleigh dependence (R² = 0.94-0.99), obtaining the 

enantiomeric enrichment factors detailed in Table 1. 

 

Table 1. Structures, Hansch fitted parameters and Rayleigh enrichment factors, for the PPMs 

degraded by different lipases. 

  Substituents a Hansch fitted parameters Rayleigh enrichment factorse 

no. analytes R1  R2 R3 R4 πb σc Esk d εER
 PCL εER PFL εER CRL 
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1 PPM H H H H 0 0 -3.05 -23±2 -41±5 -21±12 

2 CPPM Cl H H H 0.76 0.23 -2.43 -75±9 -83±19 -72±11 

3 DCPPM Cl H Cl H 1.46 0.46 -1.81 -89±15 -113±21 -168±14 

4 MCPPM CH3 H Cl H 1.54 0.06 -1.83 -46±24 -66±10 -194±4 

5 TCPPM Cl H Cl Cl 2.22 0.83 -1.19 -234±7 -266±19 -268±15 

6 HYPPM H H OH H -0.61 -0.37 -2.45 -15±3 -19±4 -159±12 

7 BPPM H H Ph H 2.69 -0.01 -1.93 -27±3 -62±5 -76±5 

8 DBrPPM Br H Br H 1.77 0.46 -1.55 -50±7 -63±3 -282±21 

9 OCH3PPM OCH3 H H H -0.33 -0.27 -2.32 -20±3 -23±4 -125±3 

10 DMPPM H CH3 H CH3 1.35 -0.239 -1.85 -19±4 -24±5 -130±8 

11 OCF3PPM H H OCF3 H 1.21 0.35 -1.64 -66±17 -101±15 -267±6 

12 NPPM H H NO2 H 0.24 0. 78 -1.60 -156±19 -149±6 -299±11 

13 IPPM H H I H 1.26 0.18 -2.19 -46±10 -61±2 -86±13 

14 BrPPM H H Br H 1.02 0.23 -2.3 -41±3 -67±6 -63±10 

15 FPPM F H H H 0.01 0.06 -2.55 -30±2 -48±1 -45±4 

16 NaphPPM H H C2H2 C2H2 1.24 0.04 n.d. -28±3 -46±3 -324±21 

a Positions of R1, R2, R3 and R4  groups are labeled on the common structure in Figure 1.; b Hansch’s 

lipophilicity parameter, taken from ref. 30 (from the phenoxyacetic acid system) and ref. 36; c 

Hammett’s electronic parameter, taken from ref. 15 and 37; d Taft’s steric parameter calculated from 

Kier's kappa values38, taken from ref.39; n.d -not determined in the literature;  e in percent units (%). 

The ± sign indicates the 95% confidence interval of the slope of the regression line in the Rayleigh 

plots. The enzymatic hydrolysis reactions were carried at pH 7.4. 

QSAR analysis 

  Using the data in table 1, multiple linear regressions analysis (MLR) was performed to build the 

QSAR models from the various descriptors.  Interestingly, when we tried using all three descriptors 

for PCL and PFL the coefficients of π and Esk were insignificant (-0.02(±0.04)π, 0.08(±0.1)Esk and 
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0.08(±0.04)π, -0.09(±0.09)Esk, respectively, P-values>0.001). Therefore, for the two Pseudomonas 

enzymes (PCL and PFL) the model utilized only one descriptor- the electronic structural parameter, 

σ, obtaining equations 6 and 7. However, this does not hold true for the Candida enzyme (eq 8), 

where σ was not significant at all (-0.18(±0.1)σ, P-value>0.001) (Figure 2) and the model was built 

based on the lipophilicity and steric parameters. These different relations were reported previously 

when studying the effect of substituents on the enantioselectivity of lipase catalyzed reactions (these 

reports used values that are conversion dependent (ER) whereas we use εER that is a more general 

value). Y. Kawanami et al.40 showed that the electron-withdrawing character might be the main 

factor to enhance the enantioselectivity in PCL. On the other hand Ueji et al.41 reported the absence 

of Hammet correlation between the enantioselectivity and the electronic effect in CRL as in our case.  

log%���& = 0.98%+0.10&	�	 + 1.47%+0.04&   (6) 

log%���& = 0.87%+0.10&	� + 1.63%+0.03&   (7) 

log%���& = 00.27%+0.06&	� + 1.04%+0.12&	��� + 4.5%+0.30&   (8) 

 

Figure 2. Correlations between the enantiomeric enrichment factor, ƐER, and Hammett’s electronic parameter, 

σ, for lipase from and Pseudomonas cepacia (PCL), Pseudomonas fluorescens (PFL) and  lipase from 

Candida rugosa (CRL). 
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   Table 2 details the statistical results obtained for the three QSAR model equations. As can be seen  

the sixteen compounds were divided into training and external validation sets (the splitting method  is 

detailed in the SI), while the ratio between the number of descriptors and training compounds (1:11)  

in models 6 and 7 is two times higher than the minimum Toppliss and Costello criterion42  and in  

model 8 the ratio  is compatible with the criterion (should be at least 1:5).  

    An appropriate QSAR model is indicated by large F, small STD, small sig F, small P value, small 

RMSE and R2 value close to 1.43 Frequently, P value (<0.001) and sig F.(<0.01) are used as a 

criterion for the significance of the regression model and Q2
LOO-cv/Ext > 0.5  and small root mean 

square errors of prediction (Table 3) are used as a criterion of both robustness and predictive ability 

of the model44 (see detailed explanation and analysis in the SI). Thus, the values in Tables 2,3 and the 

trend line of the training and validation sets (the red lines in Figure 3) that is close to the y = x line 

(the black solid line in Figure 3), demonstrate that the model is performing with high correlation and 

predictive ability. Additionally, the difference between the R2 and R2adj values, as well as between 

the R2 and Q2 values,  is less than 0.3, indicating that the number of descriptors involved in the model 

is acceptable and the model is not over-fitted.44  When analyzing the cross validated residuals for the 

training set and from the predictions for the validation set, we did not identify any significantly 

outlying results i.e. the residuals are not differing by more than 2.5 standard deviations from zero 

(Figure S2 in the SI). 

Table 2. Statistical results of the MLR for the three different enzymes.  

Eq. no 

(Enzyme) 
n R R2 R2 

adj 
STD F sig. F P-value RMSEC 

6 

(PCL) 

11 T 

5 V 
0.95 0.91 0.90 0.11 86.35 6x10-6 2x10-11 0.10 
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7 

(PFL) 

11 T 

5 V 
0.95 0.90 0.89 0.10 79.55 9x10-6 4x10-12 0.09 

8 

(CRL) 

10 T 

5 V 
0.96 0.93 0.91 0.11 45.15 1x10-6 1x10-6 0.09 

n -number of compounds; T -training set V- validation set ; R - coefficient of correlation; R2- 

coefficient of determination; R2 adj- adjusted coefficient of determination; STD - Standard 

Deviation; F -sequential Fischer test value; sig. F-significance F; P value- calculated probability; 

RMSEC-Root Mean Square Error of Calibration. 

 

 

Table 3. Statistical results for the internal and external validations. 

Eq. no 

(Enzyme) 
Q2 

LOO-CV 
RMSECV Q2

Ext RMSEP 

6 

(PCL) 
0.85 0.13 0.91 0.09 

7 

(PFL) 
0.85 0.12 0.87 0.10 

8 

(CRL) 
0.87 0.12 0.80 0.12 

Q2LOO-cv- cross-validated correlation coefficient; RMSECV-cross-validated root mean square error 

of prediction; Q2
Ext- externally validated determination coefficient; RMSEP - root mean square error 

of prediction. 
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Figure 3. Experimental vs. predicted ƐER values by LOO-CV MLR for the training set and external 

validation for the validation set.  The solid and dashed red lines are the trend lines of the training and 

validation sets with all three enzymes, respectively.  The black solid line is the y = x line.    

 

   There are three ways to describe enantiomeric enrichments by the Rayleigh dependence45, 46, 7 (eqs 

1,9,10). In a previous article7 we have demonstrated that all three forms are equivalent, connected by 

the relationship: 345 = 36 × 76 78 = 39 × 79 78⁄⁄   (k1, k2 and kc are the individual and overall 

first order rate coefficients, respectively). Thus we have performed the MLR on the data of Ɛ1 and Ɛ2, 

obtaining, as expected, the same dependence of the QSAR model as described for eqs 6-8 (eqs S16-

S21 in the SI). 

�� ���
���

= �< × ��	� =%<></���&%<></���&
?   (9)    

@A 45B
45C

= 39 × @A	D =%6>45C&%6>45B&
?    (10) 
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   According to PCL47,48 and CRL49 X-ray crystal structures, the binding site contains three main arms 

(Figure 4): (a) an esterase site (ES) with the catalytic triad Ser, His and Asp/Glu  that comprise the 

active site which attacks the ester carbonyl group of the substrate, operating the hydrolysis reaction; 

(b) an oxyanion hole (OA), Gly, Leu/Ala which stabilizes the tetrahedral intermediate. And (c) an 

acyl chain binding site (ACS), which binds the acyl chain of the substrate. In addition, there is the 

stereospecific packet (SSP),50 a hydrophobic zone that binds the more hydrophobic part of the 

remaining groups in the stereocenter,51 (in our case the methyl versus the hydrogen). In the accepted 

mechanism50, 52 for  esters hydrolysis, there is  a nucleophilic attack of the serine oxygen on the 

carbon of the ester once it binds to the active site. This attack forms a tetrahedral intermediate; 

hydrogen bonds from two amide N-H bonds stabilize the oxyanion in this intermediate. Breakdown 

of the tetrahedral intermediate releases the alcohol and forms an acyl enzyme intermediate .The 

selectivity of the lipase depends on the stability and reactivity of the tetrahedral intermediate, which 

depends on the binding of the substrate to the active site. However, the affinity of the acyl chain to 

the ACS determines the possible configuration for the bond of the methyl/hydrogen to the SSP, 

affecting the level of selectivity, namely the enantiomeric enrichment factor (εER). So in order to 

understand the relationship between εER and σ we have to refer to the acyl chain binding site.  The 

ACS is a hydrophobic zone48 which can be described as the groove with the following amino acids 

on its walls (the exact amino acid numbering is for PCL): Leu17, Leu167 and Leu164 on one side; 

Val266, Val267 and Phe119 on the other with Pro113 closing the groove.48,53 the common 

assumption is that the acyl chain bound via van der Waals’ hydrophobic interactions.  The  Pro113 at 

the end of the groove (Figure 4)  can participate  in electrostatic interactions,54 which can impact the 

enrichment factor,  thus being responsible for the observed strong electronic dependence.   
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Figure 4. Scheme of the possible position of an enantiomer of PPM in the active site of lipase from 

Pseudomonas cepacia. ACS- acyl binding site (green); ES- esterase site - the catalytic trade: Asp264, 

His286 and Ser87 (red); SSP-Stereo-specific packet (blue); OA- oxyanion hole (magenta). The 

catalytic and stabilizing bonds are marked in solid and dashed lines, respectively. The structure of the 

binding site is according to references 48, 50.  

Considering  the main forces operating in the active site, we suggest that the difference in the 

correlation between εER and σ is due to the different structure of the lipase binding site of the 

Pseudomonas lipases verses the Candida rugosa lipase. Pleiss et al.53 analyzed and compared the 

shape of the binding site of six lipases and subdivided them into three sub groups: (1) lipases with a 

crevice-like binding site (lipases from Rhizomucor and Rhizopus); (2) lipases with a funnel-like 

binding site (lipases from Candida antarctica, Pseudomonas and mammalian pancreas and cutinase); 

and (3) lipases with a tunnel-like binding site (lipase from Candida rugosa). Illustrating the shapes of 

the binding sites as Pleiss et al. in Figure 5A,B shows that the binding pocket of Pseudomonas 
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cepacia lipase (PCL) is an elliptical funnel (the length is 17 Å and the width at the base is 4.5 Å that 

increases  to 10.5 Å at the entrance to the binding site) and the catalytic active site lies in the base of 

the funnel. Although Pleiss et al. did not investigate the Pseudomonas fluorescens lipase, this 

illustration is likely suitable for PFL due to their significant structure similarity.47, 55 Figure 5C,D 

illustrates the binding pocket of Candida rugose lipase (CRL) as a tunnel with a wide entrance at the 

right hand side (the tunnel is at least 22 Å long with a diameter of about  4 Å) and the catalytic active 

site lies just behind the entrance to the tunnel. We hypothesize that in the "open" structure of the 

binding sites of PFL and PCL, the forces operating in the active site exclusively determine the 

selectivity (and activity) of the processes (σ). Whereas in the tunnel-like structure of the binding site 

of CRL, additional accessibility factors (e.g. hydrophobic and steric parameters) may affect the 

reaction’s selectivity.  

 

Figure 5. Shape of the binding site of PCL (A,B) and CRL(C,D)  in side view(A,C) and front view 

(B,D). The catalytic active site is marked by the serine (in red) and the PPM molecule binds to the 

serine inside the binding pocket. According to reference 53. 
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   The kinetics of chemical56,57 and enzymatic58,59 processes are frequently described by QSAR 

relationships. When preforming the linear Hansch model for the first order kinetic constants (Table 

S1 in the SI), significant models were obtained for the overall kinetic constants, kc, of PCL and PFL 

only when relying on π, Esk and σ (eqs S22,S23 in the SI). Whereas the individual enantiomer rate 

coefficients- k1 and k2 as well as all the kinetic constants of CRL did not correlate with these 

descriptors (eqs S24-S30 in the SI). The stronger correlation between the structural parameters and 

selectivity compared with the dependence of the rate on these parameters may derive from the fact 

that the selectivity coefficient (εER) is a ratio between the rate coefficients (eq 4); It has been shown 

that in some cases60,61 of statistical interpretation  a ratio between two parameters depends less on the 

individual characteristics than each of the parameters, because these effects cancel each other. The 

success of QSAR in describing enantiomeric enrichment compared to its ability to predict individual 

kinetics emphasizes the importance of using the Rayleigh equation for describing enantiomeric 

enrichments.  

   In conclusion, this study not only demonstrated for the first time the predictive power of QSAR and 

Hansch modeling for analysis of the structural dependence of the chiral enrichment factor, but also 

revealed that, at times, the QSAR fit of the enrichment factors are much more significant and better 

predictive tools than the QSAR fit of the underlying individual kinetic parameters. We have shown 

that chiral analysis using the Rayleigh equation and QSAR modeling uncover the latent binding site 

similarity between the two Pseudomonas lipases, as well as their difference from the Candida lipase 

which are  not readily observed based on QSAR analysis of the individual kinetic coefficients. This 

ability, to predict enantioselective- conversion dependencies by the Rayleigh equation, can present a 

powerful tracer tool in environmental studies 
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