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Insertion and C−−−−C Coupling Processes in Reactions of the Unsaturated 

Hydride [W2Cp2(H)(µµµµ-PCy2)(CO)2] with Alkynes.† 

M. Angeles Alvarez, M. Esther García, Daniel García-Vivó,* Miguel A. Ruiz* and M. 

Fernanda Vega 

 

Abstract 

The title compound reacted with p-tolylacetylene at room temperature to give the 32-

electron σ:π-bound alkenyl complexes trans-[W2Cp2{µ-κ:η2-C(p-tol)CH2}(µ-

PCy2)(CO)2] and trans-[W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-PCy2)(CO)2], with the former 

complex fully rearranging into the latter one after 1 h at 363 K. Both compounds exist 

in solution as an isomeric equilibrium mixture (rapid on the NMR timescale) involving 

the alternate π-coordination of the alkenyl ligand to each of the tungsten atoms. In the 

presence of CO or certain solvents (THF or CH2Cl2) the α-substituted alkenyl complex 

was transformed instead into the cis-dicarbonyl isomer cis-[W2Cp2{µ-κ:η2-C(p-

tol)CH2}(µ-PCy2)(CO)2] (W−W = 2.7273(8) Å). In contrast, the β-substituted alkenyl 

complex reacted with CO to give the saturated tricarbonyl [W2Cp2{µ-κ:η2-CHCH(p-

tol)}(µ-PCy2)(CO)3], and with excess alkyne (under moderate heating) to yield the 

alkyne/alkenyl complex [W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-PCy2){η2-CHC(p-tol)}(CO)], 

with both products also displaying a cisoid disposition of the Cp ligands. In contrast, 

reactions of the title hydride with tert-butylacetylene were significantly slower and led 

to very air-sensitive compounds, the only isolable product from these reactions being 

the oxo alkenyl complex trans-[W2Cp2{µ-κ:η2-CHCH(tBu)}(O)(µ-PCy2)(CO)]. The 

title hydride reacted with methyl propiolate at room temperature to give selectively the 

α-substituted alkenyl complex cis-[W2Cp2{µ-κ:η2-C(CO2Me)CH2}(µ-PCy2)(CO)2], but 

yielded instead the dienyl complex [W2Cp2{µ-κ2:η3-CH(CO2Me)CHC(CO2Me)CH}(µ-

PCy2)(CO)2] (W−W = 2.944(1) Å) when reaction was carried out at high temperature 

(393 K), with the latter following from an alkenyl/alkyne C−C coupling process. The 

title hydride also reacted with dimethyl acetylenedicarboxylate, to give three products 

mainly depending on the reaction temperature; at moderate temperature (343 K) this 

reaction led exclusively to the saturated alkenyl complex trans-[W2Cp2{µ-κC,κO:η2-

C(CO2Me)CH(CO2Me)}(µ-PCy2)(CO)2] (W−W = 2.9329(8) Å), in which the σ:π-

bound alkenyl ligand is additionally coordinated through the oxygen atom of the 

carboxylate group so as to render a O,C:C,C´ five-electron coordination mode. At 273 

K this reaction led instead to a mixture of the unsaturated alkenyl cis-[W2Cp2{µ-κ:η2-

C(CO2Me)=CH(CO2Me)}(µ-PCy2)(CO)2] and the dienyl complex [W2Cp2{µ-κC,κO:η2-
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C(CO2Me)=C(CO2Me)C(CO2Me)=CH(CO2Me)}(µ-PCy2)(CO)2] (W−W = 3.0273(6) 

Å). 

Introduction 

Recently we developed an efficient synthetic route to the unsaturated hydride 

[W2Cp2(H)(µ-PCy2)(CO)2] (1) (Chart 1),1 a new addition to the rather reduced family of 

organometallic complexes having 30-electron M2(µ-H)x cores.2 The electronic and 

coordinative unsaturation inherent to these species typically provides them with a high 

reactivity towards a wide variety of reagents under mild conditions, as exemplified by 

the extensive chemistry developed around the polyhydrides [M2Cp*2(µ-H)4] (M = Fe, 

Ru),3 and [M2(η
6-C6Me6)2(µ-H)3]

+ (M = Ru, Os),4 or that one carried out by our group 

for the dimolybdenum hydride [Mo2Cp2(µ-H)(µ-PCy2)(CO)2].
5 Remarkably, our work 

with the ditungsten hydride 1 has revealed that the change of metal (W instead of Mo) 

has significant effects on the structure and reactivity of these unsaturated molecules. To 

begin with, compound 1 exists in solution as an equilibrium mixture of two isomers: a 

major one retaining the bridging disposition of the hydride ligand, as found in its Mo2 

analogue (1B in Chart 1), and a minor isomer displaying a terminal coordination of the 

hydride and a semibridging carbonyl ligand (1T).1 

Chart 1 

Besides this, the chemical behaviour of 1 also departs greatly from that of the Mo2 

counterpart. For instance, its protonation yields new cationic dihydrides which remain 

stable to dehydrogenation in the absence of coordinating anions,1b this being in stark 

contrast with the intractable mixtures of products obtained for the Mo2 hydride. A 

similar stabilizing effect was observed in reactions of 1 with diazoalkanes, these leading 

to new isolable complexes with N-bound diazoalkanes,6 instead of the accelerated 

diazoalkane decomposition observed in analogous reactions of the Mo2 hydride.7 A 

further point of divergence in the chemistry of these unsaturated hydrides is the ability 

of the ditungsten 1 to incorporate two molecules (rather than one) of some reagents. 

This has been observed in reactions with some transition-metal complexes, which lead 

to tetranuclear clusters,8 rather than the trinuclear complexes formed in related reactions 

of the Mo2 hydride,9 and in reactions of 1 with some isocyanides, now leading to 

products following from C−N coupling of two molecules of reagent.10 In a preliminary 

study on the reactivity of 1 we noticed that double addition processes might also occur 

in reactions with an activated alkyne such as dimethyl acetylenedicarboxylate (DMAD), 
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this allowing the formation of a product having a 1,3-dienyl ligand via C−C coupling of 

two molecules of the alkyne.11 This sort of coupling processes is a relatively rare 

outcome in reactions of unsaturated hydride-bridged complexes with alkynes, these 

more typically yielding alkenyl derivatives,3,12-14 although some examples can be 

quoted. For instance, the osmium dihydride [Os3(µ-H)2(CO)10] has been shown to 

induce alkyne-alkyne couplings in its reactions with C2Ph2 or C2H2,
13,15 and the alkenyl-

bridged diiron anion [Fe2(µ-κ:η2-CRCHR’)(CO)6]
− undergoes comparable couplings in 

reactions with alkynes.16 All of this prompted us to study in more detail the reactions of 

1 with alkynes, in search for further coupling processes of alkyne ligands at the 

ditungsten site, which is the main purpose of the present paper. We have done so by 

analyzing in detail the reactions of compound 1 not only with the internal alkyne 

DMAD, but also with different terminal alkynes HC≡CR (R = tBu, p-tol, CO2Me). As 

shown below, reactions of 1 with alkyl- or aryl-substituted alkynes essentially resemble 

those of the Mo2 analogue, these mainly leading to formation of unsaturated alkenyl-

bridged derivatives (either α- or β-substituted). In contrast, reactions with the most 

activated alkynes (those bearing carboxylate groups) yielded novel products following 

from selective alkenyl/alkyne coupling, these being processes not observed for the 

dimolybdenum analogue of 1. 

Results and Discussion 

Reactions of Compound 1 with 1-Alkynes. The hydride 1 reacts slowly with 

HC≡C(p-tol) in toluene at room temperature to give, after 24 h, a mixture of the 32-

electron α- and β-substituted alkenyl complexes trans-[W2Cp2{µ-κ:η2-C(p-tol)CH2}(µ-

PCy2)(CO)2] (trans-2a) and trans-[W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-PCy2)(CO)2] 

(trans-3a) respectively, in a ratio of ca. 8/1 (Scheme 1). The latter ratio, however, was 

highly dependent on the particular experimental conditions. In fact, separate 

experiments proved that the α-substituted alkenyl complex trans-2a was fully trans-

formed into the β-substituted isomer trans-3a after 1 h at 363 K in toluene solution, a 

reaction also yielding small amounts of the oxo derivative trans-[W2Cp2{µ-κ:η2-

CHCH(p-tol)}(O)(µ-PCy2)(CO)] (4a) (Chart 2), due to a side-reaction of these sensitive 

complexes with trace amounts of air in the reaction medium. Expectedly, the evolution 

of trans-2a at room temperature is much slower, yet not only involves α→β 

isomerization at the alkenyl ligand but, alternatively, a trans to cis rearrangement of the 

carbonyl ligands so eventually, after seven days in toluene solution, a mixture of trans-

3a and the cis-dicarbonyl isomer cis-[W2Cp2{µ-κ:η2-C(p-tol)CH2}(µ-PCy2)(CO)2] (cis-

2a) is obtained. Fortunately, we found that the latter compound could be prepared more 

selectively in a variety of ways: (a) by reacting 1 with HC≡C(p-tol) in THF or CH2Cl2 

solution, (b) by placing toluene solutions of trans-2a under an atmosphere of carbon 
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monoxide (Scheme 1) and (c) even when, after removing the solvent from a crude 

reaction mixture containing trans-2a, the residue so generated (retaining the excess 

alkyne used) was stored at 253 K for a few days. In contrast, the β-substituted alkenyl 

trans-3a does not undergo comparable trans to cis isomerizations. Instead, it reacts 

rapidly with CO to give the new tricarbonyl derivative [W2Cp2{µ-κ:η2-CHCH(p-

tol)}(µ-PCy2)(CO)3] (5). On the other hand, in the presence of a large excess of alkyne 

and under slightly more forcing conditions (393 K), trans-3a undergoes carbonyl 

substitution by a second alkyne molecule to give the alkyne complex [W2Cp2{µ-κ:η2-

CHCH(p-tol)}(µ-PCy2){η2-CHC(p-tol)}(CO)] (6) (Scheme 1). In all, the above 

reactions are reminiscent of those observed for the Mo2 analogue of 1,12 except for the 

formation of the alkyne complex 6, this proving the ability of the ditungsten hydride to 

incorporate two molecules of alkyne at the dimetal site, a pre-requisite for induction of 

any C−C coupling processes between alkyne molecules. However, we note that such a 

coupling could not be induced on 6 even under more forcing conditions, although this 

takes place spontaneously when using more activated alkynes, as discussed later on. 

Scheme 1. Reactions of 1 with HC≡CR (R = p-tol) 

Compound 1 also reacts with a large excess of HC≡CtBu under moderate heating (313 

K), to give the corresponding β-substituted alkenyl complex trans-[W2Cp2{µ-κ:η2-

CHCH(tBu)}(µ-PCy2)(CO)2] (trans-3b) as the essentially unique product (Chart 2). 

Unfortunately, this product was quite air-sensitive, and all attempts to isolate it resulted 

in its progressive decomposition, with the corresponding oxo derivative trans-

[W2Cp2{µ-κ:η2-CHCH(tBu)}(O)(µ-PCy2)(CO)] (4b) being the only product that could 

be isolated from the reaction mixture. 
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Chart 2 

Reactions of 1 with a more activated alkyne such as methyl propiolate (HC≡CCO2Me) 

yielded two products, mainly depending on the stoichiometry used. When using a slight 

excess of alkyne, then the corresponding α-substituted alkenyl complex cis-[W2Cp2{µ-

κ:η2-C(CO2Me)CH2}(µ-PCy2)(CO)2] (cis-2c) was obtained in good yield (Scheme 2), 

irrespective of the temperature used which, however, modified the time for completion 

as expected (4 h at 298 K, 10 min at 393 K). A 31P NMR monitoring of the room 

temperature reaction allowed us to detect the formation of an intermediate species 

(characterized by a broad resonance at δP 87.8 ppm) tentatively identified as the 

corresponding trans-dicarbonyl isomer; however, this compound could not be isolated, 

as it evolved rapidly to the final product cis-2c. Indeed, the selective formation of cis-2c 

in this reaction was quite surprising, because the related dimolybdenum compound was 

found to exist in solution as a solvent-dependent equilibrium mixture of the 

corresponding cis and trans isomers.12 

Scheme 2. Reactions of 1 with HC≡CR (R = CO2Me) 

In contrast, reaction of 1 with a large excess of methyl propiolate at 393 K led instead 

to the incorporation of two alkyne molecules and C−C coupling, to give the dienyl 

complex [W2Cp2{µ-κ2:η3-CH(CO2Me)CHC(CO2Me)CH}(µ-PCy2)(CO)2] (7) (Scheme 

2). Although this molecule likely follows from an alkenyl/alkyne coupling, independent 

experiments proved that alkenyl cis-2c is not an intermediate in the formation of 7, 

because it does not react with further alkyne even under more energetic conditions. 

Therefore it must be concluded that a different alkenyl complex would be involved in 
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the formation of 7, a matter to be discussed later on. In any case, we must note that 

formation of 7 was an unexpected outcome of this reaction, after recalling that the Mo2 

analogue of 1 reacted with methyl propiolate to yield only β-substituted alkenyls and 

the alkenylphosphine complex [Mo2Cp2{µ-κ:η2-Cy2PCHCH(CO2Me)}(CO)2],
12 a type 

of product not observed in any of the reactions of 1 with methyl propiolate. 

Reactions of Compound 1 with DMAD. Compound 1 reacts rapidly with DMAD to 

yield three different products depending on experimental conditions (Scheme 3). When 

reaction is carried out at 343 K and using a slight excess of alkyne, then it is formed 

selectively the alkenyl derivative trans-[W2Cp2{µ-κC,κO:η2-C(CO2Me)CH(CO2Me)}(µ-

PCy2)(CO)2] (8), in which a carboxylate group attached to the Cβ atom of the alkenyl 

ligand is O-bound to one of the tungsten atoms. In contrast, if reaction is carried out at 

273 K and using a large excess of reagent, then a mixture of the alkenyl cis-[W2Cp2{µ-

κ:η2-C(CO2Me)=CH(CO2Me)}(µ-PCy2)(CO)2] (cis-2d) and the dienyl complex 

[W2Cp2{µ-κC,κO:η2-C(CO2Me)=C(CO2Me)C(CO2Me)=CH(CO2Me)}(µ-PCy2)(CO)2] 

(9) is obtained, with the latter following from a selective C−C alkenyl/alkyne coupling. 

A common intermediate to both products could be detected in this reaction, identified 

by a 31P NMR resonance at 87.8 ppm (1
JPW = 317, 240 Hz), which can be tentatively 

identified as a transoid alkenyl complex, a matter to be discussed later on. Again this 

reactivity departs significantly from that of the Mo2 analogue of 1, which reacted with 

DMAD to only give C,O:C,C´-bound alkenyl products comparable to compound 8.12 

Scheme 3. Reactions of 1 with RC≡CR (R = CO2Me) 

Solution Structure of trans-Dicarbonyl Complexes 2 and 3. Spectroscopic data for 

compounds trans-2 and trans-3 (Table 1 and Experimental Section) are comparable to 

those of the alkenyl complexes trans-[Mo2Cp2(µ-κ:η2-CRCHR´)(µ-PCy2)(CO)2] 

previously prepared by us from related reactions of the Mo2 analogue of 1,12 or from 

reactions of the anion [Mo2Cp2(µ-PCy2)(µ-CO)2]
− with different hydrocarbyl halides.17 

The structure of these dimolybdenum species has been already discussed at length, and 

only relevant details of the new ditungsten complexes will be discussed here. First we 
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note that the IR spectra of compounds trans-2a and trans-3a display three C−O 

stretching bands rather than the two bands expected for a dicarbonyl complex.18 This 

can be explained by assuming the presence in solution of two isomers (A and B in 

Scheme 4),12,17 rapidly interconverting on the NMR timescale, since the room 

temperature NMR data of these compounds are consistent with the presence of a single 

species in each case. 

Table 1. Selected Spectroscopic IRa and NMRb Data for New Compounds 

a Recorded in toluene solution, unless otherwise stated, ν in cm−1; bands in the range 2000−1800 cm−1 
correspond to the C−O stretches of the carbonyl ligands; those in the range 1700−1600 cm−1 to the C−O 
stretches of the CO2Me groups. b Recorded in CD2Cl2 at 400.13 (1H), 162.01 (31P) or 100.63 (13C) MHz 
and 295 K unless otherwise stated, with coupling constants (J) in Hz; only selected resonances for alkenyl 
ligands given (labelled as α or β). c Recorded in toluene-d8. 

d Recorded at 233 K. e The resonance of the 
minor isomer A appears at 76.8 ppm. f Recorded in CH2Cl2. 

g Recorded at 121.50 MHz. h Recorded in 
C6D6. 

i Recorded at 75.47 MHz. j Recorded at 300.09 MHz. k Recorded in petroleum ether. 

Scheme 4. Isomerization Equilibrium Proposed for Compounds trans-2 and trans-3 

Although the above process was very fast for the Mo2 complexes even at low 

temperature, this is not the case for trans-2a, which at low temperature yields separate 

31P and 1H NMR resonances for both isomers (see the Experimental Section), with the 

A/B ratio being somewhat dependent on temperature (ca. 1/10 at 253 K, 1/15 at 233 K, 

compound ν(CO) δP [
1JPW] 

δH [JHH]{2JHW} δC [2JCP] {
1JCW} 

Hα 

Hβ 
Cα 

Cβ 
trans-[W2Cp2{µ-κ:η2-C(p-tol)CH2}(µ-
PCy2)(CO)2] (trans-2a) 

1891 (vs), 1869 (m), 1784 (s) 81.8 [311, 242]c,d,e 
6.23 [2]c,d 
5.02 [2]c,d 

174.6c,d 
57.3c,d 

cis-[W2Cp2{µ-κ:η2-C(p-tol)CH2}(µ-PCy2)(CO)2] 
(cis-2a) 

1919 (vs), 1830 (w)f 102.9 [337, 265]g 
5.54 [2] {15} 
4.21[2] 

155.0 {114, 38}h,i 

39.4g,i 
cis-[W2Cp2{µ-κ:η2-C(CO2Me)CH2}(µ-
PCy2)(CO)2] (cis-2c) 

1931 (vs), 1851 (m), 1678 (w) 113.2 [345, 267]g,h 
5.77 [3] {16}h,j 
4.33 [3]h,j 

132.8h,i 
33.3h,i 

cis-[W2Cp2{µ-κ:η2-C(CO2Me)=CH(CO2Me)}(µ-
PCy2)(CO)2] (cis-2d) 

1940 (vs), 1851 (w), 1697 (m), 
1677 (w) 

113.3 [351, 255]h 5.22h 
154.1h 
33.5h 

trans-[W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-
PCy2)(CO)2] (trans-3a) 

1873 (vs), 1815 (m, sh), 1789 (s) 79.7 [314, 254]g 
10.13 [10]j 
6.02 [10]j 

144.7 {105, 21}i 
85.0i 

trans-[W2Cp2{µ-κ:η2-CHCH(tBu)}(µ-
PCy2)(CO)2] (trans-3b) 

1874 (vs), 1782 (s) 79.8 [317, 267]h 
9.43 [12]h 
6.28 [12]h 

135.8h,i 
83.0h,i 

[W2Cp2{µ-κ:η2-CHCH(p-tol)}(O)(µ-PCy2)(CO)] 
(4a) 

1837 (s)k 128.0 [330, 320]h 
8.47 [10] {6}h 
3.65 [10]h 

124.6h 
54.3h 

[W2Cp2{µ-κ:η2-CHCH(tBu)}(O)(µ-PCy2)(CO)] 
(4b) 

1839 (s)k 124.2 [333, 322]g,h 
7.85 [10]h,j 
2.22 [10]h,j 

 

[W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-PCy2)(CO)3] (5) 1933 (vs), 1862 (s), 1839 (s) 176.1 [374, 114]g 
8.30 [8]j 
2.33 [8]j 

113.6 [5] {44}i 
59.8i 

[W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-PCy2){η2-
CHC(p-tol)}(CO)] (6) 

1825 (s) 114.6 [297, 224]h 
7.65 [10]h 
4.32 [10]h 

131.8 {98, 41}h,i 
56.2h,i 

[W2Cp2{µ-κ2:η3-
CH(CO2Me)CHC(CO2Me)CH}(µ-PCy2)(CO)2] (7) 

1939 (m), 1928 (s), 1876 (vs), 
1856 (w), 1721 (w), 1690 (w)k 

55.1 [181, 177]h   

trans-[W2Cp2{µ-κC,κO:η2-
C(CO2Me)CH(CO2Me)}(µ-PCy2)(CO)2] (8) 

1885 (m), 1852 (vs), 1671 (w) 72.7 [213, 198]h 4.57 {5}h 
122.2 [16]h 
30.1 

[W2Cp2{µ-κC,κO:η2-
C(CO2Me)=C(CO2Me)C(CO2Me)=CH(CO2Me)}(
µ-PCy2)(CO)2] (9) 

1893 (m), 1837 (vs), 1698 (s)f 157.1 [224, 120]g   

W W
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in toluene-d8). In any case, the interconversion process would involve the exchange of 

coordination of the alkenyl Cβ atom between tungsten atoms, a common dynamic 

process (the windshield wiper movement) of alkenyl-bridged complexes, first studied 

by Shapley for the osmium cluster [Os3(µ-CHCH2)(µ-H)(CO)10].
19 We finally note that 

the 31P NMR spectra of these isomers display poorly deshielded resonances at ca. 80 

ppm, as usually found for related complexes having 32-electron counts, and display two 

different 31P−
183W couplings (of ca. 310 and 250 Hz), which is consistent with the 

presence of two tungsten atoms with coordination numbers somewhat different.20 

Figure 1. ORTEP diagram (30% probability) of compound 8 with H atoms (except H5) and Cy groups 
(except their C1 atoms) omitted for clarity. 

Table 2. Selected Bond Lengths (Å) and Angles (º) for Compound 8 

W1−W2 2.9329(8) W1−P1−W2 73.0(1) 

W1−P1 2.473(3) P1−W2−O3 136.4(2) 

W2−P1 2.456(3) O1−C1−W1 175(1) 

W1−C1 1.97(2) O2−C2−W2 173(1) 

W2−C2 1.98(2) C1−W1−W2 118.2(4) 

W2−O3 2.222(8) C2−W2−W1 78.8(4) 

C5−C4 1.44(2) O3−W2−P1 136.4(2) 

C5−C6 1.47(2) C5−C6−W1 74.0(8) 

O5−C7 1.23(2) W2−C6−W1 86.6(5) 

O3−C4 1.26(2) C4−C5−C6 111(1) 

W1−C5 2.22(1)   

W1−C6 2.11(1)   

W2−C6 2.17(1)   

Structural Characterization of Compound 8. The molecule of 8 in the crystal 

(Figure 1 and Table 2) is similar to that previously determined by us for the analogous 

Mo2 compound,12 both in turn displaying a C,O:C,C´ coordination of the alkenyl ligands 

closely related to those reported earlier for the related complexes trans-[Mo2Cp2{µ-

C(CO2Me)CH(CO2Me)}(µ-X)(CO)2] (X = PPh2, SiPr)21 and trans-[Mo2Cp2{µ-

CHCH(COPh)}(µ-PPh2)(CO)2].
22 Therefore a detailed discussion is not needed here. 

The molecule is built from two WCp(CO) fragments arranged in a quite distorted 

transoid disposition (C−W−W angles ca. 80 and 120o), and bridged by a PCy2 ligand 

and by a five-electron donor alkenyl which is π-bound to one of the metals through the 
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C=C bond, while σ-bound to the other trough Cα and the carboxylic O atom of the 

carboxylate group attached to Cβ, then forming an almost perfectly planar five-member 

WC3O central ring. The intermetallic distance of 2.9329(8) Å is comparable to that of 

the analogous Mo2 complex [2.9278(8) Å] and consistent with the formulation of a 

metal−metal single bond for this 34-electron complex, and the W−C lengths are 

indicative of strong σ [W−Cα = 2.17(1) Å] and π [W−Cα = 2.11(1) Å; W−Cβ = 2.22(2) 

Å] interactions of the bridging alkenyl ligand. Notably, the W−O separation in 8 is ca. 

0.04 Å shorter than the corresponding length in the related Mo2 complex, indicating a 

somewhat stronger binding of the carboxylate group in the ditungsten complex. 

Spectroscopic data available for 8 are essentially consistent with its solid-state 

structure. For instance, the IR spectrum displays two C−O stretching bands with the 

expected pattern for distorted transoid M2(CO)2 oscillators.18 However, the 31P NMR 

resonance of 8 appears at a chemical shift (72.7 ppm) unexpectedly low for a PCy2 

bridge in a 34-electron complex, actually being quite close to the shifts of ca. 80 ppm 

observed for the 32-electron complexes trans-2 and trans-3. Yet, retention of the O-

bound carboxylate in solution is supported by the observation of two similar and 

relatively weak P−W couplings (213 and 198 Hz), with values significantly lower than 

those measured in the alkenyls trans-2 and trans-3, as expected by considering the 

increased coordination number of the metals in complex 8. Although we currently do 

not have a satisfactory explanation for this low chemical shift, we note that a similar 

effect has been also observed for related 34-electron complexes with 5-electron-donor 

bridging ligands, such as the formimidoyl complexes [W2Cp2(µ-C,N:C,N-HCNR)(µ-

PCy2)(CO)2] (δP ca. 60 ppm).10 Other spectroscopic data are as expected and deserve no 

additional comments. 

Structural Characterization of cis-Dicarbonyl Complexes 2. The molecule of cis-

2a in the crystal (Figure 2 and Table 3) is made up from two WCp(CO) fragments 

arranged in a cisoid disposition and bridged by a PCy2 ligand and a σ:π-bound alkenyl. 

The short intermetallic separation of 2.7273(8) Å is fully consistent with the 

metal−metal double bond to be formulated for this 32-electron complex according to the 

effective atomic number (EAN) formalism, and is significantly shorter than the 

corresponding length in the 34-electron complex 8, while comparable to that measured 

in the isoelectronic alkenyl [Mo2Cp2{µ-κ:η2-C(Me)CHMe}(µ-SPh)(CO)2], even if the 

latter displays a transoid arrangement of the carbonyl ligands.23 The parameters 

involving the alkenyl group indicate strong σ-binding [W−Cα = 2.10(2) Å] and π-

coordination [W−Cα = 2.24(2) Å; W−Cβ = 2.33(2) Å] of this ligand, while this intrinsic 

asymmetry is balanced by the phosphide ligand, ca. 0.04 Å closer to the tungsten atom 

σ-bound to the alkenyl. We finally note that the carbonyl ligands are parallel to each 

other, but deviates some 10o form the normal of the intermetallic vector to better 
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accommodate the asymmetric bridging alkenyl ligand (C−W−W angles ca. 80 and 

100o). 

Figure 2. ORTEP diagram (30% probability) of compound cis-2a with H atoms (except H3a and H3b) 
and p-tol and Cy groups (except their C1 atoms) omitted for clarity. 

Table 3. Selected Bond Lengths (Å) and Angles (º) for Compound cis-2a 

W1−W2 2.728(1) W1−C1−O1 175(2) 

W1−P 2.425(5) W2−C2−O2 172(2) 

W2−P 2.382(5) W1−P−W2 69.1(1) 

W1−C3 2.33(2) W1−C4−W2 77.8(6) 

W1−C4 2.24(2) W1−C3−C4 68(1) 

W2−C4 2.10(2) W2−C4−C3 121(1) 

W1−C1 1.97(2) C1−W1−C4 109.9(7) 

W2−C2 1.94(2) W1−W2−C2 82.1(5) 

C3−C4 1.46(2) W2−W1−C1 100.5(5) 

Spectroscopic data for compounds cis-2a-d are similar to each other, indicating that 

they all share the same structural features, which in turn are consistent with the solid-

state structure just discussed. Thus, the IR spectra of these compounds display two C−O 

stretches with relative intensities (strong and weak, in order of decreasing frequencies) 

indicative of the presence of cisoid W2(CO)2 oscillators having carbonyls almost 

parallel to each other.18 The 31P NMR resonances of these compounds appear around 

130 ppm, figures which are ca. 30 ppm above those of the corresponding trans isomers, 

a recurrent trend found when comparing pairs of related cis and trans isomers, such as 

the Mo2 alkenyls [Mo2Cp2{µ-κ:η2-CRCH2}(µ-PCy2)(CO)2] (∆δ ca. 30 ppm),12 and the 

bis(phosphide) complexes [Mo2Cp2(µ-PR2)(µ-PR’2)(CO)2] (∆δ ca. 45 ppm).24 The 1H 

and 13C NMR spectra of all these complexes (see the Experimental Section) are as 

expected after considering the lack of any symmetry element in the corresponding 

molecules, except for the strong deshielding displayed by one of the carbonyl 

resonances in each case (δC ca. 245-250 ppm). This might be taken as an indication that, 

in solution, the carbonyl leaning towards the intermetallic bond might define a more 

acute angle than found in the crystal, so as to acquire an incipient semibridging 

character. 

Solution Structure of Oxo Complexes 4. Compounds 4 are formally derived from 

replacement of a carbonyl ligand with a terminal oxygen atom in the corresponding 
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dicarbonyl precursors. Indeed, the IR spectra of these compounds display just one C−O 

stretching band in each case, while the presence of a terminal oxo ligand was firmly 

supported by the appearance in the corresponding solid-state spectrum of a 

characteristic W−O stretch around 915 cm−1. The high frequency of the C−O stretches 

in these compounds, ca. 1840 cm-1, is indicative of a cisoid disposition of the terminal 

CO and oxo ligands, after recalling that trans isomers in this sort of oxocomplexes 

usually display significantly less energetic bands, as observed for example in the pairs 

of cis- and trans isomers of complexes [Mo2Cp2(µ-PCy2)(µ-CPh)(O)(CO)] (1915/1895 

cm-1),25 or [Mo2Cp2(µ-PPh2)2(O)(CO)] (1859/1826 cm-1).26 The 31P NMR resonances of 

these compounds appear around 130 ppm, retaining two sets of relatively high 183W 

couplings. In general, replacement of CO by an oxo group in this type of complexes 

causes a strong deshielding of the corresponding 31P nuclei, this possibly being a 

consequence of the presence of lone pairs at the O atom which can make this ligand to 

behave as a multielectron donor, then reducing the intermetallic interaction accordingly 

(see canonical forms I and II in Chart 3).25 This is nicely exemplified by the pairs of 

compounds [W2Cp2(µ-PPh2)2L(CO)] (δP 34.7/102.2 ppm for L = CO/O),24,27 and 

[Mo2Cp2(µ-PPh2)(µ-CH2PPh2)L(CO)] (δP 92.1/201.6 ppm for L = CO/O).28,29 The 

corresponding deshielding in the case of compounds 4a,b is more modest (ca. 40 ppm), 

then suggesting that the W−O interaction in these compounds might not be as strong as 

is in the above examples. Apart from this, the 1H and 13C NMR data are compatible 

with the lack of symmetry and with the σ:π-coordination of a β-substituted alkenyl in 

each case. We note that up to four different isomers might be compatible with the above 

conditionings, these involving different orientations of the alkenyl group with respect to 

the cisoid WCpL (L = CO/O) fragments. In the absence of additional structural data we 

have assumed for compounds 4 an alkenyl arrangement comparable to that found in the 

crystal structure of cis-2a, while keeping the π-interaction with the metal atom bearing 

the CO ligand (Charts 2 and 3), this likely rendering a more balanced electron 

distribution at the dimetal centre. 

Chart 3 

Solution Structure of the Tricarbonyl Complex 5. Spectroscopic data for 

compound 5 (Table 1 and Experimental Section) are indicative of a strong relationship 

with the related dimolybdenum complexes [Mo2Cp2(µ-κ:η2-CHCHR)(µ-PCy2)(CO)3] 

(R = H,17 p-tol)12 and [Mo2Cp2{µ-κ:η2-CRCHR’}(µ-PPh2)(CO)3] (R, R’ = H, Me, Et),30 
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therefore, a similar geometry is assumed for all these compounds (Scheme 1). This 

implies a cisoid disposition of the Cp ligands with respect to the central W2P plane, with 

the alkenyl group displaying π-coordination with the monocarbonyl metal fragment in 

order to balance the different number of CO ligands, as corroborated by X-ray 

crystallography.17,30 This is particularly indicated by the identical pattern of the three 

C−O stretches appearing in the IR spectrum of all these compounds. As expected for a 

34-electron complex, the 31P resonance of 5 appears at a high chemical shift (δP 176.1 

ppm), ca. 73 ppm downfield of the 32-electron dicarbonyl complex cis-2a while, quite 

unexpectedly, it displays two sets of very different couplings to the183W nuclei (374, 

114 Hz). Such a strong difference does not have an obvious explanation if we keep in 

mind that the two metal centres might be considered to have the same coordination 

numbers, unless the π-interaction of the alkenyl ligand approaches the cyclopropane 

extreme. In line with this suspicion, we note that the Cβ-bound H atom appears 

unusually shielded (δH 2.22 ppm), a situation also found for the ethenyl complexes 

[Mo2Cp2{µ-κ:η2-CHCH2)}(µ-PR2)(CO)3] (R = Cy,17 Ph),30 a circumstance that seems 

to be related to a strong π-interaction of the alkenyl group with the monocarbonyl 

fragment in these tricarbonyl complexes. 

Solution Structure of the Alkyne Complex 6. Spectroscopic data for 6 (Table 1 and 

Experimental Section) are consistent with this product following from replacement of a 

CO ligand with a second p-tolylacetylene molecule in the dicarbonyl complex trans-3a. 

Indeed compound 6 displays just one C−O stretch in its IR spectrum, and a single 

resonance (δC 220 ppm) in the carbonyl region of the 13C NMR spectrum. Moreover, the 
1H and 13C NMR spectra clearly indicates that two molecules of alkyne have been 

incorporated into 6, displaying two sets of independent resonances which can be 

identified as derived from the presence of alkenyl and alkyne ligands, respectively. The 

latter is coordinated to one of the metal centres in a η2-fashion, as indicated by the 

appearance of two 13C resonances at 184.4 and 170.0 ppm, well within the range 

typically observed for terminally-bound alkynes (δC 250-150 ppm), as it is the case of 

complexes [W(η2-PhC≡CR)3(CO)] (R = H, Ph),31 and [WCp(PMe3)(η
2-RC≡COR’)] (R 

= Me, p-tol; R’ = Me, Et).32 As a result, this complex might be formulated as a 32-

electron compound (therefore, with an intermetallic double bond, according to the EAN 

formalism), which seems consistent with its relatively low 31P chemical shift (δP 114.6 

ppm), comparable to those of the 32-electron dicarbonyls cis-2; based on this similarity, 

it is likely that the terminal ligands are also arranged in a cisoid disposition. Yet, as 

noted for the oxo complexes 4, four different isomers are possible depending on the 

relative arrangement of the alkenyl ligand with respect to the terminal ligands in 6. 

However, based in the structure of cis-2a, it seems reasonable to assume that the alkenyl 

in 6 displays π-coordination to the monocarbonyl fragment of the molecule, because 
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this involves lower steric repulsions with the relatively bulky (vs. CO) terminal alkyne 

(Scheme 1). 

Structural Characterization of Compound 7. The asymmetric unit in the crystal of 

7 displays two independent, but otherwise comparable molecules, so only the metric 

parameters of one will be discussed here (Figure 3 and Table 4). The molecule is built 

from two WCp(CO) fragments arranged in a transoid disposition and bridged by PCy2 

and by a dienyl ligand resulting from coupling of alkenyl and alkyne ligands. The dienyl 

ligand acts as a five-electron donor, being σ-bound to the W2 atom through the terminal 

atoms of the chain [W2−C6 = 2.28(1) Å; W2−C3 = 2.14(1) Å], and π-bound to the 

second W atom in a η3-fashion [W1−C lengths 2.21(1)-2.34(1) Å] otherwise similar to 

that found in a number of tungsten complexes with η3-coordinated allyl ligands.33 This 

renders 7 as an electron-precise 34-electron compound for which a metal-metal single 

bond should be formulated, which is consistent with the relatively large intermetallic 

separation of 2.944(1) Å, a figure almost identical to that measured for the isoelectronic 

compound 8. As found in the latter compound, the carbonyl ligands display a significant 

deviation from the ideal antiparallel disposition, with one of them leaning towards the 

intermetallic bond [W1−W2−C2 = 82.5(3)º] while the other one points away from the 

dimetal centre [W1−W2−C2 = 116.4(3)º]. 

Figure 3. ORTEP diagram (30% probability) of one of the independent molecules of compound 7, with H 
atoms (except H3, H5 and H6) and Cy groups (except their C1 atoms) omitted for clarity. 
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Table 4. Selected Bond Lengths (Å) and Angles (º) for Compound 7. 

W1−W2 2.9440(9) W2−W1−C1 116.6(3) 

W1−P 2.477(3) W1−W2−C2 82.5(3) 

W2−P 2.427(3) W1−P−W2 73.77(7) 

W1−C1 1.96(1) W1−C1−O1 177.8(9) 

W2−C2 1.96(1) W2−C2−O2 173.3(9) 

W1−C3 2.21(1) W2−C6−C5 103.1(7) 

W2−C3 2.14(1) W1−C5−C6 108.9(7) 

W1−C5 2.34(1) C3−C4−C5 108.8(9) 

W1−C4 2.26(1) C5−C6−C9 113.7(9) 

W2−C6 2.28(1) P−W1−C3 73.7(3) 

C6−C5 1.47(1) P−W2−C3 75.9(3) 

C5−C4 1.41(1) P−W2−C6 125.9(3) 

C4−C3 1.44(1)   

Spectroscopic data in solution for compound 7 (Table 1 and Experimental Section) are 

essentially consistent with the solid-state structure just discussed. However, we note that 

its IR spectrum, when recorded in petroleum ether solution, displays four instead of the 

expected two C−O stretches (excluding those corresponding to the CO2Me groups), 

which points to the coexistence of two similar dicarbonyl molecules in solution, 

possibly two conformers. In spite of this, all NMR data available for 7 (31P, 1H and 13C) 

are indicative of the presence of a single species in solution, thus indicating that these 

conformers interconvert rapidly on the NMR timescale. For instance, the 31P NMR 

spectrum of 7 displays just one resonance with two well defined sets of 183W satellites. 

The small magnitude of the P−W couplings (181 and 177 Hz) is consistent with the 

relatively high coordination number of the tungsten atoms in this complex (compared to 

the alkenyl complexes 2 and 3), but the corresponding chemical shift (δP 55.1 ppm) falls 

within the range observed for 32-electron complexes of the type [W2Cp2(µ-X)(µ-

PCy2)(CO)2] (δP 98-40 ppm when X = I,1 PEt2).
34 Yet, as noted above for compound 8, 

a similar trend has been also observed for related 34-electron complexes with 5 

electron-donor bridging ligands, such as the formimidoyl complexes [W2Cp2(µ-

C,N:C,N-HCNR)(µ-PCy2)(CO)2] (δP ca. 60 ppm).10 Therefore it seems clear that the 31P 

chemical shift is not a reliable indicator of the number of electrons provided by the 

polydentate hydrocarbyl ligands in these complexes. Other spectroscopic data for 7 are 

as expected and deserve no particular remarks. 

Structural Characterization of Compound 9. The solid-state structure of 9 (Figure 

4) was briefly discussed in a preliminary communication,11 therefore a detailed analysis 

is not pertinent here. The most relevant aspect of the structure is the presence of a 

bridging dienyl ligand derived from an alkenyl/alkyne coupling comparable to that 

found in 7, but displaying a coordination mode very different from that found in the 

latter compound. The C4 chain now is σ-bound to one of the tungsten atoms through the 

alkenyl carbon [W1−C3 = 2.17(1) Å] while an oxygen atom of a pendant carboxylate 

group (O7) is also bound to the same metal centre. The ligand interacts with the second 
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metal atom via π-bonding of the second C=C bond of the dienyl ligand (W−C lengths 

ca. 2.25 Å). In spite of this different coordination mode, the dienyl ligand in 9 still acts 

as a 5-electron donor, as it was the case in 7, then leading to the electronic saturation of 

the dimetal centre, in agreement with the relatively large intermetallic separation of 

3.0273(6) Å. 

Figure 4. ORTEP diagram (30% probability) of compound 9 with H atoms (except H12) and Cy 
groups (except their C1 atoms) omitted for clarity. Selected bond lengths (Å) and angles (deg) (taken from 
ref. 11): W1−W2 = 3.0273(6), W1−P1 = 2.433(3), W1−C1 = 1.99(1), W1−C3 = 2.17(1), W1−O7 = 
2.24(1), W2−P1 = 2.475(3), W2−C2 = 1.94(1), W2−C9 = 2.24(1), W2−C12 = 2.26(1), C3−C6 = 1.35(1), 
C6−C9 = 1.49(1), C9−C12 = 1.44(1), C9−C10 = 1.46(1), C10−O7 = 1.24(1); W2−W1−C1 = 73.2(3), 
W1−W2−C2 = 118.4(3). 

Spectroscopic data in solution for compound 9 are fully consistent with its solid-state 

data. Thus, the carbonyl region of the IR spectrum displays two C−O stretching bands 

with relative intensities indicative of the presence of a quite distorted transoid M2(CO)2 

oscillator, in agreement with the strong deviation of the carbonyl ligands in the solid 

state from an ideal antiparallel disposition (W−W−C angles ca. 73 and 118o, 

C−W−W−C ca. 117o). The 31P resonance of 9 appears ca. 85 ppm above that of 7, with 

a chemical shift comparable to that of the isoelectronic tricarbonyl 5, and the P−W 

couplings are significantly different from each other (224, 120 Hz), as expected for two 

tungsten atoms having different coordination numbers. Finally, the dienyl group gives 

rise to four 13C resonances, with those corresponding to the alkenyl-like atoms [W−C=C 

(232.8 ppm) and W−C=C (163.8 ppm)] being similar to those observed in the terminal 

alkenyl complexes [W(O){C(tBu)=CH2}(OAr)3] (213.4 and 114.0 ppm; Ar = 2,6-

C6H3
iPr2),

35 [WCl{C(Ph)=CPhH}(NSitBu3)] (192.6 and 139.8 ppm),36 and those of the 

π-bound C=CH(CO2Me) group remaining close to the resonances observed in the 

related cis-2d. 
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Scheme 5 

Pathways in Reactions of 1 with Alkynes. Reactions of 1 with HC≡C(p-tol) lead 

mainly to the formation of complexes bearing either α- or β-substituted alkenyl ligands 

(trans-2a and trans-3a), depending on temperature and time. Since formation of trans-

2a is favoured at room temperature, while trans-3a is mainly obtained from the former 

at higher temperatures, or after prolonged reaction times at room temperature, it is then 

clear that the α-substituted alkenyl complex is the kinetic product, while the β-

substituted one is the thermodynamic one. Hence the exclusive formation of the β-

substituted derivative trans-3b in reactions of 1 with HC≡CtBu, given the high 

temperatures required to induce addition of this less reactive alkyne. The α→β 

rearrangement formally requires a [2,1]-hydrogen shift (Scheme 5), a process also 

observed in the Mo2 analogues of these complexes,12 but otherwise rarely observed for 

alkenyl-bridged complexes under mild conditions. For instance, related rearrangements 

have been induced at elevated temperatures (ca. 393 K) on the dinuclear complexes 

[Fe2{µ-C(Ph)CH2}(µ-PPh2)(CO)6],
37 and [Ir2Cp*2{µ-C(R)CH2}(µ-dppm)]+2.38 It seems 

reasonable to assume that, in our case, the comparatively easy α→β isomerization can 

be attributed to the unsaturated nature of compounds 2, this providing the required 
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empty orbitals and coordination vacancy for activation of an alkenyl C−H bond, as 

required to accomplish isomerization via an hydride intermediate, as first proposed for 

the mentioned diiron complex.37 

Carbonylation of the 32-electron alkenyl trans-3a yields the corresponding saturated 

tricarbonyl 5, the latter displaying a cisoid disposition of the carbonyl (and Cp) ligands 

with respect to the central W2P plane. Initial coordination of a CO molecule to trans-3a 

likely would lead to the formation of a (unobserved) transoid tricarbonyl intermediate 

(trans-E in Scheme 5), which would evolve rapidly through a 180º rotation of the metal 

fragments around the W−W bond so as to render the final cisoid isomer 5. In contrast, 

carbonylation of the α-substituted alkenyl trans-2a does not lead to a stable tricarbonyl 

derivative but to the cis-dicarbonyl cis-2a. This is itself not surprising by considering 

that related binuclear tricarbonyl complexes of the group 6 metals are rare species 

which typically evolve by releasing CO to give more stable dicarbonyl compounds.24 In 

any case, the formation of cis-2a would follow a pathway similar to that leading to 5, 

this involving initial carbonylation to give an undetected tricarbonyl species retaining 

the transoid disposition of the metal fragments (trans-D in Scheme 5), which then 

would evolve rapidly to the corresponding cis isomer (cis-D), which in turn would 

release CO spontaneously. A similar set of reactions would also explain the formation 

of the alkyne complex 6 from trans-3a at high temperature (Scheme 6) via a dicarbonyl 

alkyne intermediate (trans-F) undergoing trans to cis rearrangement (to give 

intermediate cis-F) and then spontaneous decarbonylation. We finally note that a related 

sequence justifies the rare formation of cis-2a when just removing the solvent from a 

solution of trans-2a in the presence of excess alkyne and storing of the oily residue at 

low temperature for several days, this only requiring the formation of α-substituted 

analogues of intermediates F eventually undergoing release of the alkyne ligand instead 

of decarbonylation. 

Scheme 6 
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One of the main differences found in reactions of 1 with HC≡C(CO2Me), when 

compared to those of the aryl- and alkyl-substituted acetylenes, is that no β-substituted 

alkenyls have been obtained or detected under any experimental conditions. Even at 

high temperature (393 K) the reaction leads rapidly (10 min) and selectively to the α-

substituted alkenyl cis-2c if stoichiometric amounts of alkyne are used. Monitoring of 

the room temperature reaction allowed us to detect an intermediate species likely 

corresponding to the transoid alkenyl trans-2c (Scheme 7), as noted above. The 

presence of pendant carboxylate groups in the alkenyl ligand of this intermediate would 

be critical to facilitate a trans to cis isomerization in the absence of added ligands (i.e. 

CO or excess alkyne). Thus, O-coordination of the carboxylate would generate an 

undetected intermediate (trans-G) in which trans to cis isomerization would readily 

take place, as found for the isoelectronic tricarbonyls D and E mentioned above. This 

would be followed by de-coordination of the carboxylate group to finally render cis-2c. 

The fast formation of this product would prevail over any competitive α→β 

isomerization, since cis dicarbonyl isomers do not seem to undergo such rearrangement, 

as proven for the p-tol compound cis-2a. Finally, we must note that a similar 

mechanism would explain the formation of the alkenyl cis-2d in the low temperature 

reaction of 1 with C2(CO2Me). Yet, we note that, in the presence of excess methyl 

propiolate, α→β isomerization must occur necessarily at some stage, after considering 

the structure of the dienyl complex 7, next discussed. 

Scheme 7 
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The formation of dienyl complexes 7 and 9 can be rationalized as following from 

coupling of an alkenyl ligand (formed after insertion of the first alkyne molecule into 

the W−H bond of 1, as discussed above) with a second alkyne molecule. As noted 

above, independent experiments proved that in both cases the cis-dicarbonyl alkenyls 

cis-2c,d are not intermediates in the formation of the observed dienyl complexes. In 

fact, in both reactions we detected spectroscopically the formation of intermediates 

likely corresponding to trans-dicarbonyl alkenyls. In the DMAD reaction, such an 

intermediate would be the trans isomer of cis-2d (trans-2d in Scheme 8). Coordination 

of a second molecule of alkyne to this alkenyl intermediate would give an alkenyl-

alkyne intermediate J which, instead of releasing CO as proposed for the p-tol analogue 

(F in Scheme 6), would undergo a reductive C−C coupling to generate the dienyl ligand. 

In a way, this coupling could be related to the thiolate-alkyne-alkyne couplings 

observed in reactions of the cation [Mo2Cp2(µ-SMe)3(NCMe)2]
+ with alkynes.39 In any 

case, the coupling proposed would yield initially a 32 electron intermediate K which 

then would rearrange by coordinating one of its carboxylate groups in order to render 

the 34-electron complex 9 eventually isolated. In the methyl propiolate reaction (R = H 

in Scheme 8), intermediate K must be formed specifically via a head-to-tail coupling, as 

judged from the alternate distribution of carboxylate groups in the final product. 

However, since trans-2c seems to be a α-substituted alkenyl complex, as noted above, 

then intermediate K would have a CH2 group, not present in the final product. Then, a 

H-shift must be proposed to occur at this unsaturated intermediate, perhaps analogous to 

the α→β isomerization discussed for complexes trans-2a,b (i.e. via an hydride 

intermediate), which now would result in an overall [1,4]-H shift to yield a similar 

intermediate K’ which would attain electronic saturation upon rearrangement into the 

κ2:η3 coordination mode, to yield the dienyl complex 7 eventually isolated. 
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Scheme 8 

Conclusions 

In reactions with p-tolylacetylene, the unsaturated hydride [W2Cp2(H)(µ-PCy2)(CO)2] 

(1) behaves essentially in a way comparable to that of its dimolybdenum analogue. 

Thus, the main products obtained are unsaturated alkenyls of formulae trans-[W2Cp2{µ-

κ:η2-C(R)CHR’}(µ-PCy2)(CO)2], with the α-substituted alkenyl complex rearranging 

thermally into the β-substituted one, while its reaction with CO instead promotes a trans 

to cis isomerization via a cisoid tricarbonyl intermediate [W2Cp2{µ-κ:η2-

C(R)CHR’}(µ-PCy2)(CO)3] which, however, turned out to be a stable species when 

starting from the β-substituted alkenyl (R = H, R’ = p-tol). Reaction of 1 with excess 

alkyne under more forcing conditions gives the alkenyl/alkyne complex [W2Cp2{µ-

κ:η2-CHCH(p-tol)}(µ-PCy2){η2-CHC(p-tol)}(CO)], a product never observed in 

reactions of the analogous Mo2 hydride with alkynes, thus illustrating the ability of the 

ditungsten hydride to incorporate two alkyne molecules, a pre-requisite for any 

subsequent C−C coupling reactions. A more substantial effect of the metal (W instead 

of Mo) was observed for reactions with alkynes bearing electron-withdrawing 

carboxylate substituents, particularly exemplified by the ability of the ditungsten 

hydride to form products following from alkenyl/alkyne coupling which were never 

observed in related reactions of the analogous Mo2 hydride. Thus, reactions of 1 with 

HC≡CCO2Me give either a α-substituted alkenyl of cisoid geometry, following from a 

complete trans to cis isomerization facilitated by coordination of the O-atom of the 
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carboxylate group at a transient stage, or the dienyl complex [W2Cp2{µ-κ2:η3-

CH(CO2Me)CHC(CO2Me)CH}(µ-PCy2)(CO)2], generated from an alkenyl/alkyne 

coupling also involving a H-shift comparable to the α→β isomerization observed in the 

alkenyl complexes. Reactions of 1 with dimethyl acetylenedicarboxylate also generates 

complexes bearing alkenyl ligands or dienyl ligands, but in most cases their 

coordination differ from those observed in the methyl propiolate derivatives because of 

the permanent binding of the oxygen atom of a carboxylate group to a tungsten atom so 

as to render electron-precise (34-electron) rather than unsaturated (32-electron) 

complexes. 

Experimental Section 

General Procedures and Starting Materials. All manipulations and reactions were 

carried out under a nitrogen (99.995%) atmosphere using standard Schlenk techniques. 

Solvents were purified according to literature procedures, and distilled prior to use.40 

Compound [W2Cp2(H)(µ-PCy2)(CO)2] (1) was prepared as described previously,1 and 

all other reagents were obtained from the usual commercial suppliers and used as 

received, unless otherwise stated. Petroleum ether refers to that fraction distilling in the 

range 338-343 K. Filtrations were carried out through diatomaceous earth unless 

otherwise stated. Chromatographic separations were carried out using jacketed columns 

refrigerated by tap water (ca. 288 K) or by a closed 2-propanol circuit kept at the 

desired temperature with a cryostat. Commercial aluminium oxide (activity I, 70-290 

mesh) was degassed under vacuum prior to use. The latter was mixed afterward under 

nitrogen with the appropriate amount of water to reach the activity desired (activity IV, 

unless otherwise stated). IR stretching frequencies of CO ligands were measured in 

solution (using CaF2 windows), or in Nujol mulls (using NaCl windows), and are 

referred to as ν(CO)(solvent) and ν(CO)(Nujol), respectively. Nuclear magnetic 

resonance (NMR) spectra were routinely recorded at 400.13 (1H), 162.00 (31P{1H}) or 

100.63 MHz (13C{1H}), at 295 K in CD2Cl2 solution unless otherwise stated. Chemical 

shifts (δ) are given in ppm, relative to internal tetramethylsilane (1H, 13C) or external 

85% aqueous H3PO4 (
31P). Coupling constants (J) are given in Hertz. 

Reaction of 1 with HC2(p-tol). A solution of compound 1 (0.040 g, 0.053 mmol) and 

HC2(p-tol) (20 µL, 0.158 mmol) in toluene (4 mL) was stirred in a Schlenk flask 

equipped with a Young’s valve for 24 h, to give a brown-greenish solution containing 

compound trans-[W2Cp2{µ-κ:η2-C(p-tol)CH2}(µ-PCy2)(CO)2] (trans-2a) as major 

product, along with small amounts of trans-[W2Cp2{µ-κ:η2-CHCH(p-tol)}(µ-

PCy2)(CO)2] (trans-3a). All attempts to isolate pure samples of compound trans-2a 

from these mixtures led to its complete transformation into trans-3a. Spectroscopic data 

for trans-2a: 31P{1H} NMR (toluene-d8): δ 80.6 (br). 31P{1H} NMR (toluene-d8, 273 
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K): δ 81.7 (s, br, 1
JPW = 278, isomer B), 77.3 (br, isomer A). 31P{1H} NMR (toluene-d8, 

253 K): δ 81.7 (s, 1
JPW = 311, 242, isomer B), 77.0 (s, br, 1

JPW = 261, isomer A). 
31P{1H} NMR (toluene-d8, 233 K): δ 81.8 (s, 1

JPW = 311, 242, isomer B), 76.8 (br, 

isomer A). 1H NMR (toluene-d8): δ 7.29, 6.73 (2d, 3
JHH = 8, 2 x 2H, C6H4), 6.10 (s, br, 

1H, CH2), 5.02 (s, br, 5H, Cp), 4.89 (s, br, 1H, CH2), 4.78 (s, br, 5H, Cp), 1.96 (s, 3H, 

Me), 2.40-1.10 (m, 22H, Cy). 1H NMR (toluene-d8, 273 K): δ 7.30, 6.70 (2d, 3JHH = 8, 2 

x 2H, C6H4), 6.18 (s, br, 1H, CH2), 5.13 (s, vbr, 5H, Cp), 4.90 (s, vbr, 6H, Cp and CH2), 

1.92 (s, 3H, Me), 2.40-1.00 (m, 22H, Cy). 1H NMR (toluene-d8, 253 K): Isomer B: 

δ 7.30, 6.65 (2d, 3
JHH = 8, 2 x 2H, C6H4), 6.22 (s, br, 1H, CH2), 5.14, 4.88 (2s, 2 x 5H, 

Cp), 5.02 (s, br, 1H, CH2), 1.89 (s, 3H, Me), 2.45-1.00 (m, 22H, Cy). Isomer A: δ 5.89 

(s, br, 1H, CH2), 4.65, 4.23 (2s, br, 2 x 5H, Cp). Ratio B/A = 10. 1H NMR (toluene-d8, 

233 K): Isomer B: δ 7.31, 6.60 (2d, 3JHH = 8, 2 x 2H, C6H4), 6.23 (t, 2JHH = 3JHP = 2, 1H, 

CH2), 5.14, 4.83 (2s, 2 x 5H, Cp), 5.02 (d, 3
JHH = 2, 1H, CH2), 1.85 (s, 3H, Me), 2.45-

1.00 (m, 22H, Cy). Isomer A: δ 5.89 (s, br, 1H, CH2), 4.62, 4.20 (2s, br, 2 x 5H, Cp). 

Ratio B/A = 15. 13C{1H} NMR (toluene-d8, 233 K, Isomer B): δ 235.6, 231.0 (2d, 2
JCP 

= 4, WCO), 174.6 (s, Cα), 156.7 [s, C1(p-tol)], 135.0 [s, C4(p-tol)], 128.5, 128.3 [2s, 

C2,3(p-tol)], 89.4, 87.5 (2s, Cp), 57.3 (s, Cβ), 51.7 [d, 1
JCP = 31, C1(Cy)], 39.5 [d, 1

JCP = 

25, C1(Cy)], 34.6, 34.4, 33.6, 31.2 [4s, C2(Cy)], 28.0 [m, C3(Cy)], 26.6, 26.3 [2s, 

C4(Cy)], 21.2 (s, Me). 

Preparation of cis-[W2Cp2{µµµµ-κκκκ:ηηηη2
-C(p-tol)CH2}(µµµµ-PCy2)(CO)2] (cis-2a). A freshly 

prepared solution of compound trans-2a (ca. 0.027 mmol) in toluene (4 mL) was stirred 

under an atmosphere of CO (1 atm) for 1 h to yield an orange solution. Solvent was then 

removed under vacuum, the residue was extracted with dichloromethane/petroleum 

ether (1/2) and the extracts were chromatographed through alumina at 263 K. A yellow-

greenish fraction was eluted using the same solvent mixture which gave, upon removal 

of solvents, compound cis-2a as an air-sensitive orange solid (0.017 g, 74%). The 

crystals used in the X-ray study were grown by the slow diffusion of a layer of 

petroleum ether into a concentrated toluene solution of the complex at 253 K. Anal. 

Calcd for C33H41O2PW2: C, 45.65; H, 4.76. Found: C, 45.50; H, 4.73. ν(CO) (petroleum 

ether): 1936 (vs), 1857 (w). 1H NMR: δ 6.83 (m, br, 2H, C6H4), 5.54 (dd, 2
JHH = 1.5, 

3
JHP = 2.5, 2

JHW = 15, 1H, CH2), 5.23 (m, br, 2H, C6H4), 5.18, 4.55 (2s, 2 x 5H, Cp), 

4.21 (d, 2JHH = 1.5, 1H, CH2), 2.19 (s, 3H, Me), 2.70-1.00 (m, 22H, Cy). 1H NMR (193 

K): δ 7.54 (dd, 4JHH = 2, 3
JHH = 8, 1H, C6H4), 7.05 (dd, 4

JHH = 1.5, 3
JHH = 8, 1H, C6H4), 

6.67 (dd, 4
JHH = 1.5, 3

JHH = 8, 1H, C6H4), 5.57 (s, br, 1H, CH2), 5.25 (s, 5H, Cp), 5.23 

(dd, 4JHH = 2, 3JHH = 8, 1H, C6H4), 4.56 (s, 5H, Cp), 4.07 (s, 1H, CH2), 2.21 (s, 3H, Me), 

2.80-1.00 (m, 22H, Cy). 13C{1H} NMR (C6D6, 75.47 MHz): δ 247.7 (d, 2JCP = 2, 1JCW = 

214, WCO), 227.5 (d, 2JCP = 2, 1JCW = 189, WCO), 161.4 [s, C1(p-tol)], 155.0 (s, 1JCW = 

114, 38, Cα), 133.2 [s, C4(p-tol)], 127.9 [s, br, C2,3(p-tol)], 87.2, 83.8 (2s, Cp), 53.0 [d, 
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1
JCP = 31, C1(Cy)], 43.7 [d, 1

JCP = 20, C1(Cy)], 39.4 (s, Cβ), 34.6 [s, C2(Cy)], 34.2 [s, 

2C2(Cy)], 33.8 [s, C2(Cy)], 28.6, 28.3 [2d, 3JCP = 13, C3(Cy)], 28.1, 28.0 [2d, 3
JCP = 12, 

C3(Cy)], 27.0 [s, 2C4(Cy)], 20.9 (s, Me). 13C{1H} NMR (193 K): δ 250.5, 230.0 (2s, 

WCO), 160.3 [s, C1(p-tol)], 155.1 (s, Cα), 133.5 [s, C4(p-tol)], 133.2, 128.0, 127.7, 

122.6 [4s, C2,3(p-tol)], 87.2, 84.2 (2s, Cp), 53.2 [s, br, C1(Cy)], 42.2 [d, 1
JCP = 21, 

C1(Cy)], 39.0 (s, Cβ), 33.9 [s, C2(Cy)], 33.8 [s, 2C2(Cy)], 32.9, [s, C2(Cy)], 28.3 [d, 3JCP 

= 12, C3(Cy)], 28.1 [d, 3
JCP = 11, 2C3(Cy)], 28.0 [d, 3

JCP = 12, C3(Cy)], 26.7 [s, 

2C4(Cy)], 21.1 (s, Me). 

Preparation of trans-[W2Cp2{µµµµ-κκκκ:ηηηη2
-CHCH(p-tol)}(µµµµ-PCy2)(CO)2] (trans-3a). A 

solution of compound 1 (0.040 g, 0.053 mmol) and HC2(p-tol) (16 µL, 0.126 mmol) in 

toluene (5 mL) was heated at 363 K for 1 h to give an orange-brown solution containing 

compound trans-3a as major product, along with small amounts of [W2Cp2{µ-κ:η2-

CHCH(p-tol)}(O)(µ-PCy2)(CO)] (4a). The solvent was then removed under vacuum, 

the residue was extracted with dichloromethane/petroleum ether (1/4) and the extracts 

were chromatographed through alumina at 253 K. An orange-brown fraction was eluted 

using the same solvent mixture which gave, after removal of solvents, compound trans-

3a as an air-sensitive orange-brown solid (0.039 g, 85%). Elution with neat 

dichloromethane gave an orange fraction yielding analogously compound 4a as an 

orange solid (0.006 g, 14%). Data for trans-3a: Anal. Calcd for C33H41O2PW2: C, 

45.65; H, 4.76. Found: C, 45.40 H, 4.55. ν(CO) (petroleum ether): 1884 (vs), 1831 (w), 

1803 (s). 1H NMR (300.09 MHz): δ 10.13 (dd, 3JHH = 10, 3JHP = 1, 1H, CαH), 7.15, 7.03 

(2d, 3
JHH = 8, 2 x 2H, C6H4), 6.02 (d, 3

JHH = 10, 1H, CβH), 5.50, 5.04 (2s, 2 x 5H, Cp), 

2.36 (s, 3H, Me), 2.50-1.00 (m, 22H, Cy). 13C{1H} NMR (75.47 MHz): δ 236.4 (d, 2JCP 

= 4, 1
JCW = 218, WCO), 227.5 (d, 2

JCP = 5, 1
JCW = 188, WCO), 144.9 [s, C1(p-tol)], 

144.7 (s, 1
JCW = 105, 21, Cα), 135.6 [s, C4(p-tol)], 129.3, 127.0 [2s, C2,3(p-tol)], 88.7, 

88.4 (2s, Cp), 85.0 (s, Cβ), 49.6 [d, 1JCP = 28, C1(Cy)], 44.7 [d, 1JCP = 24, C1(Cy)], 34.5, 

34.2 [2d, 2JCP = 3, C2(Cy)], 34.0, 32.3 [2s, C2(Cy)], 28.5 [d, 3JCP = 13, C3(Cy)], 28.2 [d, 
3
JCP = 13, 2C3(Cy)], 28.1 [d, 3

JCP = 10, C3(Cy)], 26.6, 26.5 [2s, C4(Cy)], 21.1 (s, Me). 

Data for 4a: Anal. Calcd for C32H41O2PW2: C, 44.89; H, 4.83. Found: C, 44.56; H, 

4.50. IR (Nujol): 1807 [vs, ν(CO)], 913 [m, ν(WO)]. 1H NMR (C6D6): δ 8.47 (d, 3JHH = 

10, 2
JHW = 6, 1H, CαH), 7.31, 7.05 (2d, 3

JHH = 8, 2 x 2H, C6H4), 5.23 (s, 5H, Cp), 4.67 

(d, 3
JHP = 1, 5H, Cp), 3.65 (d, 3

JHH = 10, 1H, CβH), 2.19 (s, 3H, Me), 2.80-1.00 (m, 

22H, Cy). 13C{1H} NMR (C6D6): δ 230.3 (d, 2JCP = 5, WCO), 147.3 [s, C1(p-tol)], 133.6 

[s, C4(p-tol)], 129.4, 125.9 [2s, C2,3(p-tol)], 124.6 (s, Cα), 99.1, 87.1 (2s, Cp), 55.7 [d, 
1
JCP = 16, C1(Cy)], 54.3 (s, Cβ), 48.2 [d, 1

JCP = 25, C1(Cy)], 37.1 [d, 2
JCP = 4, C2(Cy)], 

36.5 [s, C2(Cy)], 34.8 [d, 2JCP = 5, C2(Cy)], 34.7 [s, C2(Cy)], 28.9 [d, 3JCP = 14, C3(Cy)], 

28.8, 28.5 [2d, 3
JCP = 11, C3(Cy)], 28.2 [d, 3

JCP = 10, C3(Cy)], 27.0, 26.8 [2s, C4(Cy)], 

21.1 (s, Me). 
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Preparation of [W2Cp2{µµµµ-κκκκ:ηηηη2
-CHCH(p-tol)}(µµµµ-PCy2)(CO)3] (5). A solution of 

compound trans-3a (0.020 g, 0.023 mmol) in toluene (4 mL) was stirred under an 

atmosphere of CO (1 atm) for 2 h to give an orange solution. Solvent was then removed 

under vacuum, the residue was extracted with dichloromethane/petroleum ether (1/1) 

and the extracts were chromatographed through alumina at 253 K. An orange fraction 

was eluted using the same solvent mixture, which gave, upon removal of solvents, 

compound 5 as an orange solid (0.016 g, 80%). Anal. Calcd for C34H41O3PW2: C, 

45.56; H, 4.61. Found: C, 45.22; H, 4.52. 1H NMR (300.09 MHz): δ 8.30 (dd, 3
JHH = 8, 

3
JHP = 5, 1H, CαH), 7.00 (m, 4H, C6H4), 5.33, 5.20 (2s, 2 x 5H, Cp), 2.33 (dd, 3

JHH = 8, 
3
JHP = 1, 1H, CβH), 2.27 (s, 3H, Me), 2.80-1.00 (m, 22H, Cy). 13C{1H} NMR (75.47 

MHz): δ 232.2 (d, 2JCP = 21, WCO), 231.3 (d, 2JCP = 13, WCO), 227.4 (s, WCO), 147.5 

[s, C1(p-tol)], 134.7 [s, C4(p-tol)], 128.8, 124.9 [2s, C2,3(p-tol)], 113.6 (d, 2
JCP = 5, 1

JCW 

= 44, Cα), 92.0, 91.1 (2s, Cp), 61.0 [d, 1
JCP = 20, C1(Cy)], 59.8 (s, Cβ), 43.3 [d, 1

JCP = 

23, C1(Cy)], 37.3 [s, C2(Cy)], 34.5 [d, 2
JCP = 3, C2(Cy)], 32.8 [s, C2(Cy)], 29.4 [s, 

C2(Cy)], 29.3 [d, 3
JCP = 11, C3(Cy)], 28.8 [d, 3

JCP = 9, C3(Cy)], 28.5 [d, 3
JCP = 12, 

C3(Cy)], 27.6 [d, 3JCP = 14, C3(Cy)], 27.0, 26.7 [2s, C4(Cy)], 21.0 (s, Me). 

Preparation of [W2Cp2{µµµµ-κκκκ:ηηηη2
-CHCH(p-tol)}(µµµµ-PCy2){ηηηη2

-CHC(p-tol)}(CO)] (6). 

A solution of compound 1 (0.030 g, 0.039 mmol) and HC2(p-tol) (250 µL, 1.971 mmol) 

in toluene (5 mL) was refluxed for 2.5 h to give a maroon solution. Solvent was then 

removed under vacuum, the residue was extracted with dichloromethane/petroleum 

ether (1/3) and the extracts were chromatographed through alumina at 253 K. Elution 

with the same solvent mixture gave a violet fraction yielding, after removal of solvents, 

compound 6 as a violet solid (0.029 g, 78%). Anal. Calcd for C41H49OPW2: C, 51.48; H, 

5.16. Found: C, 51.05; H, 4.92. 1H NMR (C6D6): δ 10.13 (d, 3
JHP = 10, 1H, CH), 8.34 

(d, 3JHH = 8, 2H, C6H4), 7.65 (d, 3
JHH = 10, 1H, µ-CH), 7.37, 7.23, 7.05 (3d, 3JHH = 8, 3 

x 2H, C6H4), 4.66, 4.28 (2s, 2 x 5H, Cp), 4.32 [d, 3
JHH = 10, 1H, CH(p-tol)], 3.30-1.10 

(m, 22H, Cy), 2.18, 2.15 (2s, 2 x 3H, Me). 13C{1H} NMR (C6D6, 75.50 MHz): δ 235.8 

(d, 2
JCP = 6, WCO), 188.4 [s, 1

JCW = 35, C(p-tol)], 170.0 (d, 2
JCP = 12, 1

JCW = 44, CH), 

148.8 [s, C1(p-tol)], 139.3 [s, C4(p-tol)], 134.0 [s, C1(p-tol)], 133.3 [s, C2(p-tol)], 133.2 

[s, C4(p-tol)], 131.8 (s, 1
JCW = 98, 41, µ-CH), 130.4, 129.3, 125.8 [3s, C2,3(p-tol)], 90.9, 

86.5 (2s, Cp), 56.2 [s, CH(p-tol)], 53.4, 50.1 [2d, 1
JCP = 20, C1(Cy)], 38.0 [d, 2

JCP = 8, 

C2(Cy)], 37.9 [s, C2(Cy)], 36.5 [d, 2
JCP = 5, C2(Cy)], 34.9 [d, 2

JCP = 3, C2(Cy)], 29.8, 

29.1 [2d, 3
JCP = 11, C3(Cy)], 29.0 [d, 3

JCP = 12, C3(Cy)], 28.8 [d, 3
JCP = 10, C3(Cy)], 

27.5, 27.4 [2s, C4(Cy)], 21.6, 21.1 (2s, Me). 

Preparation of trans-[W2Cp2{µµµµ-κκκκ:ηηηη2
-CHCH(

t
Bu)}(µµµµ-PCy2)(CO)2] (trans-3b). A 

solution of compound 1 (0.020 g, 0.027 mmol) and HC2(
tBu) (100 µL, 0.812 mmol) in 

toluene (4 mL) was stirred in a Schlenk flask equipped with a Young’s valve for 24 h at 

313 K to give a brown-greenish solution containing compound trans-3b as the 
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essentially unique product. Unfortunately, all attempts to isolate pure samples of this 

compound from these solutions led to its progressive transformation into [W2Cp2{µ-

κ:η2-CHCH(tBu)}(O)(µ-PCy2)(CO)] (4b). The latter could be isolated in variable 

amounts after chromatographic workup as described for 4a. Data for trans-3b: 1H NMR 

(C6D6): δ 9.43 (dd, 3JHH = 12, 3JHP = 1, 1H, CαH), 6.28 (d, 3JHH = 12, 1H, CβH), 5.18 (s, 

br, 10H, Cp), 1.31 (s, 9H, tBu), 2.50-0.50 (m, 22H, Cy). 13C{1H} NMR (C6D6): δ 239.2, 

234.2 (2s, WCO), 135.8 (s, Cα), 87.8, 85.6 (2s, Cp), 83.0 (s, Cβ), 51.3 [d, 1
JCP = 31, 

C1(Cy)], 43.7 [d, 1
JCP = 34, C1(Cy)], 39.5 [s, C1(tBu)], 34.8, 34.3, 33.7, 32.1 [4s, 

C2(Cy)], 31.8 [s, C2(tBu)], 28.4 [m, 4C3(Cy)], 26.6, 26.4 [2s, C4(Cy)]. Data for 4b: 

Anal. Calcd for C29H43O2PW2: C, 42.36; H, 5.27. Found: C, 41.97; H, 4.90. IR (Nujol): 

1824 [vs, ν(CO)], 924 [m, ν(WO)]. 1H NMR (C6D6, 300.09 MHz): δ 7.85 (d, 3JHH = 10, 

1H, CαH), 5.21 (s, 5H, Cp), 4.95 (d, 3
JHP = 1, 5H, Cp), 2.83 (m, 2H, Cy), 2.54 (m, 1H, 

Cy), 2.30 (m, 1H, Cy), 2.22 (d, 3
JHH = 10, 1H, CβH), 2.00-1.40 (m, 18H, Cy), 1.27 (s, 

9H, tBu). 

Preparation of cis-[W2Cp2{µµµµ-κκκκ:ηηηη2
-C(CO2Me)CH2}(µµµµ-PCy2)(CO)2] (cis-2c). A 

solution of compound 1 (0.020 g, 0.027 mmol) and HC2(CO2Me) (15 µL, 0.167 mmol) 

in toluene (4 mL) was stirred at room temperature for 4 h to give a brown yellowish 

solution. Solvent was then removed under vacuum, the residue was extracted with 

dichloromethane/petroleum ether (1/1), and the extracts were chromatographed through 

alumina. Elution with the same solvent mixture gave a yellow-greenish fraction 

yielding, upon removal of solvents, compound cis-2c as a brown solid (0.014 g, 64%). 

Anal. Calcd for C28H37O4PW2: C, 40.21; H, 4.46. Found: C, 39.80; H, 4.40. ν(CO) 

(petroleum ether): 1940 (vs), 1863 (m), 1678 (w). 1H NMR (C6D6, 300.09 MHz): δ 5.77 

(dd, 2
JHH = 3, 3

JHP = 1, 2
JHW = 16, 1H, CH2), 5.27 (s, 5H, Cp), 4.37 (d, 3

JHP = 0.6, 5H, 

Cp), 4.33 (s, br, 1H, CH2), 3.13 (s, 3H, OMe), 2.40-0.20 (m, 22H, Cy). 13C{1H} NMR 

(C6D6, 75.47 MHz): δ 246.7 (d, 2
JCP = 3, WCO), 225.9 (d, 2

JCP = 2, WCO), 183.0 (s, 

CO2Me), 132.8 (s, Cα), 87.3, 84.4 (2s, Cp), 51.5 [d, 1
JCP = 31, C1(Cy)], 49.9 (s, OMe), 

43.4 [d, 1
JCP = 31, C1(Cy)], 37.0, 34.5, 33.6, 33.3 [4s, C2(Cy)], 33.3 (s, Cβ), 28.4, 28.3 

[2d, 3
JCP = 13, C3(Cy)], 28.2 [d, 3

JCP = 10, C3(Cy)], 27.8 [d, 3
JCP = 13, C3(Cy)], 27.0, 

26.9 [2s, C4(Cy)]. 

Preparation of [W2Cp2{µµµµ-κκκκ2
::::ηηηη3333-CH(CO2Me)CHC(CO2Me)CH}(µµµµ-PCy2)(CO)2] 

(7). A solution of compound 1 (0.040 g, 0.054 mmol) and HC2(CO2Me) (500 µL, 5.620 

mmol) in toluene (5 mL) was refluxed for 2 h to give an orange solution. Solvent was 

then removed under vacuum, the residue was extracted with dichloromethane, and the 

extracts were chromatographed through alumina. Elution with the same solvent gave an 

orange fraction yielding, upon removal of solvent, compound 7 as an orange solid 

(0.018 g, 35%). The crystals used in the X-ray study were grown by the slow diffusion 

of a layer of petroleum ether into a concentrated dichloromethane solution of the 
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complex at room temperature. Anal. Calcd for C32H41O6PW2: C, 41.76; H, 4.49. Found: 

C, 41.32; H, 4.42. 1H NMR (C6D6): δ 6.45 (dd, 3
JHP = 14, 4

JHH = 4, 1H, H4), 5.20 (d, 
3
JHP = 1, 5H, Cp), 5.02 (ddd, 4JHH = 4, 3JHP = 2, 3JHH = 1, 1H, H2), 4.78 (d, 3JHP = 1, 5H, 

Cp), 4.76 (dd, 3
JHP = 3, 3

JHH = 1, 1H, H1), 3.66, 3.57 (2s, 2 x 3H, OMe), 2.30-0.90 (m, 

22H, Cy). 13C{1H} NMR (C6D6, 75.47 MHz): δ 240.3, 215.2 (2d, 2
JCP = 6, WCO), 

184.9, 172.8 (2s, CO2Me), 104.0 (d, 2JCP = 21, C4), 89.6, 86.2 (2s, Cp), 79.1 (d, 2JCP = 7, 

C3), 77.1 (s, C2), 51.1, 49.9 (2s, OMe), 49.5 [d, 1
JCP = 18, C1(Cy)], 44.6 [d, 1

JCP = 7, 

C1(Cy)], 36.9 [d, 2
JCP = 2, C2(Cy)], 35.6 [d, 2

JCP = 6, C2(Cy)], 35.5 [s, 2C2(Cy)], 29.1 

[d, 3
JCP = 12, C3(Cy)], 28.8 [d, 3

JCP = 10, C3(Cy)], 28.4 [d, 3
JCP = 10, 2C3(Cy)], 26.9, 

26.6 [2s, C4(Cy)], 21.4 (s, 1JCW = 43, C1). Numbering scheme of the hydrocarbyl ligand 

according to the figure shown below. 

Preparation of trans-[W2Cp2{µµµµ-κκκκC,κκκκO:ηηηη2
-C(CO2Me)CH(CO2Me)}(µµµµ-PCy2)(CO)2] 

(8). A solution of compound 1 (0.020 g, 0.027 mmol) and DMAD (16 µL, 0.130 mmol) 

in toluene (4 mL) was heated at 243 K for 15 min to give an orange solution. Solvent 

was then removed under vacuum, the residue was extracted with 

dichloromethane/petroleum ether (3/1), and the extracts were chromatographed through 

alumina. Elution with the same solvent mixture gave an orange fraction yielding, upon 

removal of solvents, compound 8 as an orange solid (0.021 g, 89%). The crystals used 

in the X-ray study were grown by the slow diffusion of a layer of petroleum ether into a 

concentrated toluene solution of the complex at room temperature. Anal. Calcd for 

C30H39O6PW2: C, 40.29; H, 4.40. Found: C, 40.36; H, 4.48. 1H NMR (C6D6): δ 5.22 (d, 
3
JHP = 1, 5H, Cp), 4.83 (s, 5H, Cp), 4.57 (s, 2

JHW = 5, 1H, CH), 3.76, 2.96 (2s, 2 x 3H, 

OMe), 2.80-1.00 (m, 22H, Cy). 13C{1H} NMR (C6D6): δ 255.7 (d, 2JCP = 5, 1JCW = 156, 

WCO), 232.9 (d, 2
JCP = 6, 1

JCW = 186, WCO), 198.1 (s, CO2Me), 184.4 (d, 3
JCP = 2, 

CO2Me), 122.2 (d, 2
JCP = 16, Cα), 89.2, 87.6 (2s, Cp), 53.1 (s, OMe), 52.5 [d, 1JCP = 19, 

C1(Cy)], 50.9 (s, OMe), 47.1 [d, 1
JCP = 9, C1(Cy)], 37.5 [d, 2

JCP = 5, C2(Cy)], 35.7 [d, 
2
JCP = 3, C2(Cy)], 35.2 [d, 2

JCP = 4, C2(Cy)], 34.8 [d, 2
JCP = 5, C2(Cy)], 30.1 (s, Cβ), 

29.6 [d, 3
JCP = 11, C3(Cy)], 29.0, 28.6 [2d, 3

JCP = 10, C3(Cy)], 28.3 [d, 3
JCP = 11, 

C3(Cy)], 27.4, 26.8 [2s, C4(Cy)]. 

Reaction of 1 with DMAD at 273 K. Neat DMAD (20 µL, 0.160 mmol) was added 

to a solution of compound 1 (0.040 g, 0.053 mmol) in toluene (4 mL) at 273 K, and the 

mixture was stirred at that temperature for 3 h to give a green solution. The solvent was 

then removed under vacuum, the residue was extracted with dichloromethane and the 

extract was chromatographed through an alumina column at 253 K. Elution with the 

same solvent gave two green fractions yielding respectively, after removal of solvent, 

W W

1C

4C

H

R
H

2C

3C

H

R
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compounds cis-[W2Cp2{µ-κ:η2-C(CO2Me)=CH(CO2Me)}(µ-PCy2)(CO)2] (cis-2d), 

(0.025 g, 53%), and [W2Cp2{µ-κC,κO:η2-

C(CO2Me)=C(CO2Me)C(CO2Me)=CH(CO2Me)}(µ-PCy2)(CO)2] (9) (0.021 g, 38%), 

both as green powders. Data for compound cis-2d: Anal. Calcd for C30H39O6PW2: C, 

40.29; H, 4.40; Found: C, 40.03; H, 4.22. 1H NMR (C6D6): δ 5.22 (s, 1H, CH), 5.16 (s, 

5H, Cp), 4.77 (d, 3
JHP = 1, 5H, Cp), 3.60, 3.59 (2s, OMe), 2.33-2.80 (m, 22H, Cy). 

13C{1H} NMR (C6D6): δ 244.4, 222.6 (2s, WCO), 184.6, 176.8 (2s, CO2Me), 154.1 (s, 

Cα), 88.2, 87.0 (2s, Cp), 51.8 [d, 1
JCP = 31, C1(Cy)], 51.4, 50.8 (2s, OMe), 44.1 [d, 1

JCP 

= 19, C1(Cy)], 35.0, 34.3, 33.5, 33.3 [4s, C2(Cy)], 33.5 (s, CβH), 28.4 [d, 3
JCP = 12, 

C3(Cy)], 28.3 [d, 3
JCP = 9, C3(Cy)], 28.1, 27.8 [2d, 3

JCP = 13, C3(Cy)], 26.9, 26.8 [2s, 

C4(Cy)]. Data for compound 9: Anal. Calcd for C36H45O10PW2: C, 41.72; H, 4.38. 

Found: C, 41.49; H, 4.25. 1H NMR (300.13 MHz): δ 5.61, 5.24 (2s, 2 x 5H, Cp), 3.79, 

3.65, 3.56, 3.55 (4s, 4 x 3H, OMe), 3.11 (s, 2JHW = 5, 1H, CH), 2.80-0.50 (m, 22H, Cy). 
13C{1H} NMR: δ 234.2 (d, 2JCP = 3, WCO), 233.3 (s, WCO), 232.8 (s, W−C=C), 186.6, 

185.8, 178.5, 176.4 (4s, CO2Me), 163.8 (s, W−C=C), 131.6 (s, C=CHCO2Me), 98.6, 

91.8 (2s, Cp), 55.5 (s, OMe), 55.0 [d, 1
JCP = 23, C1(Cy)], 51.8, 51.2, 50.5 (3s, OMe), 

46.2 [d, 1
JCP = 16, C1(Cy)], 36.0 [s, C2(Cy)], 34.0, 33.5 [2d, 2

JCP = 3, C2(Cy)], 32.3 [d, 
2
JCP = 5, C2(Cy)], 29.5 [d, 3

JCP = 13, C3(Cy)], 28.8 [d, 3
JCP = 9, C3(Cy)], 28.6 [d, 3

JCP = 

12, C3(Cy)], 28.4 [d, 3
JCP = 11, C3(Cy)], 27.0, 26.8 [2s, C4(Cy)], 23.3 (s, 1

JCW = 28, 

C=CHCO2Me). 

X-Ray Crystal Structure Determination of Compound cis-2a. X-ray intensity data 

were collected on a Smart-CCD-1000 Bruker diffractometer using graphite-

monochromated Mo Kα radiation at 110 K. Cell dimensions and orientation matrixes 

were initially determined from least-squares refinements on reflections measured in 3 

sets of 30 exposures collected in 3 different ω regions and eventually refined against all 

reflections. Twinning was found to occur in the crystal. The experimental data were 

treated as two domain twinned data, the second domain being rotated from first domain 

by 1.1 degrees about reciprocal axis 1.000, 0.824, −0.999 and real axis 1.000, 0.177, 

−0.342. The program Cell Now41 was used to determine the twin law, the cell 

dimensions and orientation matrixes, and a multi-scan absorption correction was applied 

with TWINABS.42 Using the program suite WINGX,43 the structure was solved by 

direct methods using SIR92,44 and refined with full-matrix least squares on F2 using 

SHELXL2014.45All the positional parameters and the anisotropic temperature factors 

for all non-H atoms were refined anisotropically, and all hydrogen atoms were 

geometrically placed and refined using a riding model. After convergence the strongest 

residual peaks (3.35-2.32 eÅ−3) were placed around the tungsten atoms (Table 5). 

X-Ray Crystal Structure Determination of Compounds 7 and 8. X-ray intensity 

data for these compounds were collected on a Kappa-Appex-II Bruker diffractometer 
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using graphite-monochromated MoKα radiation at 100 K. The software APEX46 was 

used for collecting frames with ω/φ scans measurement method. The SAINT software 

was used for data reduction,47 and a multi-scan absorption correction was applied with 

SADABS.48 The structures were solved and refined as described for 2a. The 

asymmetric unit in compound 7 contains two independent molecules of the complex 

and one water molecule. Due to poor quality of the diffraction data (twinning was 

present in the crystal, but the twin law could not be determined) not all the positional 

parameters and anisotropic temperature factors could be freely refined for non-H atoms. 

Some atoms were refined anisotropically in combination with the instructions DELU 

and SIMU, and a significant number of atoms had to be refined isotropically to prevent 

their temperature factors from becoming non-positive definite. In addition, a disorder on 

C(10B) could not be conveniently modelled and was left unsolved. Moreover, the H 

atoms of the water molecule could not be found in the Fourier map and other residual 

electronic density was present around its O atom; therefore, the SQUEEZE procedure,49 

as implemented in PLATON,50 was used. Upon squeeze application and convergence, 

the strongest residual peaks (5.5-5.0 eÅ−3) were placed ca. 0.9 Å away from the 

tungsten atoms. Diffraction data for compound 8 were of poor quality too (twinning was 

also present in the crystal, with the second component being present in small 

proportion). After full convergence the strongest residual peaks (7.8 and 5.7 eÅ−3) were 

placed ca. 1.0 Å away from the tungsten atoms. 
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Table 5. Crystal Data for New Compounds 

 cis-2a 7 8 

mol formula C33H41O2PW2 C32H41O6PW2 C30H39O6PW2 

mol wt 868.33 920.30 894.28 

cryst syst Monoclinic Triclinic Monoclinic 

space group P21/c P −1 P21/c 

radiation (λ, Å) 0.71073 0.71073 0.71073 

a, Å 9.378(2) 11.744(5) 10.6093(13) 

b, Å 21.148(6) 15.106(5) 15.7243(16) 

c, Å 14.800(4) 19.242(5) 19.131(2) 

α, deg 90 103.203(5) 90 

β, deg 98.333(4) 105.118(5) 115.682(7) 

γ, deg 90 93.143(5) 90 

V, Å3 2904.2(13) 3184.5(19) 2876.3(6) 

Z 4 4 4 

calcd density, g cm−3 1.986 1.92 2.065 

absorp coeff, mm−1 7.999 7.31 8.09 

temperature, K 110(2) 100.0(1) 100.0(1) 

θ  range (deg) 1.691 to 26.496 1.133 to 26.372 1.753 to 26.016 

index ranges (h, k, l) 
−11≤ h ≤ 11, 
−26≤ k ≤ 26, 

0 ≤ l ≤ 18 

−14≤ h ≤14, 
−18 ≤ k ≤ 18, 

0 ≤ l ≤ 24 

−13 ≤ h ≤ 12, 
−19 ≤ k ≤ 0, 
−23 ≤ l ≤ 12 

no. of reflns collected 32760 75626 41104 

no. of indep reflns (Rint) 11748 (0.1673) 13010 (0.0730) 5658 (0.1345) 

reflns with I > 2σ(I) 6967 10356 3887 

R indexes 
[data with I > 2σ(I)]a 

R1 = 0.0909 
wR2 = 0.2246b 

R1 = 0.0625 
wR2 = 0.1648c 

R1 = 0.0598 
wR2 = 0.125d 

R indexes (all data)a R1 = 0.1423 
wR2 = 0.2633b 

R1 = 0.0794 
wR2 = 0.1759c 

R1 = 0.0987 
wR2 = 0.1424d 

GOF 1.009 1.074 1.045 

no. of restraints/params. 384/345 7/633 0/354 

∆ρ(max., min.), eÅ−3 3.349, −3.885 5.527, −5.484 7.826, −2.758 

aR = Σ||Fo| − |Fc|| / Σ|Fo|. wR = [Σw(|Fo|
2− |Fc|

2)2 / Σw|Fo|
2]1/2. w = 1/[σ2(Fo

2) + (aP)2 + bP] where P = (Fo
2 + 

2Fc
2)/3. b a = 0.1474, b = 0. c a = 0.1229, b = 0. d a = 0.0486, b = 51.4201. 
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crystallographic data for compounds cis-2a, 7 and 8 (CCDC 1430471 to 1430473). 
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