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Three fluorescent asymmetric bis-urea receptors (L1-L3) have been synthesised. The binding 
properties of L1-L3 towards different anions (fluoride, acetate, hydrogencarbonate, dihydrogen 
phosphate, and hydrogen pyrophosphate HPpi3-) have been studied by means of 1H-NMR, UV-
Vis and fluorescence spectroscopies, single crystal X-ray diffraction, and theoretical 
calculations. In particular, a remarkable affinity for HPpi3- has been observed in the case L1 
(DMSO-d6/0.5%H2O) which also acts as a fluorimetric chemosensor for this anion. 
Interestingly, when L1 is included in cethyltrimethylammonium (CTAB) micelles, hydrogen 
pyrophosphate recognition can also achieved in pure water.  
 

 

 

 

 

 

 

 

Introduction 

Due to the crucial roles played by anions in biological, 
environmental and industrial fields, one of the main topics of 
supramolecular chemistry nowadays is anion recognition and 
sensing.1-3  
In particular, phosphates are among the most important anions 
in biological systems as they play a central role in the building 
of two fundamental molecules in the living systems, DNA and 
RNA. Phosphate are also involved in various processes such as 
energy storage, signal transduction, gene regulation and muscle 
contraction, and, in the form of phospholipids, they are 
essential constituents of lipids membranes.4, 5 Moreover, they 
are important components of medicinal drugs and fertilizers and 
their increasing presence in natural water sources is related to 
the eutrophication of the aquatic ecosystems.6 For these reasons 
a great effort has been put in the design of receptors highly 
selective for  phosphorylated species. 7-9 In particular 
pyrophosphate (Ppi, this acronym with omitted charges will be 
used throughout this paper when referring to pyrophosphate 
independently of its protonation state)  is a biologically 
important target as the product of ATP hydrolysis under 

cellular conditions.10 The detection of pyrophosphate has 
become important in cancer research as telomerase (a 
biomarker for cancer diagnosis) activity is measured by 
evaluating the amount of Ppi generated in the polymerase chain 
reaction (PCR) amplification of the telomerase elongation 
product.11 Furthermore, the high level of Ppi in synovial fluids 
is correlated to calcium pyrophosphate dehydrate disease 
(CPDD), a rheumatologic disorder.12, 13 For these reasons the 
detection and discrimination of pyrophosphate, especially by 
means of fluorescent chemosensors, has attracted the attention 
of chemists over the last 20 years.14 
Many different strategies have been developed for designing 
fluorescent chemosensors for Ppi including the use of charged 
receptors,15, 16 metal complexes,17-21 or neutral receptors in 
particular urea or thiourea receptors.15, 22-26 
We have recently described a new family of symmetric bis-urea 
receptors which showed  a remarkable affinity for Ppi and were 
able to act as a fluorimetric chemosensors for this anion, even 
at naked eye.27 In particular we demonstrated that the presence 
of naphtyl groups as pendant arms of the ureas, facilitates the  
binding and the optical fluorimetric selectivity thanks to the 
uncommon interaction of an aromatic CH from the fluorophore 
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with the Ppi guest. Inspired by these interesting results, we 
decided to synthesize three new asymmetric bis-urea receptors 
L1-L3 (Scheme 1) bearing a naphatlene and an indole moiety 
as pendant arms of the urea moieties. The only structural 
difference in the three receptors is the reciprocal position of the 
urea functions around the central phenyl ring, orto for L1, meta 
for L2 and para for L3. Our aim was to assess the effect of the 
different degree of pre-organization of the receptors (from L1 
to L3) on the affinity towards anions and on their efficiency as  
fluorescence chemosensors. 
 

 

Scheme  1  Representation  of  receptors  L1‐L3  with  the  numbering  scheme 

adopted for the discussion of the 1H‐NMR results. 

 
Results and discussion 
 
The synthesis of the three receptors is quite straightforward (see 
ESI, Scheme S1). The first step is the formation of the indole 
urea starting from 7-aminoindole and 2-nitro-, 3-nitro-, or 4-
nitro-phenyl isocyanate for L1, L2, and L3, respectively. Then, 
upon reduction of the -NO2 moiety into amine with Pd/C 10% 
in EtOH, the second urea function is introduced on the phenyl 
ring by reaction with the 1-naphtyl isocyanate. The three 
receptors are obtained in yields over 80%.  
First, we performed anion-binding studies by means of 1H-
NMR titrations in DMSO-d6. Assignment of the 1H-NMR 
chemical shifts was made via 2-D NMR spectroscopy 
experiments for all the three receptors (Figures. S14-S30). The 
EQNMR program28 was used to calculate stability constants 
from the 1H-NMR titration curves obtained (see ESI† Figures 
S31-S38) fitting the data to a 1:1 binding model as shown in 
Table 1.  
 

Table 1 Association constants (Ka/M
-1) for the equilibrium 

reactions of L1-L3 with the tetrabutylammonium salts 
(tetraethyl in the case of hydrogencarbonate) of the anion 
considered in DMSO-d6 at 300 K. The constants were 
calculated by following the shift of the indole NH. All errors 
estimated to be 15% (see ESI †). 

Anion L1 L2 L3

F- deprot.a deprot.a deprot.a 
CH3COO- 7430 1252 5830 

HCO3
- n.d.b 1900 3594 

H2PO4
- >104 1911 9190 

HPpi3- n.db n.d.b n.d.b 
 

athe NHs signals disappeared after the addition of one equivalent of anion 

bexperimental evidences suggest strong interaction  

As shown in Table 1 fluoride causes deprotonation of the three 
receptors, while high and moderate high stability constants are 
observed in the case of acetate, dihydrogenphosphate, and 
hydrogencarbonate. Only for the equilibrium of L1 with HCO3

- 
we were not able to calculate any association constant because 
of the broadening of the signals attributed to the NHs. In the 
case of HPpi3- with all the three receptors the broadening and 
then the disappearance of the NHs signals was observed after 
the addition of 0.1 equivalents of anions. However, the peaks 
reappeared downfield shifted after the addition of an excess of 
anion,  suggesting strong interaction between this anion and the 
host molecules (see Figure S1), although any stability constant 
could be calculated.  Interestingly, as already previously 
observed by ourselves,27 also the 1H-NMR doublet signal of the 
naphtalene fragment (CH19) adjacent to the urea NH12 atom 
(see Scheme 1) is downfield shifted during the titration with 
this anion.  
Comparing the changes in 1H-NMR chemical shift of the NHs 
signals of the three ligands upon addition of anions some 
interesting difference can be pointed out.  
As shown in Figure 1 in the case of H2PO4

- (analogous 
observation can be made for the other anions (acetate for L1-L3 
and hydrogencarbonate for L2 and L3, see ESI Figures S2-S4) 
the three receptors show different behaviours. For L2 (Figure 
1B) and L3 (Figure 1C) two trends can be easily recognized: 
the titration curves obtained following the 1H-NMR signals of 
three of the five NHs (attributed to NH1, NH7, and NH8) have 
a neat inflection point, while for the other two NHs (NH11 and 
NH12) the inflection point is less marked. In particular, for L3 
the changes in the chemical shifts for the protons NH11 and 
NH12 are almost negligible in the first part of the titration 
curve, probably because of the more open conformation of L3 
with respect to L2 that eases the interaction of the anions with 
the indole part of the molecule. On the other hand in the case of 
L1  the change of the 1H-NMR signals of all five NHs shows a 
neat inflection point suggesting a cooperative behaviour of all 
NHs towards anion binding of this receptor, presumably due to 
a better pre-organization with respect to L2 and L3. This 
evidence easily explains the higher stability constants 
determined for L1 with respect to L2 and L3 at least for 
CH3COO- and H2PO4

- (see Table 1). These results are in 
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agreement with the designed pre-organization degree of the 
three receptors increasing in the order L1>L2>L3.   

 
Figure  1.  Change  of  the  1H‐NMR  shift  for  the  NH  protons  upon  addition  of 

increasing amounts of H2PO4
‐ to a DMSO‐d6 solution of L1 (A), L2 (B), and L3 (C).  

Despite many attempts to crystallize the adducts of the three 
receptors with phosphate anion guests, only in the case of L2 
with H2PO4

- and HPpi3- we were able to isolate samples 
suitable for single crystal X-ray diffraction (for more details see 
ESI).  
Crystals for both the adducts were obtained by slow diffusion 
of diethyl ether vapour into a MeCN/MeNO2 (1:1 v/v) solution 
of L2 containing an excess of the TBA+ salt of the appropriate 
anion. 
(L2)(H2PO4)2)(TBA)2·0.5 H2O crystallizes in the orthorhombic 
crystal system (space group: Pca21). The asymmetric unit of the 
adduct (Fig. 2a) contains two independent L2 receptor units and 
four independent H2PO4

- anions balanced by four TBA+ cations 
(Z′ = 2) and one water molecule. The two independent receptor 
units adopt a planar conformation with the naphtalene and 
indole planes slightly tilted with respect the plane of the phenyl 
spacer (Fig. 2 b). 
The structure shows a cyclic tetrameric molecular arrangement 
of H2PO4

- anions (Fig. 2 c), connected via a set of (P)O-
H...O(P) hydrogen bonds (O...O distances lie in the range 2.60-
2.64 Å). Although oligomeric H2PO4

- anions aggregates are 
typically formed in solution at high concentrations,  these are 
relatively rare in solid state, where infinite chains or more 
extended networks are very common.29, 30 In particular, to the 
best of our knowledge, only four hydrogen bonded H2PO4

- 
tetrameric clusters with a similar geometry as in the adduct here 
described have been isolated so far.31-34 

 
Figure 2. View of  the anionic adduct  ((L2)(H2PO4)2)

2‐,  in  the asymmetric unit of  

(L2)(H2PO4)2)(TBA)2·0.5  H2O;    water  molecule,  tetrabuthylammonium  (TBA+) 

cations,    and  disorder  are  omitted  for  clarity.  (a)  Main  intermolecular 

interactions  involved  in  the  receptor‐anion  complex;  (b)  view  of  the 

conformations of  the  symmetrically  independent  receptor units;  (c)  tetrameric 

cluster of hydrogen bonded H2PO4
‐ anions. N‐H...O hydrogen bonds are indicated 

as  red  dashed  lines,  C‐H...O  interactions  as  black  dashed  lines.  The  two 

independent  receptor  units  are  indicated  as  1  and  2  respectively.  The D‐H...A 

distances are all expressed in Å. 

The cluster interacts with a H2O molecule via two O-H...O 
hydrogen bonds (O...O distances lie in the range 2.80-3.00 Å) 
and is then surrounded by two symmetrically independent 
molecules of L2, resulting in an overall 1:2 receptor/anion 
molar ratio in the adduct in the solid state (Fig. 2). Only one of 
the two receptors exhibits a whole molecule disorder resulting 
in indole and naphthalene sides overlapping (55:45). It is 
interesting that the second unit has no significant disorder thus 
resulting in an overall preference for the indole sides to be 
opposite to each other rather than adjacent. It could also be that 
the partial water molecule influences which orientation of 
ligand exists. For each independent receptors the two anions are 
bonded on the two different sides of the molecule, the indole 
side and the naphtalene side.   
On the indole side, the anion interacts via three N-H...O 
hydrogen bonds, one involving the indole NH (N...O distances 
are 2.832(5) Å for the independent molecule 1 and 3.034(13) Å 
for the independent molecule 2) and two involving the urea 
NHs (N...O distances are 2.787(4) Å and 3.305(5) Å for the 
independent molecule 1 and 2.758(4) Å and 3.075(6) Å for the 
independent molecule 2). On the naphtalene side the anion can 
only interact with the urea NHs  via two N-H...O hydrogen 
bonds (N...O distances are 2.779(4) Å and 2.833(4) Å for the 
independent molecule 1 and 2.795(4) Å and 2.771(4) Å for the 
independent molecule 2), supported by a third C-H...O weak 
hydrogen bond (C...O distances are 3.285(5) Å for the 
independent molecule 1 and 3.265(8) Å for the independent 
molecule 2). 
 
(L2)(H2Ppi)(TBA)2 crystallizes in the orthorombic crystal 
system (space group: Pban). The asymmetric unit contains just 
half of both L2 receptor units and, surprisingly, an H2Ppi2- 
anion (Z′ = 1/2). Both the L2 receptor unit and H2Ppi2 anion 
show whole molecule disorder such that to suitably model them 
requires two complete independent moieties of both the L2 

A B

C

8.0

9.0

10.0

11.0

12.0

13.0

0 2 4 6 8

H2PO4
- equivalents

C
h

em
ic

al
 s

h
if

t

NH1
NH8
NH7
NH11
NH12

8.0

9.0

10.0

11.0

12.0

13.0

0 2 4 6 8

H2PO4
- equivalents

C
h

em
ic

al
 s

h
if

t

NH1
NH8
NH7
NH11
NH12

8.0

9.0

10.0

11.0

12.0

13.0

0 2 4 6 8

H2PO4
- equivalents

C
h

em
ic

al
 s

h
if

t

NH1
NH8
NH7
NH11
NH12

Page 3 of 7 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE  Journal Name 

4 | J.  Name., 2012, 00, 1‐3  This journal is © The Royal Society of Chemistry 2012 

receptor unit and H2Ppi2- anion with all atoms are ¼ occupancy. 
Also in this adduct the two independent receptor units adopt a 
planar conformation. However, in this case, the naphtalene and 
indole planes show a major tilting with respect the plane of the 
phenyl spacer (Fig.3 b). 

 
Figure  3.  Asymmetric  unit  of  (L2)(H2Ppi)(TBA)2,  tetrabuthylammonium  (TBA+) 

cations and disorder are omitted for clarity. (a) Main intermolecular interactions 

involved  in  the  receptor‐anion  complex;  (b)  view  of  the  conformations  of  the 

symetrically independent receptor units; (c) dimeric cluster of hydrogen bonded 

HPpi3‐ anions. N‐H...O hydrogen bonds are indicated as red dashed lines, C‐H...O 

interactions  as  black  dashed  lines.  The  two  independent  receptor  units  are 

indicated as 1 and 2 respectively. The D‐H...A distances are all expressed in Å. 

The two independent H2Ppi2- anions are connected with each 
other via four O-H...O hydrogen bonds with distances lying in 
the range 1.77-1.80 Å. This dimeric arrangement then interacts 
with the two independent receptors via a set of N-H...O and C-
H...O interactions respectively involving both the ureidic and 
indolic NHs and the phenyl and the naphthalene aromatic CHs, 
resulting in a 1:1 receptor/anion molar ratio in the adduct in the 
solid state (Fig. 3a).  
Similarly to the previous structure, the anion interacts on the 
indole side via three N-H...O hydrogen bonds, two involving 
the urea NHs (N...O distances are 2.90(4) Å and 2.92(4) Å for 
the independent molecule 1 and 2.94(4) Å and 3.26(5) Å for the 
independent molecule 2) and one involving the indole NH 
(N...O distances are 2.66(3) Å for the independent molecule 1 
and 2.89(4) Å for the independent molecule 2). On the other 
side of the molecule, due to the absence of any strong hydrogen 
bond donor in the naphtalene group, the anion only interacts 
with the two urea NHs (N...O distances are 3.42(4) Å and 
3.42(3) Å for the independent molecule 1 and 2.53(4) Å and 
2.99(5) Å for the independent molecule 2). This is also 
supported by a C-H...O weak hydrogen bond (C...O distances 
are 3.16(3) Å for the independent molecule 1 and 3.17(4) Å for 
the independent molecule 2) involving a naphtalene CH. 
Differently to the previous structure the central part of the 
molecule also contributes to the interaction with the anion (Fig. 
3 a), with the phenyl CH interacting with the two anions via 
short C-H...O interactions (C-H...O distances are in the range 
2.30 - 2.60 Å). 
The results obtained in the solid state are consistent with the 
conditions chosen for the crystallization experiments, in which 
the strong excess of anions used might favour stochiometries 
higher than 1:135 and/or clusters formation. For the same reason 

the results are not completely in agreement with the 
observations made in solution studies (see above). These 
differences are particularly evident for 
((L2)(H2PO4)2)(TBA)2·0.5 H2O which is characterized by  a 1:2 
receptor/anion molar ratio. In this regard, it must be 
emphasized that generally the results obtained by solution 
studies might not always be consistent with those obtained in 
the solid state for many different reasons. The simplest 
explanation can be given considering that a molecule in solid 
state must satisfy a primary requirement which consist of 
forming a periodic 3-D assembly and this might also involve 
changes at molecular level (e.g. adoption of a different 
conformation)36 to ensure the development of the crystal 
packing along the three dimensions. From this point of view, 
the case of host-guest complexes (a multicomponent system) 
might even more complicate the matter, giving clusters 
formation or stoichiometry ratios different to those observed in 
solution. A different case is what observed for 
(L2)(H2Ppi)(TBA)2, in which a proton transfer on the HPpi3- 
moiety resulted in a structure containing H2Ppi2- anions. This 
might be due to presence of water in the solvent of 
crystallization . 
However, we made several attempts to crystallize the two 
systems in different conditions (1:1 stoichiometry in DMSO 
solutions) but none of these experiments was successful in 
producing single crystals suitable for X-ray investigation. 
 
 
 
The spectrophotometric and the spectrofluorimetric properties 
of L1-L3 in DMSO were also investigated in order to verify 
whether the different disposition around the central phenyl 
spacer of the urea fragments could influence the photophysical 
properties of the receptors and their behaviour as fluorescent 
sensors. An absorption band at 295 nm ( = 29500 M-1cm-1) and 
305 nm (27500 M-1cm-1) for L1, and L2, respectively,  is 
observed together with a shoulder at 328 nm ( = 9500 M-1cm-1 
and 9900 M-1cm-1 for L1 and L2, respectively, see ESI Figures 
S4). Upon excitation of a DMSO solution of L1 and L2 
(3.0·10-5 M) at 328 nm an emission band centered at 376 nm 
was observed for both the receptors (Φ = 2.6·10-2 and 9.1·10-2 
for L1 and L2, respectively), attributed to the emission of the 
naphthalene fragment (see ESI, Figure S5). In the case of L3, 
the UV-Vis spectrum showed two absorption bands at 270 nm 
(( = 26000 M-1cm-1) and 304 nm ( = 28600 M-1cm-1) and a 
shoulder at 330 nm (( = 12400 M-1cm-1). Excitation at 330 nm 
led to a weak emission centered at 483 nm (Φ = 8.7·10-3).  
Addition of the increasing amounts of all anions considered to 
L1 and L2 did not cause any significant changes in the UV-Vis 
spectra of the receptors, however the quenching of the band at 
376 nm was observed (see ESI, Figures S6 and S7). 
Interestingly, upon addition of hydrogenpyrophosphate the 
formation of a new emission band centered at 476 nm was 
observed for both L1 and L2 as shown in Figures 4A and 5A.  
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means of 1H-NMR and fluorescence spectroscopy. We have 
demonstrated that by simply changing the reciprocal position  
of the two arms with respect to the central phenyl ring (orto, 
meta and para for L1, L2, and L3, respectively) we can 
increase the pre-organization of the receptors and we can 
influence their photophysical properties, modulating the 
response in terms of anion binding affinity and fluorescence 
transduction signal, with the best results achieved for L1. L1 is 
also able to selectively sense HPpi3- in pure water once 
embedded in CTAB micelles.  
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